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Abstract: Non-intrusive load monitoring (NILM) has emerged as a pivotal technology in energy man-
agement applications by enabling precise monitoring of individual appliance energy consumption
without the requirements of intrusive sensors or smart meters. In this technique, the load disaggre-
gation for the individual device is accrued by the recognition of their current signals by employing
machine learning (ML) methods. This research paper conducts a comprehensive comparative analysis
of various ML techniques applied to NILM, aiming to identify the most effective methodologies
for accurate load disaggregation. The study employs a diverse dataset comprising high-resolution
electricity consumption data collected from an Estonian household. The ML algorithms, including
deep neural networks based on long short-term memory networks (LSTM), extreme gradient boost
(XgBoost), logistic regression (LR), and dynamic time warping with K-nearest neighbor (DTW-KNN)
are implemented and evaluated for their performance in load disaggregation. Key evaluation met-
rics such as accuracy, precision, recall, and F1 score are utilized to assess the effectiveness of each
technique in capturing the nuanced energy consumption patterns of diverse appliances. Results
indicate that the XgBoost-based model demonstrates superior performance in accurately identifying
and disaggregating individual loads from aggregated energy consumption data. Insights derived
from this research contribute to the optimization of NILM techniques for real-world applications,
facilitating enhanced energy efficiency and informed decision-making in smart grid environments.

Keywords: non-intrusive load monitoring; load disaggregation; pattern recognition; machine learning;
deep learning

1. Introduction

The rising demand for an increased proportion of renewable energy resources (RES)
in the coming decades, driven by the cost-effectiveness and environmental benefits of
cleaner energy production, is expected to follow an upward trajectory [1]. Although RES
contributes positively to sustainability and environmental concerns, their intermittent
nature poses challenges in the residential energy sector [2,3]. Therefore, it is crucial to strike
a balance between demand and supply to effectively manage these energy resources. The
inclusion of shiftable and non-essential loads in the residential sector, such as electric vehi-
cles (EV) and battery energy storage systems (BESS), can play a pivotal role in optimizing
energy management and enhancing system flexibility. The strategy involves scheduling
these loads to coincide with the availability of RES-like photovoltaic (PV) energy. This
approach not only reduces energy consumption costs and promotes sustainability and
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self-reliance but also augments the penetration of renewable energy [4]. Referred to as
energy flexibility (EF), this adaptability is essential for transitioning towards eco-friendly
and efficient energy grids. A noteworthy development in this context is the emergence of
demand-side energy aggregators, which contribute to balancing demand and supply by
minimizing peak loads during periods of high demand, thereby ensuring stability in power
systems, and facilitating EF [5].

The EF is generally referred to as the customer’s capacity to adjust or modify behavior
based on energy demand, production variations, weather conditions, and user or grid
requirements [6,7]. Several devices in the household are known as shiftable loads such
as EVs, washing machines, dishwashers, etc. These devices are not essential and could
be used at a later time, therefore, referred to as shiftable/movable devices. Another
prevalent definition focuses on the earliest start time and ending time of shiftable devices.
Traditional EF characterization involved installing smart meters on residential devices and
continuously monitoring data, which, although straightforward, could be costly and slow
it also raised concerns about data privacy [8].

A new approach, non-intrusive load monitoring (NILM), has been proposed as an
alternative. NILM observes the usage patterns of devices based on their current signals,
eliminating the necessity for smart meters [9]. The total energy consumption of the user
is given to the NILM model as an input and then the device usage times are extracted,
this method is known as load disaggregation. This makes NILM an essential tool for
demand-side management (DSM) and EF applications. Although the most precise method
to measure device usage is through energy meters on individual devices, this approach
is not the most practical [10]. The integration of data-driven technologies, such as ma-
chine learning (ML), into NILM has enhanced its efficiency. A detailed review of the
NILM method is given in [11]. NILM solutions can be categorized into supervised and
unsupervised learning [12]. In supervised learning, the model is trained using a dataset,
followed by testing and verification. On the other hand, unsupervised learning involves
the model extracting information from data and forming clusters without prior training
sets [13]. While unsupervised learning is faster and more convenient, it lacks the accuracy
of supervised learning [14]. Several ML-based methods, including K-nearest neighbor
(kNN), neural networks, support vector machine (SVM), deep learning (DL), and event
matching classification, have been proposed in supervised NILM. There are many studies
that have also incorporated statistical methods such as particle swarm and Markov chain
models. In Table 1, a comparison of previous studies with this study has been presented.

Table 1. Comparison of the current study with existing literature.

Study Year Place Method Used for NILM Dataset Avg. Efficiency (%)

[15] 2019 China Particle swarm 1 year 94.2
[16] 2023 Indonesia Random Forests 1 year 99
[17] 2020 India Markov Chain 31 days 94
[5] 2021 Estonia Extreme Gradient Boost (XgBoost) 3 years 97.2

[18] 2022 Malaysia K-NN, SVM, Ensemble 30 days 98.8
[19] 2020 Iran SVM 1 week 98.2
[20] 2021 Indonesia Convolutional Neural Networks (CNN) 1 month 98
[21] 2023 Italy Random Forests 27 months 96.3
[22] 2024 Spain Long Short-Term Memory Networks (LSTM) 7 months 98
[23] 2023 Greece Recurrent Neural network (RNN) 10 days 97
[24] 2023 Canada LSTM 2 days 98

