
Citation: Hu, Y.; Cheng, A.; Tang, Z.;

Liu, P.; Liang, W. LUAEMA: A Loop

Unrolling Approach Extending

Memory Accessing for Vector

Very-Long-Instruction-Word Digital

Signal Processor with Multiple

Register Files. Electronics 2024, 13,

1425. https://doi.org/10.3390/

electronics13081425

Academic Editor: Shinichi Yamagiwa

Received: 15 March 2024

Revised: 3 April 2024

Accepted: 7 April 2024

Published: 10 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

LUAEMA: A Loop Unrolling Approach Extending Memory
Accessing for Vector Very-Long-Instruction-Word Digital
Signal Processor with Multiple Register Files
Yonghua Hu 1,2, Aobo Cheng 1,2, Zhuoyou Tang 1,2, Peng Liu 1,2 and Wei Liang 1,2,*

1 School of Computer Science and Engineering, Hunan University of Science and Technology,
Xiangtan 411201, China; yonghuahu@hnust.edu.cn (Y.H.); aobocheng99@163.com (A.C.);
17394946573@163.com (Z.T.); pengliu1112@163.com (P.L.)

2 Hunan Key Laboratory for Service Computing and Novel Software Technology,
Hunan University of Science and Technology, Xiangtan 411201, China

* Correspondence: wliang@hnust.edu.cn

Abstract: Loop unrolling can provide more instruction-level parallelism opportunities for code
and enables a greater range of instruction pipeline scheduling. In high-performance very-long-
instruction-word (VLIW) digital signal processors (DSPs), there are special registers to address. To
further improve the instruction-level parallelism of code for such DSPs by making full use of these
registers, in this paper, we propose a more effective loop unrolling approach through extending
memory accessing (LUAEMA). In this approach, the final unrolling factor is computed by a model in
which every register kind and every memory accessing operation are considered. For basic digital
signal processing algorithms, the unrolling factor under the LUAEMA is larger than that under the
conventional loop unrolling approach. We also provide the opportunity to reduce the number of
instructions in a loop during the code transformation of loop unrolling. The experimental results
show that the loop unrolling approach proposed in this paper can achieve an average speedup
ratio ranging from 1.14 to 1.81 compared with the conventional loop unrolling approach. For some
algorithms, the peak speedup ratio is up to 2.11.

Keywords: loop unrolling; loop optimization; VLIW; DSP; register resources

1. Introduction

Nowadays, digital signal processors (DSPs) are widely used in many fields such as
digital communications, video monitoring, machine control, unmanned aerial vehicles,
instrumentation, and biomedicine [1–5]. Compared with general-purpose microproces-
sors, DSPs adopt the Harvard structure that separates the program and data, and their
instruction scheduling adopts pipeline operation, which can quickly complete a variety of
digital signal processing algorithms [6]. A typical DSP system is shown in Figure 1. The
growing demand in the DSP market has seen the emergence of many high-performance
DSPs in recent years such as AnySP [7], Tensilica ConnX BBE64EP [8], TI TMS320C6000
Series DSP [9], YHFT-DSP [10], SW processor [11], and ARM Cortex-M4 family [12]. As the
study of computing parallelism becomes more and more deepened, the VLIW architecture
together with the single-instruction-multiple-data (SIMD) vector unit has gradually become
a typical representative of high-performance DSP architectures [10,13–16]. The advantage
of the vector unit over the scalar unit is that it can compute multiple data with one in-
struction, resulting in a significant reduction in the time required to execute corresponding
programs [17]. Vector DSPs are rich in hardware resources, while their architecture and
instruction set differ from one DSP to another [18]. To take full advantage of the hardware
resources of each vector DSP, the compilation optimization according to the architecture
characteristics of the vector DSP is very necessary [19].

Electronics 2024, 13, 1425. https://doi.org/10.3390/electronics13081425 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13081425
https://doi.org/10.3390/electronics13081425
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics13081425
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13081425?type=check_update&version=1

Electronics 2024, 13, 1425 2 of 23

Electronics 2024, 13, x FOR PEER REVIEW 2 of 26

compilation optimization according to the architecture characteristics of the vector DSP
is very necessary [19].

Figure 1. A typical DSP system.

Compilation optimization for vector DSPs takes into account the hardware re-
sources of the DSP, especially the register resources [20]. Vector DSPs often have a lot of
general-purpose registers in both scalar and vector data processing units, in order to
adapt to the cases in which the computing of an algorithm can be vectorized or not. In
particular, the configuration with both base address registers and offset registers pro-
vides more freedom in the optimization of loops. For example, YHFT’s vector DSP
FT-7002 provides scalar data registers and vector data registers [21]. Texas Instruments’
TMS320C6000 Series DSPs provide rich register resources such as accumulation register
ACC, data register Dx, status register SR, and control register CR [22]. An important part
of compilation optimization is how to make the best use of multiple register resources
[23,24].

