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Abstract: In recent years, mobile edge computing has become one of the popular methods to provide
computing resources for the body area network, but existing research only considers the problem of
minimizing the cost of offloading when solving the optimization problem of task-offloading, ignoring
the trust problem of edge computing nodes, and offloading tasks on edge nodes may cause user infor-
mation disclosure and reduce the quality of user experience. In response to this situation, this study
aims to minimize the average user cost and designs a task-offloading strategy based on the D3QN
(dueling double deep Q-network) algorithm in conjunction with the blockchain information security
storage model. This strategy uses deep reinforcement learning algorithms to obtain the minimum
average offloading cost of the system while considering user latency, energy consumption, and
data protection conditions. The experimental simulation results show that compared to traditional
schemes and other reinforcement learning-based schemes, this scheme can more effectively reduce
the average cost of the system, and the average cost is reduced by 31.25% when reaching convergence.
In addition, as the complexity of the model increases, this scheme can provide users with better
experience quality, with 53.7% of the 1000 users having a very good experience quality.

Keywords: mobile edge computing; wireless body area network; task offloading; reinforcement
learning; D3QN; blockchain; quality of experience

1. Introduction

With the rapid development of Internet of Things (IoT) technology and the popu-
larization of 5G networks in recent years, the wireless body area network [1,2] (WBAN)
has received attention from various sectors of society, including academia and health-
care, and has become a feasible solution for real-time monitoring of patient health [3].
The WBAN system is generally composed of portable medical devices based on biosensors,
and the increasing number of medical devices has generated massive amounts of human
physiological health data. However, WBAN devices are unable to provide a satisfactory
quality of service (QoS) to users due to the small scale, limited resources, insufficient
storage, and computing capabilities. The proposal of mobile edge computing (MEC) makes
up for the shortcomings of WBAN devices in terms of energy consumption, resource stor-
age, computing performance, etc. The MEC system offloads massive computing tasks in
the WBAN scenario to edge servers, not only alleviating the high latency problem caused
by cloud servers being far from terminals but also effectively improving the data processing
capabilities of mobile terminals [4,5].

Y. Liao. et al. [6] proposed a new network architecture that combines WBAN and MEC
to process wireless big data services. By integrating the access point with a remote radio
head, the access point can perform latency-sensitive tasks while tasks with high computing
resources can be offloaded to edge servers. REN J Y. et al. [7] focused on the real-time
requirements of urgent tasks and designed a task-offloading method assisted by edge
computing. Proposed an adaptive algorithm to optimize the delay, which met the low
delay requirements of urgent tasks. Y. Liao. et al. [8] considered the limited computing
resources of WBAN access points and proposed a task scheduling algorithm to offload
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lower-priority tasks to edge servers for execution. In [9], a resource management scheme
that minimizes the energy consumption of edge servers without affecting the quality of user
experience in the WBAN. A computational task-offloading scheme based on a differential
evolution (CTOS-DE) algorithm for WBAN can provide the best strategy for task-offloading
in terms of total cost and load balance [10]. These tasks only consider offloading tasks
to untrustworthy edge servers. The user information generated by WBAN devices has
privacy and needs to be encrypted or protected according to user needs.

Reference [11] proposed a cloud server layer architecture based on blockchain technol-
ogy for the WBAN to ensure system stability and patient data security. At the same time,
a cipher policy attribute-based encryption (CP-ABE) scheme is adopted to ensure the secu-
rity of patient physiological data. A WBAN architecture model based on blockchain technol-
ogy in reference [12]. Authentication protocols and blind signature protocols between nodes
are designed in a new WBAN model to ensure the security and reliability of blockchain data
transmission systems in wireless network environments. In [13], a lightweight terminal
device authentication scheme based on blockchain technology combined with a limited
number of hash and XOR operations is suitable for WBAN. Xu et al. [14] developed
a blockchain security mutual authentication scheme based on WBAN. This scheme has
a more effective control effect on energy consumption and has broad application prospects.
This work indicated that uploading medical data onto the blockchain for protection is feasi-
ble. However, it makes the inherently complex task scheduling problem of edge computing
a more complex problem.

Due to the advantages of control decision-making and resource optimization, deep
reinforcement learning (DRL) is widely considered to be an ideal tool for solving policy
control problems in complex dynamic environments [15]. A joint optimization offloading
and migration algorithm based on asynchronous dominance Actor Critical (A3C) was
proposed in [16] to solve the migration and offloading problems in mobile edge computing
systems in the context of WBANs. Zhang et al. [17] considered a task-offloading and
time allocation algorithm called DNN-TOTA, which is based on deep learning and uses
deep neural networks and order-preserving quantization (OPQ) methods to generate
candidate offloading decision sets to solve the problems of limited energy resources and
low computing power of micro sensor nodes in WBAN. In [18], a deep reinforcement
learning-based frame aggregation and task-offloading approach (DQN-FATOA) were used
to improve the throughput and overall utilization of the WBAN. Inspired by the above
research work, this study designed a task-offloading strategy for MEC based on D3QN
quality of experience (QoE) in the context of the WBAN to meet users’ needs for low-cost
and data protection. The specific research is as follows:

(1) A task-offloading and storage model for user QoE is proposed, which takes into
account the cost of user task-offloading and data security issues. This model is used to
find the optimal edge node for task-offloading to achieve maximum computing resources
and reduce the impact of high task execution costs and data leakage to improve the QoE
of users;

(2) A D3QN-based system average cost minimization algorithm is proposed to solve
the task-offloading problem in the context of WBANs to make task-offloading more effective
and utilize computing resources more efficiently;

(3) This study built different user experimental simulation environments and con-
ducted simulation analysis on the algorithm proposed. Compared with solutions such as
full local offloading, full edge offloading, random offloading, DQN offloading, and dueling
DQN offloading, the proposed solution in this study has a more significant cost reduction
for WBAN users and can provide users with a more satisfied QoE.