[25] 2023 UAE Current Waveform Features with Rule-Based
Set Theory (CRuST) 1 month 96

This Study 2024 Estonia DTW-KNN, Logistic Regression (LR), XgBoost,
RNN-LSTM 1 year 98

The NILM method has been used for anomaly detection at the appliance level by
incorporating machine learning [26]. In another study [8], NILM is utilized for the event
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matching of devices. This study was based on the Pecan Street dataset, and it used a deep
learning algorithm for this event matching. In [27], the NILM technique is used to identify
the load patterns, and then later, these patterns are used to improve the accuracy of the
load forecasting. A NILM-based solution has been proposed for energy management in
microgrids [28]. Furthermore, the solution also provides input for the electricity market
based on the load characterization by NILM. The results indicated that using this technique
the energy costs and load curtailment can be reduced. In [29], a NILM-based algorithm
has been proposed for the monitoring of loads in the power distribution network. This
technique consists of a neural network and improves accuracy by 5%.

In most of the literature presented above, there are several methods used in NILM
modeling. However, the accuracy of these NILM models is challenging as there are many
device variations, different manufacturers with different power ratings and device operat-
ing modes. The inclusion of ML and DL methods improves this performance significantly
but still, these methods require larger datasets of reference device signals which is prob-
lematic. Therefore, there is a gap in the research studies about the comparison of different
ML and DL algorithms on the accuracy of the NILM technique. Moreover, the impact of
the size of the dataset on the performance of NILM is also of interest. This paper tries to
fill this gap by evaluating the performance of several ML and DL algorithms employed
in NILM. These models are designed based on a real-life dataset measured in an Estonian
household for the whole year. These are the main contributions of this work:

• Thorough comparative analysis of ML Techniques for NILM, revealing optimal method-
ologies for load disaggregation.

• Utilization of diverse dataset from an Estonian household for comprehensive evalua-
tion of ML algorithms.

• Implementation and Evaluation of LSTM, XgBoost, LR, and DTW-KNN models, high-
lighting XgBoost’s superior performance.

• Insightful evaluation metrics application includes accuracy, precision, recall, and F1
score for nuanced assessment.

• Identification of XgBoost as the most effective model for load disaggregation, offering
practical implications for enhancing energy efficiency.

The rest of the article is structured as follows: Section 2 provides detailed background
information about NILM and the ML and DL methods used in this research. The case study
of the Estonian household and the development of these NILM models are presented in
Section 3. The results and discussion are given in Section 4. Finally, the conclusion and
future works are summarized in Section 5.

2. Non-Intrusive Load Monitoring (NILM)

Non-Intrusive Load Monitoring (NILM) is a progressive approach for estimating
individual appliance operating states and their energy consumption based on household
total electrical load measured at a single point. It involves acquiring and disaggregating
the overall electricity usage, offering a simple and cost-effective means of monitoring
appliances’ operation and energy consumption formulated as:

Ptotal(t) = ∑K
k=1 pk(t) + e(t) (1)

where
Ptotal(t) is the power consumed by all appliances,
pk(t)—power consumed by the kth appliance,
e(t)—error or difference between aggregate meter reading and the sum of actual

power consumption.
The examination relies on the measurement of voltage and current waveforms taken

at the electrical service entrance (ESE). These data serve as the basis for deducing the
operational conditions and power consumption of each individual load. Load signatures,
also known as load features, are derived from these waveforms, providing measurable
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parameters that reveal information about the nature and operating status of individual
appliances. Appliances can be categorized into distinct types based on their load signatures,
shaping the approach to disaggregation:

• Type-I appliances, such as toasters and boilers, exhibit a straightforward ON/OFF
state.

• Type-II devices like washing machines and ovens operate with multiple (finite) number
of operating states with recognizable patterns.

• Type-III devices, presented by dimmer lights, belong to continuously variable de-
vices (CVD), presenting a challenge in disaggregation due to their constantly varying
consumption.

• Type-IV, devices that are constantly in operation and have different energy consump-
tion modes like smoke detectors and refrigerators.

Given the diversity outlined above, developing an accurate yet broadly applicable
NILM system is a challenging task. Consequently, many algorithms are designed to focus
on identifying only the most significant appliances. This strategic approach acknowledges
the complexity of capturing the varied operational signatures across different appliance
types while aiming to provide targeted and effective load disaggregation. The goal is to
strike a balance between accuracy and generalization, ensuring that the NILM system
can reliably identify and monitor key appliances without becoming overly intricate and
challenging to implement [30,31]. A general NILM process can be presented in four phases
and observed in Figure 1.
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2.1. Data Collection

The initial step in any NILM algorithm involves data acquisition, typically obtained
from smart meters. The crucial question in load disaggregation is determining the opti-
mal data collection frequency for smart meters to ensure accurate appliance identification
and power estimation. The trade-off between high and low data frequencies significantly
impacts NILM algorithm effectiveness. High-resolution measurements, often exceeding
1 Hz, can extract transient features crucial for identifying appliances with similar power con-
sumptions, particularly during state transitions. On the other hand, excessively small data
frequencies limit feature extraction to steady-state characteristics, proving it insufficient for
differentiating appliances with comparable power usage.

The sampling frequency, an essential factor in data pre-processing, varies based on
the appliance signature of interest, with researchers recognizing the utility of both low-
frequency and high-frequency signatures. High-frequency data, however, require high-end
hardware, additional data storage, and have transmission problems, and thereby increasing
costs. Recent NILM solutions strategically balance algorithmic efficiency and performance
across a diverse range of appliances, often favoring low-frequency signals to achieve
satisfactory results [32].

The algorithms differ significantly in their approach to handling data at the collection
stage. The below-mentioned algorithms have the following differences: DTW-KNN excels
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in time series classification, accommodating speed variations but lacks explicit handling
of missing data or noise. XgBoost robustly handles tabular data, automatically adapting
to missing data and outliers, despite needing careful tuning and pre-processing. Logistic
Regression, suitable for binary classification, demands meticulous pre-processing, espe-
cially for categorical data, and lacks inherent handling of missing values and noise. LSTM
networks, an expert at processing sequential data, are robust to noise but may struggle with
lengthy sequences, necessitating truncation or summarization and requiring numerical
input. Based on the above mentioned each algorithm offers unique strengths, and optimal
performance relies on meticulous data pre-processing and tuning tailored to the task and
data characteristics.

2.2. Event Detection

Within the domain of NILM, event detection serves as a crucial task, focusing on detect-
ing state transition actions generated by appliances. The event detection module identifies
instances of state transitions in the aggregated power signal, characterizing actions like
ON/OFF switches, changes in appliance speed and mode alternations. Challenges in event
detection arise from high fluctuations, long transitions and near-simultaneity, and misiden-
tification of events can lead to decreased accuracy and increased computational complexity
in NILM methods. The event detection module employs various models, including ex-
pert heuristics, probabilistic models, and matched filter models, to identify events in the
aggregate signal, with a subsequent focus on exploring different signatures for effective
NILM research, including steady-state features extracted from low-frequency sampled
data around the event detection window. Despite their ease of extraction, steady-state
features face challenges of feature overlapping and susceptibility to power disturbances,
highlighting the ongoing efforts to enhance NILM methodologies [30].

In the event detection phase, the process begins with threshold estimation, where
a specific value is set or calculated dynamically to identify when an event, such as an
appliance turning on or off, has occurred. This threshold is typically based on changes in
power consumption and aims to minimize both false positives and negatives. Following
the detection of events, they are classified into different categories, often corresponding to
individual appliances. The performance of this event classification is then evaluated using
various metrics such as precision, recall, and F1-score. These metrics assess the accuracy of
the classification in terms of the proportion of correctly identified events, the proportion of
actual events that were missed, and the balance between precision and recall, respectively.

2.3. Feature Extraction

Effective NILM methods necessitate distinctive features or signatures that capture the
unique behaviors of appliances, facilitating the differentiation of various types of appliances.
These features are derived from the distinctive power consumption patterns exhibited by
individual appliances and are utilized to identify or recognize corresponding appliances
from aggregated signals. Two main categories of features employed in NILM are transient
features and steady-state features. Transient features, extracted from the transition process
between two steady states, require high-frequency data acquisition by smart meters, typi-
cally exceeding 1 Hz. Event detection methods separate the transition process from overall
measurements, posing a challenge to accurately capture the start and end of transitions.
The steady-state features, on the other hand, encompass variables such as active power,
reactive power, current, and voltage waveform, and can be extracted from conventional
smart meter data without the need for high-frequency sampling. Although steady-state
features are commonly used, determining the number of states remains challenging [30,33].

Feature extraction is a crucial step that involves processing the collected data to
extract meaningful information. Features mentioned above (see Figure 1) can be used
individually or in combination to improve the performance of the systems. For example,
“aggregation” refers to the total energy consumption data collected from the main power
line. It serves as the primary input for NILM systems. Date/time features can capture
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daily/weekly/monthly/annual patterns in energy usage. Time intervals can refer to the
duration for which an appliance is used, as different appliances tend to be used for different
lengths of time [31,32]. These features can be used individually or in combination to
improve the performance of NILM systems. The choice of features often depends on
the specific characteristics of the problem at hand, such as the number of appliances, the
sampling rate of the data, and the availability of training data [33,34].

2.4. Load Disaggregation

The final stage in the process is load disaggregation, where the identified features and
patterns are used to determine the individual energy consumption and operational states
of specific appliances within a building. During the load disaggregation phase, machine
learning or pattern recognition algorithms, previously trained on labeled datasets in the
earlier stages, are applied to the real-time or historical aggregated energy data [35]. These
algorithms use the learned patterns and features to attribute portions of the total energy
consumption to specific appliances. The complexity of load disaggregation lies in the fact
that multiple appliances may be operating simultaneously, and their energy signatures
may overlap. Advanced machine learning models are often employed to handle these
challenges and improve the accuracy of disaggregation. The choice of algorithm often
depends on specific characteristics of the data and the complexity of the task, including the
number and types of appliances, the intricacy of energy usage patterns, and the availability
of labeled training data [36].