2. Related Works

Latency and security are the two most important performance considerations for users
of WBANs. Although some researchers currently consider both aspects, the efficiency of
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task-offloading algorithms is not high. However, if we think independently about these
issues, the following studies can provide us with ideas.

2.1. Existing Research Works

For the application of edge computing of WBANs, some scholars began to study it
several years ago. To meet the massive data access and personalized service requirements
of WBANs constrained by multiple service quality parameters, Yuan et al. [19] proposed
a two-stage potential game computation offloading strategy (TPOS) which considered
the task priority and user priority of WBANs to optimize resource allocation. The goal of
reference [20] is to improve the computing capacity of WBAN users by using a small coordi-
nator mobile edge computing (C-MEC) server. Through this approach, system complexity,
computational resources, and energy consumption are significantly transferred from the
WBAN users to the C-MEC. Ning et al. [21] constructed an economically efficient IoMT
household health monitoring system by dividing it into two sub-networks, namely internal
WBAN and external WBAN. It has also proven the effectiveness of their proposed algo-
rithm in terms of overall system average cost and the number of patients benefiting from
MEC. In [22], an adaptive resource allocation scheme based on demand prediction solves
the problem of adaptively adjusting resource allocation, timely detecting and responding
to load changes. A collaborative computing architecture that can handle wireless big data
applications was proposed in reference [23]. The access point (AP) of WBANs is integrated
with the remote radio head (RRH) to perform high latency and low computational tasks,
while the MEC server can handle low latency computationally intensive tasks.

A large number of encryption algorithms have been applied to ensure the security
of user information in WBANs. The blockchain encryption scheme proposed in recent
years has gradually been applied to encrypt user information in WBANs. Ren et al. [24] de-
signed a task-offloading strategy for a centralized low latency, secure, and reliable decision
method (LSRDM-EH) with strong emergency handling capabilities and a dual-layer multi-
dimensional comprehensive security strategy based on blockchain. In [25], a task-offloading
strategy based on blockchain and trust awareness (BBTAS), through which task-offloading
requests are published as blockchain transactions and automatically and securely executed
by smart contracts (SCs). A blockchain based on a private WBAN platform to assist wear-
able IoT devices in healthcare services was proposed in [26]. The platform implements
a distributed architecture using WBAN to introduce decentralized configuration and en-
sure privacy between wearable IoT devices in the network. Son et al. [27] developed a
secure authentication protocol for cloud-assisted remote medical information systems using
blockchain for access control. This protocol adopted encryption based on ciphertext policy
attributes (CP-ABE) to establish access control for health data stored in cloud servers and
apply blockchain to ensure data integrity.

2.2. Research Gap

Table 1 summarizes the previously introduced studies. Most of the existing studies
utilize the paradigm of MEC for achieving lower latency and higher efficiency of WBANs.
Some of these studies use blockchain technology with the edge computing paradigm to
ensure privacy security; however, few existing studies consider these factors and deep
reinforcement learning (DRL). The novelty of this article comes from the paradigm of
blockchain of WBANs and task-offloading with DRL of the proposed work.
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Table 1. Features comparison of the optimization strategy of task-offloading in the WBAN.

Authors Edge Computing Blockchain KPIs Applications

Liao et al. [6,8]
√

× QoS, task offloading successful ratio General framework
REN et al. [7]

√
× latency real-time algorithm

Bishoyi et al. [9]
√

× energy consumption management scheme
Zhang et al. [10,17]

√
× total cost, load balance CTOS-DE, DNN-TOTA

Deng et al. [11] ×
√

stability, security CP-ABE
Xiao et al. [12] ×

√
security, reliability architecture model

Wang et al. [13] ×
√

security safety protocol
Xu et al. [14] ×

√
security, energy consumption security scheme

Yuan et al. [16,18]
√

× throughput, overall utilization A3C, DQN-FATOA
Yuan et al. [19]

√
× resource allocation TPOS

Liao et al. [20,23]
√

× computing capacity, latency system modeling
Ning et al. [21]

√
× system average cost system modeling

Ren et al. [24,25] ×
√

latency, security, reliability LSRDM-EH, BBTAS
Baucas et al. [26] ×

√
security private platform

Son et al. [27] ×
√

data integrity CP-ABE
Proposed work

√ √
system average cost, security, QoE D3QN

3. Network Architecture and System Model
3.1. Network Architecture

Here, we proposed a multi-user edge computing network architecture of WBANs, as
shown in Figure 1. The proposed network architecture includes a WBAN and a hospital con-
sortium chain network connected by edge servers. Each hospital is controlled by the nearest
edge server that performs data tasks for offloading WBAN devices and stores them on
the edge blockchain. The system includes a set of edge servers M = {1, 2, . . . , M}, each
of which is controlled M by the hospital HPm. We assume that each user J = {1, 2, . . . , J}
is surrounded by a set of WBAN devices N = {1, 2, . . . , N}. In the proposed scheme, we
consider all the tasks that a WBAN device needs to perform as a set. And there are several
subtasks in the task set, which are further divided into continuous tasks and independent
tasks. We will first preprocess the task to determine whether the local device’s resources
can be executed and choose whether to offload.
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3.2. Task Model

This section introduces the task model of our environment, with a focus on the hospital’s
diversion mode. According to QoE requirements (i.e., latency, energy consumption, and data
security), each user’s data tasks can be executed on edge servers through task-offloading or
on local WBAN devices.

In addition, each WBAN device n runs an application that includes multiple different
computing tasks k. These tasks nk can be executed in these local WBAN devices and can
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also be wirelessly transmitted to edge servers for execution through the network layer with
blockchain records uploaded as transactions. In order not to lose generality, we represent
n ∈ {1, 2, . . . N} and k ∈ {1, 2, . . . , K} respectively represent the set of WBAN devices
and the set of intensive computing tasks. Available servers are represented by {0, 1},
where 0 refers to the WBAN devices themselves, while 1 refers to the edge servers. We cal-
culate the offloading decision variable as xnk , where

(
xnk = 0

)
represents the computation

task k of the WBAN device n to be processed locally, and
(
xnk = 1

)
represents the task nk

to be transmitted and processed on the edge servers. In addition, each computing task
must be executed only once (i.e., on a local WBAN device or remote edge server).