Recognizing the diverse nature of energy consumption patterns, a strategy involving
multiple algorithms has been chosen. NILM studies have explored both supervised and
unsupervised approaches. Supervised methods, utilized in our approach, require a labeled
dataset with sub-metered appliances. However, this kind of dataset may not always
be available. On the other hand, unsupervised methods can be applied without prior
knowledge of the environment. Nevertheless, users are required to validate identified
appliance patterns. As our data are labeled, we primarily use supervised methods in
our approach. Dynamic Time Warping (DTW) is employed for its ability to measure
similarity between sequences, providing flexibility in capturing dynamic variations in
energy consumption. The K-NN algorithm leverages the proximity of data points to classify
patterns, contributing a robust method for identifying similarities in energy signatures.
XgBoost, a powerful ensemble learning technique, excels in handling complex relationships
and boosting predictive performance [37]. Lastly, LSTM is chosen for its effectiveness in
discerning patterns in high-dimensional spaces [38]. By integrating these algorithms, we
aim to enhance the accuracy and versatility of our load disaggregation process, addressing
the complexities inherent in energy consumption data.

3. Machine Learning Techniques

ML revolutionized NILM by providing transparency and precision in energy con-
sumption analysis. ML algorithms excel at analyzing vast datasets and uncovering hidden
patterns within the energy signal. They can learn from historical data to identify unique
signatures of individual appliances, even when operating simultaneously. ML’s dynamic
nature allows it to adapt continuously to evolving usage patterns and seasonal variations,
ensuring sustained accuracy over time. Ultimately, ML transforms raw energy data into
actionable insights, empowering users to optimize energy management.

3.1. Dynamic Time Warping with K-Nearest Neighbor (DTW-KNN)

DTW is a crucial algorithm for time series classification, where the objective is to
train a model capable of accurately predicting the class of a time sequence within the
labeled dataset [39]. The K-NN algorithm is commonly employed for this task, with
a modification using the DWT metric instead of the classic Euclidian distance. DTW
accommodates variations in length and speed between the compared time series, making it
particularly effective for capturing patterns in energy consumption over time [40]. Despite
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its efficiency, the challenge lies in the time complexity of DTW, especially for large datasets
with lengthy sequences [41]. However, understanding the nuances of DTW allows for
necessary adjustments to enhance the algorithm’s speed, ensuring practical and efficient
time series classification in the context of NILM.

For one-dimensional time series denoted as f (x(i)) and f (y(j)), where i and j represent
time points in series, and x and y are vectors, characterized by their Euclidian distances [42].
The DTW algorithm involves creating a local cost matrix D storing pairwise distances
between x and y. The algorithm seeks an optimal warping path under certain constraints
using dynamic programming, determining the DTW distance as the minimum accumulated
distance normalized by the length of the optimal warping path. This alignment process
minimizes the “distance” between the two-time series is presented in Equation (2):

Di,j = d
(
xi, yj

)
+ min


Di−1,j−1

Di−1,j
Di,j−1

(match)
(insertion)
(deletion)

, (2)

where d
(

xi, yj
)
=

∣∣xi − yj
∣∣.

The k-nearest neighbors (K-NN) nonparametric statistical algorithm relies on k training
samples in proximity to the feature space as input. The classification of an object is based
on the most frequently occurring class among the identified k nearest points. The parameter
k denotes the number of nearest neighbors influencing the classification process, and the
selection of an appropriate k is a nuanced yet crucial step for optimizing the model’s
performance [43].

The integration of DTW and K-NN in a combined approach is motivated by the
distinctive strengths of each method. This integration yields a more robust and accurate
predictive model, specially tailored for applications in time series analysis. Essentially, the
synergy between DTW and K-NN capitalizes on DTW’s efficacy in capturing temporal
nuances and K-NN’s proficiency in pattern classification based on similarity. This combined
approach facilitates a more comprehensive analysis of time series data, proving particularly
beneficial when dealing with complex and dynamic patterns [43].

3.2. Extreme Gradient Boosting

XgBoost is a highly efficient machine learning algorithm known for its effectiveness
in predictive modeling tasks. As a gradient-boosting algorithm in the ensemble learning
family, XgBoost excels in capturing intricate patterns and relationships within energy con-
sumption data [44]. Its strength lies in accurately identifying and distinguishing between
energy signatures of diverse appliances, making it invaluable in scenarios with complex
and evolving consumption behaviors [44,45]. Operating as a tree ensemble model with k
trees XgBoost predicts outcomes for data samples (xi, yi) through a defined expression [46]:

ŷi = Fk(xi) = Fk−1(xi) + fk(xi), (3)

where
Fk−1(xi) is the prediction result of previous k − 1 trees,
fk(xi)—k-th decision tree.
The algorithm’s objective function involves a cost function, assessing the error between

predicted and actual values.

Fobj = ∑n
i=1 L(yi, ŷi) + ∑k

j=1 Ω
(

f j
)

(4)

The regularization term incorporates the L1-norm, preventing overfitting by penalizing
the number of leaf nodes, and the L2-norm, penalizing leaf node weights. Each iteration
introduces a new tree, and the objective function is approximated using first and second-
order gradients.



Electronics 2024, 13, 1420 8 of 21

3.3. Logistic Regression

Logistic regression plays a pivotal role in load disaggregation within NILM systems
for binary classification tasks, determining the ON/OFF states [47]. In this context, logistic
regression models are trained using labeled data where the state of each appliance is
known. Features extracted from the aggregated power signal, such as voltage, current, and
frequency, serve as input variables for the logistic regression model. The model learns the
relationship between these features and the probability of an appliance being in the on or
off state [48].