In this study, we assume that each task nk can be represented as

Ynk =
{

Bnk , Cnk , Dnk , Rj, Tnk

}
, (1)

Among them, Bnk is whether the task nk is uploaded to the blockchain, Cnk is the number
of CPU cycles required to complete the task nk, Dnk is the input data size of the task nk (in bits),
Rj is the health data record of the user j, and Tnk is the maximum allowable delay required to
complete the task nk (in seconds).

3.3. Communication Model

Each WBAN device uploads tasks to edge servers through wireless media, and
the task-offloading time depends on its uplink transmission rate. According to the Shannon
formula, the data rate of the uplink channel can be expressed as:

rn = W log2

(
1 + pn Hn

σ2

)
, (2)

In the formula, W is the uplink channel bandwidth; pn is the transmission power of
the WBAN device n; Hn is the channel gain between the WBAN device n and the edge
server m; and σ2 shows the Gaussian white noise power.

3.4. Storage Model

Deploy a hospital within a region and link edge servers with WBAN users. The blockchain
is controlled by edge servers. When a WBAN user performs a data request to an edge server,
he creates a shared transaction and submits it to the blockchain so that the edge server can
process the request and return the data. If the edge server is searching for data locally, the server
will immediately send it to the user. Otherwise, other edge servers will be required to find
the address of the requested data and send them to the user.

Users can choose to store data on WBAN devices, edge servers, or upload blockchain.
In the blockchain storage model, the raw health data associated with the analysis results
from the data offloading scheme is stored in the blockchain system on the edge server.
Here, we analyzed a representative network with hospitals HPm, edge servers m(m ∈ M),
WBAN devices n(n ∈ N), and user UIDj(j ∈ J). The data are stored on the blockchain
through four steps through edge servers, as shown in Figure 2.

(1) The raw health data of the user UIDj collected from the WBAN device n is calcu-
lated and offloaded to the edge server m.

For simplicity, we assume that each user j has a health data record. Then, the edge
server aggregates the raw data and calculation results and adds them to the data records
identified by the user IDj as

Rj = (rawdata ∥ computedResult), (3)

(2) Edge server m encrypts this data into

Cenc
j ←

(
EncRj, PKMm

)
, (4)
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Among them, PKMm is the private key of MECm. For data security, these data will be
uploaded to the blockchain storage node located at the top of the edge server.

(3) Blockchain storage nodes will use hash functions Hb to generate their encrypted
hash values for encrypted data

hj = Hb

(
Cenc

j , timestamp
)

, (5)

Here, we keep the hash values in the smart contracts on the edge server for quick data
lookup rather than relying on classic distributed hash tables.

(4) The data records in the blockchain nodes on the edge server m are synchronized
with other blockchain nodes in the hospital consortium chain through P2P networks
for global data sharing. Edge servers m are also added

(
hj, UIDj, PKMm, timestamp

)
as

transactions and broadcasted to the hospital consortium chain network

MECm → ∗ :
(
hj, UIDj, PKMm, timestamp

)
, (6)

Other edge servers will receive transactions and extract offloading information hj, UIDj,
which will then be stored on their blockchain through smart contracts.
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3.5. Calculation and Offloading Model

In the existing literature, there is a lack of joint consideration of important QoE indica-
tors in health data offloading, including processing time, energy consumption, memory
usage, and data security issues. Due to the limitations of the current plan, we have consid-
ered these factors and formulated the issue of offloading health data. Two computational
models were considered: local execution and edge execution.

(1) Local execution: xnk = 0 is local execution; we assume that WBAN devices may
have different computing capabilities. In addition, the computing tasks of WBAN devices
will be processed and stored locally. Meanwhile, the overall energy and time consumed
can be calculated as follows:

Elocal
nk

= ξncnk , (7)

Tlocal
nk

=
cnk

f local
n

, (8)

In the formula, ξn and f local
n , respectively, represent the CPU cycle energy consumption

and computing power (i.e., the number of CPU cycles per second) of the WBAN device n.
(2) Edge execution: xnk = 1 is edge execution, the computing tasks of WBAN devices

will be entirely processed on edge servers. In addition, users can choose whether to
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upload blockchain to protect data, bnk = 0 indicating that the task nk is not uploaded to
the blockchain and stored on the edge server while bnk = 1 indicating that the task nk
is uploaded to the blockchain. Based on the transmission and computation time of edge
execution, as well as the time for uploading the blockchain, the overall time consumption
can be calculated as follows:

Tedge
nk =

dnk
rn

+
cnk
f e
n
+ bnk Tblock

nk
, (9)

Among them, f e
n represents the computing power allocated to the edge server of

the WBAN device n; Tblock
nk

is the total time for the task nk to upload the blockchain, and is
represented as

Tblock
nk

= Tg
nk + Td

nk
, (10)

Among them, Tg
nk is the average time required for the blockchain system to generate

new blocks; Td
nk

is the time consumption of data transmission. In this study, we have chosen
a practical Byzantine fault-tolerant (PBFT) as the consensus mechanism in the proposed
blockchain system according to reference [28]. And Td

nk
can be calculated as

Td
nk

= 1
P [min

{
MSb

rnm ,n′m
, Tlim

}
+ min

{
max

ni ̸=nm ,n′m
MSb

rnm ,ni
, Tlim

}
+min

{
max

ni ̸=nj ̸=nm

MSb
rni ,nj

, Tlim

}
+ min

{
max
ni ̸=nj

MSb
rnj ,ni

, Tlim

}
+ min

{
max

ni ̸=nm ′
MSb

rnm ,ni
, Tlim

}
]

, (11)

Among them P is the overall size of the block; Sb represents the number of bytes
contained in each block; Tlim represents the average time it takes for the block producer to
create a new block; and rni ,nj represents the data transmission rate of the link between each
pair of WBAN devices.