During inference, the trained logistic regression model is applied to real-time aggre-
gated power data to predict the probability of each appliance being ON or OFF. By setting
a threshold probability, appliances are classified as either ON or OFF, providing valuable
insights into individual appliance usage patterns. The performance of the regression-based
load disaggregation model is then evaluated using metrics such as accuracy and precision
and recall, with iterative optimization techniques like feature selection and hyperparameter
tuning applied to enhance model efficacy.

3.4. Long Short-Term Memory Networks (LSTM)

The LSTM algorithm has become one of the essential tools in NILM due to its ability
to overcome the limitations of traditional Recurrent Neural Networks (RNNs), especially
in handling long-term dependencies and gradient vanishing issues [49]. LSTMs are par-
ticularly favored for NILM tasks because they excel at capturing the inherent long-term
dependencies present in time series data. Equipped with forget, input, and output gates,
the LSTM architecture provides precise control over information flow within each memory
block, allowing for the retention of relevant information while discarding extraneous data.

The hidden layer of an LSTM network is a crucial component comprising gated units
or cells, which work in tandem to generate both the cell’s output and internal state (see
Figure 2). Consisting of four interconnected elements, including three logistic sigmoid
gates and one hyperbolic tangent (tanh) layer, LSTMs exhibit a sophisticated mechanism
for controlling information flow within the cell [50]. The forget gate, employing a sigmoid
activation function, determines the relevance of information from the previous cell state,
aiding in the removal of obsolete data. Subsequently, the input gate combines current
input with the previous hidden state, filtering pertinent information and generating new
candidate values for the cell state through a tanh layer. Finally, the output gate normalizes
cell state values and produces the final output, emphasizing LSTMs’ capability to retain
long-term dependencies and regulate information flow effectively [51].
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It is essential not to overlook the need for additional signal processing when inte-
grating neural networks (NNs) into applications. Circular timestamps provide a cyclic
representation of time, which is beneficial for handling periodic data such as daily or
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seasonal patterns. They enable neural networks, especially LSTM models, to better capture
recurring patterns in tasks like time series forecasting and energy consumption model-
ing [52]. When using circular timestamps with LSTMs, it is crucial to encode timestamps as
angles on a unit circle and design networks to handle circular sequences effectively. This
approach enhances LSTM models’ ability to accurately learn cyclic patterns across diverse
domains, offering a compact yet powerful representation of time-related data [53].

3.5. Performance Indicators

Evaluating NILM systems requires careful consideration since a single metric cannot
capture all its nuances. Although metrics like mean squared error (MSE) and false posi-
tive/negative rates offer insights into overall accuracy, the evaluation should extend to
specific appliance identification metrics such as precision, recall, and F1-score [22]. These
metrics provide a granular understanding of how well the system distinguishes between
individual appliances, which is essential for practical implementation in real-world scenar-
ios [10,43].

Precision =
TP

TP + FP
, (5)

Recall =
TP

TP + FN
, (6)

F1 = 2
Precision × Recall
Precision + Recall

. (7)

A confusion matrix is a fundamental technique in machine learning that serves as a
concise summary of a classification algorithm’s performance. It provides a tabular layout
of the correct and incorrect predictions made by the classifier, mapping these predictions
to the original classes of the data. This matrix offers crucial insights that go beyond
simple accuracy metrics, which is especially valuable when dealing with imbalanced
datasets or multiple classes. In the matrix, columns denote predicted values, while rows
represent actual values. This arrangement offers a clear visualization of the model’s
accuracy and the patterns of its errors across all classes simultaneously. This structured grid
aids in understanding the classifier’s performance by comparing the correct and incorrect
predictions for each class.

The evaluation, however, does not end at core performance metrics. Computational
efficiency, adaptivity, and data handling diversity must also be considered. Metrics such
as execution time and memory usage shed light on the system’s computational demands,
crucial for real-time applications and resource-constrained environments. Flexibility metrics
gauge the system’s ability to adapt to new appliances and environmental changes, ensuring
its relevance and applicability over time. Finally, scalability and robustness metrics assess
how well the system performs across diverse datasets and under varying conditions,
offering a comprehensive picture of its reliability and generalizability.

4. Case Study of an Estonian Household
4.1. Exploratory Data Analysis

In this study, forecasting algorithms were developed using load data from a household
in Estonia. The specific residence is situated in Tallinn city, comprising two levels, four
rooms, and holding a “C” energy rating. With a total area of around 100 square meters, it
was designed for two adults and one child. The data was measured using the Emporia
Gen 2 3-PHASE device with 16 Sensors. Data collection spanned from August 2021 to
August 2022, achieving an accuracy rate with an error margin below 5%. Measurements
were taken at 15-min intervals. The analysis included various household appliances such
as a dishwasher, vacuum cleaner, television, stereo, sauna, ventilation system, refrigerator,
lighting fixtures, electric stove, and washing machine. Additionally, the house featured a
heating system, water heater, and electric heating floor. The key DC power consumers in
the residence comprised interior and exterior lights, multiple phone and laptop chargers, a
TV and sound system, and a floor heater.
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The data for the entire year is illustrated in Figure 3, showcasing separately measured
AC and DC loads within the household. The combined average value loads hours around
3 kW. The peak recorded load, reaching approximately 19 kW, occurred in February during
the winter months when heating demands were at their peak. In Estonia, winter spans from
November to March, typically witnessing higher energy consumption. Conversely, during
the summer months between May and August, energy consumption drops significantly
as heating demands diminish. The monthly energy consumption throughout the year is
shown in Figure 4.
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The hourly energy consumption data is presented in Figure 5 indicating the highest
energy utilization during the evening hours around 7 and 8 p.m., coinciding with most
occupants being at home. While there isn’t a specific hour of lowest energy consumption
evident in the analysis, energy usage tends to be lower in the early morning hours between
2 to 6 a.m. In Figure 6, the individual load patterns of devices like stoves, rainwater
drainers, sauna, sockets, water pumps, washing machines, lights and heating are shown
during a single day. The sauna, washing machine, electric stove, heater, and water pump
are the most energy-consuming loads when they are being utilized.
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4.2. Development of NILM based Models

In this research, all compilation has been done utilizing Python 3.10, TensorFlow 2.10.1,
and Scikit-Learn1.4.1, running on a desktop with Intel(R) Core (TM) i7-7700K 4.20 GHz
CPU, NVIDIA GeForce GTX 1080 GPU and 32 GB DDR4 RAM. The XgBoost and LSTM
models have been trained on a GPU, utilizing the CUDA toolkit version 12.4. However, the
Logistic Regression and DTW_KNN models have been trained on a CPU.

Data preprocessing lays the groundwork for effective model training. In the initial data
preparation phase, handling missing values is crucial. Mean imputation (replacing missing
values with the mean of available data) or forward fill (propagating the last observed
value) can be utilized as more general and potentially effective solutions to address missing
values. These methods offer more flexibility in handling different types of missing data
while preserving the integrity of the dataset. The train-test split, typically at 80/20 ratio
ensures unbiased model assessment, additionally shuffling the data during splitting ensures
randomness and prevents any inherited order from affecting model performance. It is
worth noticing that shuffling the data is not performed when working with LSTM due
to the sequential nature of the data. This process is omitted to maintain the integrity of
the temporal relationships within the dataset, ensuring optimal performance of the LSTM
model. The model specifications for different algorithms are given in Table 2.
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Table 2. Model specifications for different algorithms.

Logistic Regression Solver: “lbfgs”, Penalty: “L2”, Class Weighted: “balanced”, Max_Iteration: 150, Data Shuffle: Yes.

DTW_KNN Number of Neighbors: 5, Window Size: 150 min (10 samples), Sample Signal Length: 360, Data Shuffle: No.

XgBoost
Booster: “dart”, Device: “GPU”, eta: 0.5, Max Depth: 4, Min_Child_Depth: 1, Max_Delta_Step: 1, Sub
Sample: 0.9, Sampling Method: “Subsample”, Objective: “Binary Logistic”, Evaluation Metrics: “log loss”,
Early Stopping: 10, Data Shuffle: Yes.

LSTM

Layer 1: Units: 50, Number of Features: 11
Layer 2: Dense:1, Activation: “Sigmoid”
Optimizer: “Adam”, Learning Rate: 0.0005, Epochs: 60, Batch size: 32, Early Stopping: 10, metrics:
“Accuracy”, Loss: “Binary Cross Entropy”, Validation Split: 0.1, Class Weight: “Balanced”, Data Shuffle = No

Time-related features play a significant role in modeling. Extracting the hour of the
day, time interval number (with 15 min resolution), day of the week, and month provides
valuable context. Generating cosine and sine values for these above-mentioned features
encodes cyclic behavior and enhances models’ ability to learn from data. Additionally labeling
weekends and holidays provides further insights for predictive modeling. Manual labeling
on/off state of appliances based on specific thresholds ensures that the model can learn the
underlying patterns as these labels serve as our target variable for supervised learning.

Handling power consumption patterns, particularly for devices with consistent steady
consumption, requires a method that effectively identifies meaningful deviations in power
usage, filtering out noise and focusing on relevant changes. The approach involves estab-
lishing a baseline consumption level for devices such as sockets and lights, representing the
minimal power draw when inactive. Significant increases in power consumption beyond
this baseline are then interpreted as the device being turned on. Additionally, recognizing
that certain devices may exhibit consistent consumption patterns, such as modems, allows
for their exclusion to prevent false positives. Overall, this approach balances sensitivity in
detecting genuine “on” states with specificity in avoiding false positives, offering a practical
means to enhance energy consumption prediction models.

To avoid overfitting in our LSTM and XgBoost networks, we employ early stopping.
This method halts the training when the model fails to improve on the validation data after
several attempts. It monitors metrics such as loss or accuracy and terminates the training
prematurely. This ensures that the model performs well with new data by stopping at the
optimal moment. However, we acknowledge that including the training behavior of the
models under investigation can offer additional insights into the design process. To this end,
we have provided some examples related to the training procedures of LSTM and XgBoost
networks below. Note that some of the training sessions ended before reaching the maximum
epoch number due to the early stopping callback. Figure 7 shows the logarithmic loss curves
related to XgBoost. In Figure 8, the LSTM training and validation losses are depicted.
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5. Results and Discussion

As previously mentioned, our data comprise a 1-year aggregated record of electricity
demand, including both the overall demand and the demands and consumption patterns
of each appliance, with a resolution of 15 min. Consequently, the dataset encompasses
approximately 35,000 data measurements for each sample. We have allocated 80% of the
data for training and validation, and 20% for testing purposes. It is critical to highlight that
we selected a 1-year period to capture all fluctuations related to seasonality. For example, the
sauna is mostly used during the colder seasons, while during summer, the dataset records
very few instances of sauna usage. This pattern holds true for heating systems as well.