Intelligent WBAN devices also expect to receive the final result of transactions within a
limited time for delay-tolerant inter-device communication of WBANs to meet their latency
requirements. Therefore, we assume that a block should be published and validated within
multiple consecutive block intervals, and this constraint should satisfy the following:

Tblock
nk

≤ ρ · Tg, (12)

The ρ number of block intervals should be satisfied ρ > 1.
In this study, the computing resources of edge servers were shared among all WBAN

devices during offloading.
In addition, we note that the computing power F of edge servers allocated to WBAN

devices during offloading should be limited by the following constraints:

N
∑

n=1

K
∑

k=1
xnk f e

n ≤ F, (13)

In addition, based on communication time, the overall energy consumption of edge
execution can be calculated as follows:

Eedge
nk = pn

dnk
rn

+ bnk Eblock
nk

, (14)

We define Eblock
nk

as the energy consumption of uploading task nk to the blockchain,
which is measured through mobile measurement tools.

Subsequently, the total energy and time consumed in executing the task nk can be
calculated as follows:

Ttotal
nk

= (1− xnk )T
local
nk

+ xnk Tedge
nk

, (15)

Etotal
nk

= (1− xnk )Elocal
nk

+ xnk Eedge
nk

, (16)
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Finally, the main goal is to minimize the time and energy costs of each WBAN device
to the greatest extent possible in the proposed framework. Therefore, the system average
cost of task execution for total WBAN devices can be modeled as a linear combination of
latency and energy consumption, which can be expressed as:

Ztotal
nk

= γTtotal
nk

+ (1− γ)Etotal
nk

, (17)

In the formula, γ ∈ [0, 1] represents the latency and energy consumption parameter
weights of the task nk, which can be adjusted according to the user’s QoE.

3.6. QoE Model

In a WBAN, the QoE of users is jointly affected by service latency and energy consumption.
While Ztotal

qoe in Equation (18) is equal to the system average cost Ztotal
nk

in Equation (17). According
to the QoE mapping function [29] shown in Figure 3 and Equation (18), the satisfaction level of
users can be obtained.
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Figure 3. QoE mapping function.

Then, the system average cost is mapped to one of the practical levels based on the QoE
function with predefined thresholds, named Zmin

qoe and Zmax
qoe . The mapping function, as

shown in the figure, is defined as

Ui =


1, if zi ≤ Zmin

qoe
Zmax

qoe −zi

Zmax
qoe −Zmin

qoe
, if Zmin

qoe < zi ≤ Zmax
qoe

Ub, otherwise

, (18)

Note that Zmin
qoe and Zmax

qoe are determined by measuring the average opinion score.
We also define an optional point Zfair

qoe ∈ (Zmin
qoe , Zmax

qoe ) from which users feel a significant
decrease in service experience.

3.7. Problem Statement

This section presents a multi-user model with multi-task computation offloading and
resource allocation in a blockchain-based WBAN system. Here, minimizing the time and
energy consumption to complete tasks is the main objective of the model. The summary of
our constraint optimization problem is as follows:
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min
x

N
∑

n=1

K
∑

k=1
Znk

s.t.
Etotal

nk
− Elocal

nk
≤ 0, C1

Ttotal
nk
− Tlocal

nk
≤ 0, C2

Ttotal
nk
≤ Tnk , C3

N
∑

n=1

K
∑

k=1
xnk f e

n ≤ F, C4

N
∑

n=1

K
∑

k=1

(
1− xnk

)
rn + xnk rn ≤ R, C5

N
∑

n=1

K
∑

k=1
Tblock

nk
≤ ρ · Tg, C6

xnk ∈ {0, 1}, C7
bnk ∈ {0, 1}, C8

(19)

The objective function aims to reduce the overall energy and time cost of WBAN
devices by computing offloading. In addition, the C1 constraint and the C2 constraint,
respectively, limit the consumption limits of energy and time. C3 represents the maximum
allowable delay required to Tnk complete the task nk. Similarly, the limitations on CPU
capacity and uplink data rate of edge servers are defined using constraints C4 and C5,
while R represents the overall uplink data rate. Constraint C6 indicates that a block should
be published and validated within multiple consecutive block intervals. Finally, constraints
C7 and C8 ensure the binarization of the offloading decision variables and uploading
blockchain variables.

The solution to the problem can be found by obtaining the optimal value of the task-
offloading decision. Due to x being a binary variable, the feasible set for this problem is
non-convex. Therefore, this is a non-convex integer problem and is classified as an NP-
hard problem. Moreover, it is difficult to solve problems using mathematical analysis and
formula derivation, especially when the number of WBAN devices is large. As the number
of WBAN devices increases, the scale of the problem grows exponentially. Therefore, DRL is
effectively utilized as a new field to solve such problems and obtain near-optimal solutions
rather than using traditional optimization methods.

3.8. Task-Offloading and Storage Model for QoE

For ease of description, the following concepts are defined: task set of WBAN de-
vices y ∈ {1, 2, . . . , Y}; WBAN devices set n ∈ {1, 2, . . . , N}; and edge servers set
m ∈ {1, 2, . . . , M}.

The execution process of Algorithm 1: When the task y is executed, check if there are
any edge servers currently idle. If a server is idle, further determine whether to upload
the blockchain. If block = True, schedule the task y to the edge server m for execution and
upload to the blockchain; otherwise, schedule the task y to the edge server m for execution
and storage. If there are no idle servers, the task will be executed on the local WBAN
devices. The number of tasks, WBAN devices, edge servers, and QoE settings are set by
ourselves. At the same time, the task attributes, WBAN device attributes, and edge server
attributes in the model environment are randomly generated by the program within a
certain range. After all tasks are completed and executed, use Equations (17) and (18) to
output the user’s satisfaction value.
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Algorithm 1: Task-offloading and storage model for QoE

1: Input: number of tasks; number of WBAN devices; number of edge servers; QoE setting value; output:
user QoE satisfaction value;

2: Initialize the system model environment;
3: for each task y in the WBAN device W:
4: if there are available servers m in the edge server collection M then:
5: if block = True then:
6: the task y is scheduled to edge servers m for execution and stored in the blockchain;
7: else:
8: the task y is scheduled to edge servers m for execution and storage;
9: end if
10: else:
11: the task y is executed and stored on a local WBAN device n;
12: end if
13: Until the tasks Y are completed.

4. Task-Offloading Strategy Based on D3QN

In this section, due to the exponential increase in computational complexity and
dimensionality of the decision-making process with the number of actions and states, we
introduce and apply D3QN to address the formulaic problem discussed in this study. Based
on the advantages of D3QN, the best decision can be made in inter-device communication
supporting blockchain with delay-tolerant data to maximize system rewards.

4.1. DQN Algorithm and Variants

(1) Q-learning
Q-learning is a well-known reinforcement learning algorithm based on temporal

difference [30], which uses the Q-function Q (s, a) as the value estimation function instead
of the value function. Therefore, the reward Q′(s, a) value when the state s and the action a
can be calculated as follows:

Q′(s, a) = E∗
[

∑
s∈S

(
r
(
s, a, s′

))
+ ξmaxQ′

(
s′, a′

)]
, (20)

To solve the Q-learning problem, the Q-value for each step needs to be updated
as follows:

Q(s, a)← Q(s, a) + δ

[
r + ξmax

a∈A
Q(s′, a′)−Q(s, a)

]
, (21)

Among them δ is the learning rate, which satisfies δ ∈ (0, 1). And ξ represents the dis-
count factor that will affect the current reward value in the future, and it satisfies ξ ∈ (0, 1).

(2) DQN
Based on the advantages of the Q-learning algorithm, the DQN algorithm was pro-

posed and improved. Define the mean square deviation between the target Q value and
the current Q value as the loss function L(θ), expressed as

L(θ) = E

[(
r + ξmax

a′
Q(s′, a′; θ−)−Q(s, a; θ)

)2
]

, (22)

Among them θ are the parameters of the neural network, while θ− are the parameters
for maintaining stable Q values and stable training process of the target DQN. According
to Equation (22), DQN updates its network parameters by minimizing L(θ).

(3) Double DQN
The double DQN algorithm has a structure similar to DQN, but it contains two Q

networks. The Q value is updated as follows:

Q = r + γQ2

(
s′, argmax

a′
Q1(s′, a, θ1), θ2

)
, (23)
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Among them r are the instant rewards; the Q1 is evaluation network; the Q2 is target
network; θ1 and θ2 are the evaluation network parameters and target network parameters;
and γ is the attenuation factor. Defined a as an action; s′ and a′ is the next action and
the next state.

(4) Dueling DQN
Dueling DQN is an improved algorithm of DQN, which can estimate q values with

small variances and use greedy strategies to ensure sufficient exploration of action space.
Dueling DQN divides the output layer into two parts: the value function network and
the advantage function network. The linear combination of these two parts forms the final
output of the Q network, represented as follows:

Q(s, a, ω, α, β) = V(s, ω, α) +

(
A(s, a, ω, β)− 1

|A| ∑
a′∈A

A(s, a′, ω, β)

)
, (24)

In Equation (24) s is defined as a state; ω represents the parameters of the convolutional
layer; α and β are two fully connected laminar parameters; |A| represents the number
of selectable operations; V(s, ω, α) is a state value function and A(s, a, ω, β) is an action
advantage function.

4.2. D3QN Algorithm Framework and Neural Network

Considering the shortcomings of the above two algorithms, the D3QN algorithm was
formed by combining the Double DQN and Dueling DQN, as shown in the framework in
Figure 4. The D3QN algorithm inherits the double network structure of the Double DQN
algorithm, including the evaluation network Q1 and the target network Q2. The evaluation
network Q1 uses the state information input from the experience buffer to select the next
action anext = argmax

a′
Q1(s′, a, θ1) for the target network Q2 and output Q1(s, a, θ1) to

the loss function L(θ). The loss function L(θ) updates the network parameters θ based on
Equation (22). According to Equation (23), we evaluate anext through the target network
Q2 to select the action a′ that maximizes the Q value. Then, the evaluation network Q1
and the target network Q2 combined the network structure of the Dueling DQN algorithm,
while adding a state value function V(s) and an action advantage function A(s, a) between
the last hidden layer and the output layer. And V(s) only related to the state s and A(s, a)
is influenced by the state s and action a. The optimal action-value function Q(s, a) is used
to represent the linear combination of these two parts, and its specific calculation method
is shown in Equation (24). This enables the D3QN algorithm to obtain the value of each
action through the value of the state value function and the value of the action advantage
function to produce more accurate results.
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The neural networks of the evaluation network and the target network are shown
in Figure 5. The evaluation network consists of one input layer and two hidden layers.
The number of neurons in the input layer is the same as the dimension of state informa-
tion. The input layer and hidden layer use the ReLU function as the activation function.
The target network consists of two hidden layers and one output layer. The hidden layer
uses the ReLU function as the activation function. And we added the state value function
and action advantage function between the last hidden layer and the output layer.
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4.3. MDP Mode of Task-Offloading Strategy Based on D3QN

To minimize the average cost of the system, the basic elements of reinforcement
learning are set based on the model considered in this article. Here, we model the proposed
problem as a standard Markov decision process (MDP) and solve this MDP problem using
a task-offloading strategy based on D3QN. Namely, the state space, action space, and
rewards are sequentially set, as shown below:

(1) Action space a (t): Combination space, including decision-making for data cache
selection and selection of computing nodes. In time slot t, to maximize system rewards, the
intelligent agent will make decisions in the proposed network architecture. Formally, let A
be the action vector, and composite actions a (t) ∈ A can be represented as

a (t) =
{

aca(t), acomp(t)
}

, (25)

Among them, aca(t) represents the selection of data storage and acomp(t) represents
the selection of computing servers. For a ca(t) = { 0, 1, 2}, Where 0 represents the deci-
sion of data storage in the WBAN device; 1 represents the decision of data caching to
the edge computing server; 2 represents the decision of data storage in the blockchain. For
acomp(t) = { 0, m}, 0 indicates that the computing task will be executed on the local WBAN
device. At the same time, m indicates that the computing task will be executed on the idle
edge computing server M that is nearest to the WBAN device n.