As you truly mentioned a training time and resource usage investigation is also very
important to make a fair comparison among proposed methods. To this end, the training
time and RAM resource usage for all the models have been provided in Table 3.

The XgBoost algorithm stands out with exceptional performance across most cases,
except for the “other” labeled group, which likely encompasses aggregated power con-
sumption or unknown loads. Given its consistent performance, XgBoost emerges as a
robust choice for the given task. The logistic regression demonstrates varying success rates,
achieving optimal results in detecting sauna status and rainwater drainers but faltering in
other cases.

Dynamic time warping with K-nearest neighbors segments consumption curves
into 400-length samples, employing a warping window size of 10 samples to deter-
mine appliance classes based on the five nearest neighbors. While generally effective,
misidentifications between appliances like washing machines and stoves indicate room
for improvement—perhaps through refined feature engineering. Additionally, mislabeling
lights_1st and lights_2nd as “others” due to their similar patterns underscores the method’s
susceptibility to mixing closely related patterns.
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Table 3. Comparison of computation cost training times.

Appliance Name Method RAM Usage Training Time Duration

Stove

LSTM 652 MB 104.62 s

XgBoost 13.27 MB 2.58 s

Logistic Regression 17 MB 0.156 s

Sockets_2nd

LSTM 456 MB 228.74 s

XgBoost 4.6 MB 8.07 s

Logistic Regression 0.87 MB 0.027 s

Heating_2nd

LSTM 381 MB 141.05 s

XgBoost 5.65 MB 3.97 s

Logistic Regression 1.12 MB 0.053 s

Washing Machine

LSTM 506 MB 288.38 s

XgBoost 43 MB 7.84 s

Logistic Regression 1.6 MB 0.16 s

Rainwater Drainer

LSTM 602 MB 289.56 s

XgBoost 13.12 MB 7.31 s

Logistic Regression 1.15 MB 0.047 s

Sockets_1st

LSTM 925 MB 169.72 s

XgBoost 60 MB 6.86 s

Logistic Regression 450 KB 0.05 s

Lights_1st

LSTM 319 MB 160.30 s

XgBoost 73 MB 7.24 s

Logistic Regression 626 KB 0.054 s

Sauna

LSTM 113 MB 131.14 s

XgBoost 27 MB 1.11 s

Logistic Regression 11 MB 0.027 s

Lights_2nd

LSTM 168 MB 87.52 s

XgBoost 65 MB 7.37 s

Logistic Regression 328 KB 0.036 s

Hot Water pump

LSTM 226 MB 165.17 s

XgBoost 32 MB 2.26 s

Logistic Regression 10.6 MB 0.16 s

By exploiting the LSTM architecture to analyze 480 samples, representing a window
spanning 120 h, the model effectively captures temporal dependencies and inherent patterns
within the dataset. The strategic handling of imbalanced labels through the implementation
of the class weight method reflects a judicious approach to mitigate bias during model
training. The adjustment of class weights ensures equitable consideration of both “on” and
“off” states, thereby averting the model’s inclination towards the predominant class and
fostering a more balanced learning process.

In the domain of NILM, the classification threshold plays a pivotal role in optimizing
the balance between precision and recall. Precision, prioritizing correctness, and risks
overlook certain energy consumption patterns, while recall, emphasizing completeness
may falsely identify non-existent appliance activations. The choice to adjust the threshold
depends on the consequences within the context of energy management. For instance, in
residential energy monitoring, minimizing false negatives is crucial to accurately detect
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appliance usage, ensuring efficient energy usage and potentially identifying malfunctioning
devices. Conversely, in commercial settings like smart buildings, reducing false positives
is essential to avoid unnecessary interventions and maintain occupants’ comfort while
optimizing energy consumption.

In the provided Figure 9 the confusion matrices indicate that the LSTM method
performed less effectively compared to other techniques. One possible reason for this
discrepancy could be the suboptimal sampling rate of 15 min. Previous studies have
shown that increasing the measurement frequency can significantly enhance prediction
accuracy in NILM applications. Additionally, fine-tuning the LSTM method through
architectural adjustments or hyperparameter tuning may further improve its performance.
Therefore, future research should explore optimizing the sampling frequency alongside
other methodological enhancements to maximize the effectiveness of LSTM-based NILM
approaches.
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Figure 9. Confusion matrices obtained for specific threshold value.

However, comparative analyses (see Table 4) reveal that alternative models such as
XgBoost and DTW with KNN outperform LSTM in the specific scenario under investigation,
emphasizing the importance of exploring diverse model architectures and methodologies.
Considerations of interpretability, computational efficiency, and ease of implementation
will be pivotal in inappropriate model selection for a given task.
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Table 4. Performance analysis of different ML algorithms.