(2) State space s (t): In each time slot, agents dynamically monitor the network
environment and collect system status. Set S to be the state space, and the system states for
each time slot t satisfy s (t) ∈ S , which can be expressed as

s(t) = {e(t), d(t), o(t)}, (26)

Among them, e(t) represents the edge server status. For e(t) =
{

ecomp(t), eca(t)
}

, ecomp(t)
and eca(t), respectively, represent the computing and storage status of the edge server selected
for the task. For eca(t), it can be written as eca(t) ∈ {0, 1}, where eca(t) = 0 indicates that
the server storage module is idle and data can be cached in it, and vice versa eca(t) = 1.
Similarly, for ecomp(t), can be written as ecomp(t) ∈ {0, 1}, where ecomp(t) = 0 indicates that
the computing module of this server is idle and can perform computing tasks during this time
slot, otherwise ecomp(t) = 1. In this study, we assume that the caching and computing state of
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edge servers can be modeled as a Poisson distribution. It d(t) is the input data volume y for
a time slot t task and o(t) is the maximum allowable delay required to complete the task in
the time slot t. Meanwhile, we record s′(t) as a new state after the action a′(t).

(3) System reward r(t): After each time slot t, the system will receive instant rewards
r(t) based on different actions a(t). Generally speaking, the reward function should
be positively correlated with the objective function, and the optimization objective of
the problem is to obtain the maximum system reward. In Equation (17) of the second
section, the goal is to minimize the weighted sum of delay and energy consumption, while
the goal of D3QN is to maximize system rewards. Therefore, the reward function should
be negatively correlated with the weighted sum of delay and energy consumption. We will
define a unified system reward as follows:

RE(π) = −∑
t∈T

Znk (t), (27)

Among them, π represents the optimization strategy, which is the set of operations for
each time slot; T represents the set of all decision time slots; and Π represents the set of all
possible strategies π ∈ Π.

Therefore, the optimization problem is explained as finding the optimal strategy π′ to
maximize long-term cumulative system rewards RE(π′), which can be expressed as

π′ = argmax
π∈Π

RE(π), (28)

Based on the above settings, the algorithm flow for minimizing the average system
cost based on D3QN proposed in this article is shown in Algorithm 2. The specific ex-
planation is as follows. Step (2)–step (11) is the training process. In step (3), reset the
system environment model. In step (5), the intelligent agent observes the state from the
environment, including the edge server state, task size, and maximum allowable delay.
Input s the D3QN network and output a the offloading storage strategy for user tasks.
From step (6) to step (8), the intelligent agent updates the task calculation results based on
the corresponding actions, respectively calculates the system average cost Z and reward
r according to Equations (17) and (27), and updates the next state s′, which is (s, a, r, s′)
stored in the experience buffer. Update s to s′ and repeat the above steps until the training
ends. Step (9) trains the deep neural network by randomly sampling a small batch of expe-
rience samples from the experience buffer and updates the network parameters according
to Equations (22)–(24).

Algorithm 2: Minimum System Average Cost Algorithm Based on D3QN

1: Initialize the system model environment, initialize the experience buffer D, θ1 initialize the evaluation
network Q1 with random parameters, θ2 initialize the target network with random parameters Q2,
θ2 = θ1;

2: Loop training times Episode = 1, 2, . . . , M:
3: reset the system model environment;
4: for each user j = 1, 2, . . . , J do:
5: select an action a based on strategy π by state s;
6: the intelligent agent executes action a in state s, enters the next state s′ and updates the Q value,

calculates the cost of the current task Z according to Equation (17), and obtains reward r according to
Equation (27);

7: (s, a, r, s′) is stored in experience buffer;
8: update status s = s′;
9: randomly sample batch experience samples from the experience buffer, calculate the loss function

L(θ) according to Equation (22), and update the parameter Q1 of the evaluation network θ1 and the
parameter Q2 target network θ2;

10: Until j = J;
11: Until Episode = M;
12: Output system average cost.
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5. Experimental Simulation and Analysis

In this section, simulation results demonstrate the performance improvement of our
proposed strategy in MEC-supported WBAN communication. Significant advantages of
the D3QN algorithm can be observed in terms of system average cost under different
training parameters, computational offloading conditions, and constraints.

5.1. Simulation Environment

This article uses computer simulation to verify the performance of the proposed algo-
rithm. The simulation software environment is Python 3.9 and the Pytorch 1.9 framework.
The simulation hardware platform is a personal computer with an Intel (R) Core (TM)
i5-7300HQ 2.50 GHz processor, NVIDIA GeForce GTX 1050 graphics card, and 16 GB
of memory.

In the application scenario, users are evenly distributed within a circular area with
a radius of 300 m. The base station equipped with MEC servers is located at the center
of the circle, and users within the circle can use the network for offloading. The WBAN
devices are evenly distributed within a circle with a usable radius of 40 m. According
to the parameter settings in reference [31], Table 2 provides the parameter values for
the simulation environment.

Table 2. Environment parameters.

Parameter Symbolic Representation Set Value

Energy consumption
coefficient γ 0.5

Channel bandwidth (MHz) W 40
Transmission power of WBAN devices (mW) p 10

Channel gain between WBAN devices and MEC servers (dB) Hn 16
Additive Gaussian white noise variance σ2 −100

CPU cycle energy consumption of WBAN devices
(Megacycles) ξ 1200

Computing power of WBAN devices (GHz) f l 1.5~2
Computing power of edge servers (GHz) f e 5~7

The average time required for a blockchain system to generate new blocks (s) Tg 1
Energy consumption of task upload blockchain (J) Eblock 5× 10−5

Task Size (MB) d 1.5~2

5.2. Discussion of Results
5.2.1. Convergence Performance

This section demonstrates the convergence performance of our work, where we ap-
plied different values to each hyperparameter and selected appropriate values for our
simulation. Here, we choose the system average cost for the evaluation metric according to
Equation (17).

We conducted an experimental analysis of the different values of learning rate, batch
processing, and experience memory, as shown in Figure 6. In the regular case of three
WBAN devices and seven edge servers, three sets of data are taken for comparison.
Figure 6a shows the system average cost in a D3QN communication network support-
ing blockchain proposed at different learning rates. The learning rate in DRL refers to
the size of the network parameters updated by the gradient of the loss function. In other
words, a higher learning rate means a larger range of parameter updates. As shown in
Figure 6a, the system average cost maintains a lower and more stable range at a lower
learning rate, as it can find the exact position of the optimal value set. It can also be seen that
the higher the learning rate, the higher the cost, and the greater the fluctuation. Therefore,
in the simulation of this article, we chose a learning rate of 0.01. Figure 6b shows that when
the size of batches is small, the system average cost is high and does not converge. When
the size of batches is 64, the system average cost is low and converges. Therefore, we chose
a batch size of 64. Figure 6c shows the impact of memory size on the system’s average cost.
When the memory size is 1000, the system average cost is higher and does not converge.
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While the memory size is 3000, the system average cost is lower but does not converge. So,
we chose the memory size of 2000.
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Therefore, a set of data with a learning rate of 0.01, batch size of 64, and memory size
of 2000 will be used for comparison in Table 3.
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Table 3. Convergence behavior of the algorithm under various hyperparameter settings.

Hyperparameter Range Convergent Cost Convergent Episodes Chosen

Learning rate

0.1 112.23 50

0.01
0.01 68.54 64
0.001 75.12 200

0.0001 88.47 211

Batch size

16 66.67 78

64
32 71.32 201
64 55.45 556

128 60.69 923

Memory size

1000 65.43 415

2000
2000 54.32 514
3000 57.59 612
4000 55.93 923

5.2.2. System Performance

In this section, six different task execution methods were applied to evaluate
the performance of the system, which are:

• Local execution: All computing tasks will be executed and stored locally on the WBAN
devices, and thus, local does not care about edge server computing capacity and resources;

• Edge execution (MEC): All computing tasks will be offloaded for executing and storing
on the edge servers, and thus, MEC does not care about WBAN devices’ computing
capacity and resources;

• Random offloading execution: All computing tasks will be randomly selected to be
executed and stored locally or offloaded to edge servers for execution and storage;

• Dueling DQN offloading model execution: All computing tasks will be selected by
the dueling DQN offloading model to obtain the lowest cost offloading strategy;

• A3C offloading model execution [16]: All computing tasks will be selected by the A3C
offloading model to obtain the lowest cost offloading strategy;

• D3QN offloading model execution: All computing tasks will be selected by the D3QN
offloading model to obtain the lowest cost offloading strategy.

Figure 7 compares the relationship between the average system cost and training
frequency of six different offloading model systems with a fixed WBAN of three devices and
seven edge servers with a cost weight γ of 0.5. The system average cost of local execution
remains stable at a high level and consistently higher than the other five offloading models.
The system average cost for random offloading remains stable at around 90. The system
average cost for “MEC” remains stable at around 80. The average user costs of “A3C
offloading execution” and “Dueling DQN offloading execution” fluctuate within the range
(60, 120), but the variance of the latter is smaller than the former. For the “D3QN offloading
execution”, the agent is in the exploration stage before 50 training sessions, and the system
average cost for users is relatively high; in 50–600 training sessions, the agent quickly
learns the optimal offloading scheme, and the system average cost decreases rapidly as the
network parameters are updated; after 600 training sessions, convergence was achieved,
and the system average cost was significantly lower than the other five offloading models.
Compared to the “Dueling DQN” model, the system average cost has been reduced by
31.25%. Figures 8 and 9 show the relationship between the total latency and energy
consumption of six different offloading model systems and the number of training episodes.
Figure 8 clearly shows that the D3QN offloading model performs better than the other five
offloading models in system average latency. As shown in Figure 9, the D3QN offloading
model execution results in a more stable and lower system average energy consumption
compared to the other five offloading models.
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Figure 10 shows the comparison of the system average cost for different offloading
models under different task sizes with a fixed number of three WBAN devices and seven
edge servers with a cost weight γ of 0.5. The values of tasks in the experiments are, respec-
tively, set to ranges 1.5–2 MB, 3.5–4 MB, 5.5–6 MB, 7.5–8 MB, 9.5–10 MB, and 11.5–12 MB.
In Figure 10, they are represented by 2 MB, 4 MB, 6 MB, 8 MB, 10 MB, and 12 MB, respec-
tively. The system average cost of the model proposed in this article and the comparison
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model increases with the increase of task data size. The system average cost of the “D3QN
offloading model execution” is the lowest, while the system average cost of the “local
execution” model is the highest. When the number of users is fixed, and the task size
is 2 MB, the difference in system average cost between the D3QN offloading model and
other models is small. However, as the size of task data increases, the advantage gradually
expands. As the task data size is 4 MB, the system average cost performance of the A3C
and dueling DQN offloading model is similar to that of the D3QN offloading model. Due
to the intelligent agent’s ability to adaptively adjust its offloading strategy, the performance
advantage of the A3C and dueling DQN offloading model is reflected when the task data
size increases to 12 MB. However, it is still worse compared to the D3QN offloading model.
The above results further indicate that D3QN is more effective in reducing the system
average cost when the task data size is large.
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Figure 11 compares the blockchain scheme with local and edge schemes to demonstrate
the advantages of the blockchain scheme. Based on the results in Figure 11, the blockchain
solution has the lowest system average cost. For example, executing a 2 MB file through
the blockchain scheme only takes 5.1 s, while in the edge scheme and local scheme, it
takes about 6.3 s and 7.5 s, respectively. This enables the use of blockchain solutions to
save 19–32% of costs. In addition, compared with local and edge solutions, the proposed
blockchain solution, respectively, saves 33% and 19% of costs in computing 12 MB files. We
also found that the costs of all three solutions increased with the increase in task size, but
the blockchain solution still achieved lower costs than the local and edge solutions, which
proves the efficiency of the proposed blockchain solution.
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The relationship between the system average cost and the number of WBAN devices is
shown in Figure 12. From the graph, it can be seen that the proposed model has an overall
cost advantage over other models and can achieve near-optimal execution of the model.
Specifically, in Figure 12, this gap is rapidly increasing as the number of WBAN devices
increases. In addition, our proposed model based on D3QN is closer to the optimal solution
than the execution based on DRL. When the number of users exceeds nine, this advantage
will be maintained. This is due to the insufficient computing power of edge servers to
address WBAN devices simultaneously.
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Figure 13 reveals a comparison of the average cost of the system for different CPU
cycles. We set the number of CPU cycles 103 required for the task in the figure to be
randomly selected between 103 and 2× 103, and the same applies to other cycles. As the
CPU cycles increase, the system average cost of the proposed strategy and comparison
strategy significantly increases. Meanwhile, the advantages of the proposed scheme are
prominent because D3QN can make optimal decisions based on training, and suitable
computing servers can be selected according to different network environments.
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different tasks.