Appliance Stove Washing Machine Sauna

Model Metrics Precision Recall F1-Scroe Precision Recall F1-Scroe Precision Recall F1-Scroe

DTW_KNN 0.91 0.92 0.95 0.86 0.48 0.62 0.92 0.79 0.85
XgBoost 0.87 0.73 0.78 0.87 0.74 0.79 0.94 0.93 0.93

LR 0.71 0.56 0.59 0.72 0.56 0.59 0.95 0.92 0.93
LSTM 0.63 0.95 0.69 0.58 0.92 0.63 0.76 1.00 0.84

Appliance Heating_2nd Sockets_2nd Rainwater drainer

Model Metrics Precision Recall F1-scroe Precision Recall F1-scroe Precision Recall F1-scroe

DTW_KNN 0.91 1.00 0.95 0.94 0.83 0.88 1.00 0.95 0.97
XgBoost 0.90 0.91 0.90 0.87 0.75 0.79 0.99 0.99 0.99

LR 0.81 0.83 0.81 0.81 0.88 0.82 0.86 0.86 0.85
LSTM 0.90 0.89 0.89 0.96 0.92 0.94 0.93 0.96 0.95

Appliance Sockets_1st Lights_1st Hot water pump

Model Metrics Precision Recall F1-scroe Precision Recall F1-scroe Precision Recall F1-scroe

DTW_KNN 0.92 0.79 0.85 0.94 0.60 0.73 0.80 0.92 0.86
XgBoost 0.96 0.96 0.96 0.99 0.98 0.99 0.85 0.88 0.89

LR 0.74 0.74 0.74 0.77 0.79 0.76 0.70 0.71 0.70
LSTM 0.83 0.81 0.82 0.82 0.73 0.76 0.60 1.00 0.66

Appliance Lights_2nd Others Total Performance

Model Metrics Precision Recall F1-scroe Precision Recall F1-scroe Precision Recall F1-scroe

DTW_KNN 0.90 0.82 0.82 0.52 1.00 0.68 0.93 0.85 0.86
XgBoost 0.92 0.90 0.91 0.80 0.67 0.71 0.91 0.86 0.88

LR 0.86 0.88 0.87 0.95 0.97 0.96 0.81 0.79 0.78
LSTM 0.96 0.86 0.90 0.70 0.81 0.75 0.79 0.90 0.80

Figure 10 depicts the comparative analysis of all the ML algorithms based on the
accuracy of identification of the appliance at the individual level. The accuracy of LSTM and
XgBoost is comparable for most of the devices, however, the accuracy of LSTM is extremely
low for the lighting loads. On the other side, the LR algorithm has low accurate results
for lights, heating, and rainwater drainer. The DTW-KNN algorithm shows comparatively
better results than the LR algorithm, but it also has variations in accuracy results. Overall,
the most consistent results are from the XgBoost algorithm.
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There could be several reasons why XgBoost outperforms other methods. First, Xg-
Boost effectively handles various data types and missing values, which can be beneficial
when dealing with different sampling rates. In our case, the sampling rate was quite low.
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On the other hand, LSTM can be significantly influenced by the sampling rate. Additionally,
the amount of training data has a substantial impact on the performance of neural networks
due to their long-term memory capability. Sampling rates matter in Logistic Regression as
well. Secondly, XgBoost, as a representative of the family of gradient boosting algorithms,
is more robust to overfitting compared to deep learning models like LSTM. This could
be particularly beneficial if the data set is not very large, as in our case. XgBoost has
many parameters, which gives the designer the opportunity to tune the model and prevent
overfitting.

In general, all algorithms have their strengths and weaknesses. For instance, LSTM has
the ability to capture long-term dependencies, but it may require a large amount of data and
computational resources. Logistic Regression is a simple and fast algorithm, but it may not
capture complex patterns in the data. DTW-KNN is good at capturing temporal patterns,
but it may be sensitive to noise and outliers. All of the above leads to the conclusion that it
is reasonable to focus on developing hybrid models that combine the strengths of different
algorithms. Moreover, improving the robustness and efficiency of existing algorithms is
valuable as well. This approach not only enhances the performance of the model but also
makes it more adaptable to various types of data and tasks.

6. Conclusions

As energy consumption monitoring becomes increasingly vital in the transition to-
wards sustainable practices, this research provides valuable guidance for the selection and
deployment of ML techniques in Non-Intrusive Load Monitoring systems. This paper
presents a thorough analysis of machine learning techniques employed by NILM through a
meticulous examination and comparison, we have elucidated the efficacy and adaptability
of various algorithms in disaggregating energy consumption data accurately. Our research
underscores the necessity of tailored approaches, emphasizing the significance of selecting
suitable models aligned with the specific characteristics and objectives of the data at hand.
By providing a nuanced understanding of the strengths and limitations inherent in different
methodologies, our study offers valuable insights that can inform the development and
implementation of more efficient NILM systems. Furthermore, our findings highlight
the multifaceted nature of NILM challenges and the complexity involved in accurately
discerning individual appliance signatures from aggregate energy data. The results of this
study indicate that the LSTM and XgBoost algorithms give the most accurate identification
results, however, XgBoost has the best results on average.

Looking ahead, as the field of NILM continues to evolve, further research and innova-
tion are warranted to address persistent challenges and capitalize on emerging opportuni-
ties. By fostering interdisciplinary collaborations and leveraging advances in data science,
artificial intelligence, and energy engineering, we can unlock new avenues for improving
the accuracy, efficiency, and scalability of NILM solutions. Ultimately, our collective efforts
aim to empower consumers with actionable insights, facilitate informed decision-making,
and promote sustainable energy consumption practices in support of a more resilient and
environmentally conscious future.
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