As shown in Figure 14, the system average cost gradually decreases with the number
of edge servers increases, while “local execution” is not affected. It is worth noting that
when the number of edge servers exceeds six, the rate of reduction in system average costs
slows down significantly. This is because task scheduling is limited by the concurrent
number of workflow tasks and the coverage range of wireless signals. The partial order
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relationship between tasks results in the concurrent number of workflows being lower
than the number of computing resources, leading to some computing resources being idle.
Therefore, full consideration should be given to the type of application task and actual
environmental conditions when deploying edge servers.
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We can clearly see the variations in the performance metrics of the proposed model in
Table 4.

Table 4. Variations with the performance metrics of the proposed model.

Parameter Range Average Cost Variation

Task size (MB) 2, 4, 6, 8, 10, 12 (61.52, 162.23) Positive

System configuration local, edge, blockchain (7.01, 32.12) (6.34, 26.93) (5.12, 22.34) Negative

Number of devices 3, 4, 5, 6, 7, 8, 9 (59.34, 87.47) Positive

CPU cycles utilized (Cycles) 103, 104, 105, 106, 107, 108, 109 (0.01, 588.48) Positive

Number of edge servers employed 2, 4, 6, 8, 10, 12 (70.49, 51.67) Negative

5.2.3. QoE Performance

We can map the delay of each user to the utility score according to Equation (18). We
determined the minimum tolerance cost for users Zmin

qoe = 60 and the maximum tolerance
cost for users Zmax

qoe = 100 by measuring the average opinion score. We also defined a toler-
ance midpoint Zfair

qoe = 80 from which users feel a significant decrease in service experience.
In Figure 15, we tested the quality of experience of 1000 users. Among them, 53.7% of

users in the D3QN model have excellent QoE; 45.1% of users have good QoE; and 0.12% of
users have poor QoE. It can be seen that the user QoE of the D3QN model is significantly
higher than the other five models. In addition, the proportion of blocked users obtained by
the D3QN model is 0%, while the benchmark is 10%. This is because, in the D3QN model,
the user’s task is offloaded to the lowest latency computing node. Meanwhile, the “D3QN
model” allows agents to offload tasks within Tnk to any computing nodes within the range
based on QoE to provide the highest quality.

As an important component of the solution, the impact of blockchain systems on
the performance of the solution cannot be ignored. In Figure 16, we discussed the com-
parison of user QoE with different block size restrictions in the D3QN model. The figure
shows that users can gain more and better QoE as the block size increases. However, due to
the constraints of the blockchain system, it cannot increase infinitely. Obviously, through
the training of the D3QN model, more user data in this scheme have the opportunity to
select and upload blockchain systems, ensuring data security.
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Figure 17 compares the QoE satisfaction of users with different acceptable delays in
the D3QN model. From the graph, it can be seen that as the acceptable delay increases, the
proportion of satisfied users significantly increases, indicating a significant increase in the
quality of user experience. The reason is that as acceptable latency increases, there is more
time to decide and choose the appropriate computing server and blockchain cache. Due to
the addition of training through D3QN, the D3QN model can still maintain a lower system
average cost under all acceptable delay constraints.
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6. Conclusions

This study proposed a new approach to address the QoE of users in task execution
of WBANs by jointly considering resource allocation between computing servers and
blockchain systems to reduce unnecessary latency and energy consumption to improve
system performance. In the proposed model, local WBAN devices or edge servers can be
selected to execute complex computing tasks, and blockchain systems can be chosen to
ensure the security of users’ data. Due to differences in the selection and decision-making
of network resources, such as offloading or blockchain, we used the D3QN algorithm
to solve joint decision optimization problems. It is possible to make the best decisions
about computing offloading and blockchain storage at the lowest system average cost after
training, including lower data transmission latency, lower energy consumption, and better
data security to improve the QoE of users. The simulation results showed that compared
with existing solutions, using the proposed algorithm can significantly reduce users’ costs
and maintain a high-quality user experience. The next step will be to study the scheduling
strategies for task-offloading and storage for WBAN users in dynamic environments.
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