Algorithm optimization has been one of the hot topics in current research [25–29].
Scholars’ research on algorithm optimization can be divided into process optimization
for the specific algorithms and general optimization for all algorithms [30]. Because the
compiler does not know the purpose of the program being compiled, the compilation
optimization is mainly the generic optimization for all algorithms. Loop structures play
a large part in the running time in many algorithms (e.g., digital signal processing algo-
rithms, deep learning algorithms, neural network algorithms) [31–36], so loop optimiza-
tion is an essential part of compilation optimization. The main approach of loop optimi-
zation is loop transformation. Loop transformation means that the compiler performs
multiple loop reconstruction transformations to help improve the parallelism of loops in
a program. Loop transformation mainly includes loop tiling [37], loop skewing, loop
unrolling [38], and software pipelining. Loop unrolling is one of the most direct and
effective approaches in loop transformation [39], which improves the overall perfor-
mance of the loop by increasing the efficiency of the parallel processing [38]. Loop un-
rolling copies multiple loop bodies into one iteration and adjusts the array index and
loop increment accordingly to ensure that the program runs correctly, which has the
significant effect of reducing the loop overhead [40]. Moreover, loop unrolling can in-
crease the opportunities for other optimizations, such as common subexpression elimi-
nation, induction variable optimization, software pipelining, etc. [41,42]. And it is also an
important part of optimizations such as vectorization and data prefetching [43]. Overall,
the benefits of loop unrolling include instruction-level parallelism, register locality, and
hierarchical storage locality [38].

The application of loop unrolling for vector architecture instruction sequences in
the compilation optimization has been studied, but these studies are not flexible enough
to deal with the allocation of register resources for vector DSPs, and there are cases
where register resources for addressing are not fully used. In this paper, we use the
conventional loop unrolling approach as a basis for extending the unrolling factor and
increasing the scheduling range of instruction-level parallelism by making further use of
the free register resources before register spilling happens. Based on the above ideas, this
paper proposes a loop unrolling approach extending memory accessing (LUAEMA) that
fully considers the free resources of registers and thus increases the unrolling factor.

The rest of this paper is as follows: Section 2 provides related work on loop un-
rolling. Section 3 illustrates the limitations of the conventional loop unrolling approach
for vector DSPs and the model of LUAEMA. Section 4 describes the algorithms in the

Figure 1. A typical DSP system.

Compilation optimization for vector DSPs takes into account the hardware resources
of the DSP, especially the register resources [20]. Vector DSPs often have a lot of general-
purpose registers in both scalar and vector data processing units, in order to adapt to the
cases in which the computing of an algorithm can be vectorized or not. In particular, the
configuration with both base address registers and offset registers provides more freedom
in the optimization of loops. For example, YHFT’s vector DSP FT-7002 provides scalar
data registers and vector data registers [21]. Texas Instruments’ TMS320C6000 Series DSPs
provide rich register resources such as accumulation register ACC, data register Dx, status
register SR, and control register CR [22]. An important part of compilation optimization is
how to make the best use of multiple register resources [23,24].

Algorithm optimization has been one of the hot topics in current research [25–29].
Scholars’ research on algorithm optimization can be divided into process optimization
for the specific algorithms and general optimization for all algorithms [30]. Because the
compiler does not know the purpose of the program being compiled, the compilation
optimization is mainly the generic optimization for all algorithms. Loop structures play a
large part in the running time in many algorithms (e.g., digital signal processing algorithms,
deep learning algorithms, neural network algorithms) [31–36], so loop optimization is an
essential part of compilation optimization. The main approach of loop optimization is
loop transformation. Loop transformation means that the compiler performs multiple loop
reconstruction transformations to help improve the parallelism of loops in a program. Loop
transformation mainly includes loop tiling [37], loop skewing, loop unrolling [38], and
software pipelining. Loop unrolling is one of the most direct and effective approaches in
loop transformation [39], which improves the overall performance of the loop by increasing
the efficiency of the parallel processing [38]. Loop unrolling copies multiple loop bodies into
one iteration and adjusts the array index and loop increment accordingly to ensure that the
program runs correctly, which has the significant effect of reducing the loop overhead [40].
Moreover, loop unrolling can increase the opportunities for other optimizations, such as
common subexpression elimination, induction variable optimization, software pipelining,
etc. [41,42]. And it is also an important part of optimizations such as vectorization and data
prefetching [43]. Overall, the benefits of loop unrolling include instruction-level parallelism,
register locality, and hierarchical storage locality [38].

The application of loop unrolling for vector architecture instruction sequences in the
compilation optimization has been studied, but these studies are not flexible enough to
deal with the allocation of register resources for vector DSPs, and there are cases where
register resources for addressing are not fully used. In this paper, we use the conventional
loop unrolling approach as a basis for extending the unrolling factor and increasing the
scheduling range of instruction-level parallelism by making further use of the free register
resources before register spilling happens. Based on the above ideas, this paper proposes a
loop unrolling approach extending memory accessing (LUAEMA) that fully considers the
free resources of registers and thus increases the unrolling factor.

The rest of this paper is as follows: Section 2 provides related work on loop unrolling.
Section 3 illustrates the limitations of the conventional loop unrolling approach for vector
DSPs and the model of LUAEMA. Section 4 describes the algorithms in the LUAEMA,
including the preparation algorithm for the unrolling factor, the unrolling factor algorithm,
and the description of the code transformation for the original loop. Section 5 analyzes the
experimental results between the LUAEMA and the conventional loop unrolling approach.
Finally, a few conclusions and directions for future studies are provided in Section 6.

Electronics 2024, 13, 1425 3 of 23

2. Related Work
2.1. The Loop Unrolling Approach

The key issue of loop unrolling is the determination of the unrolling factor. It is not
the case that the larger the unrolling factor, the greater the gain. Too large an unrolling
factor will result in a surge in the number of instructions in the loop. If the instruction
buffer of the target platform is not large enough, it will cause buffer overflow. Too many
instructions in the loop can also cause an increase in the number of registers allocated
to the loop after the loop unrolling, which can lead to register spilling [37,44,45]. On the
other hand, if the unrolling factor is too small, the program will not be able to make full
use of the hardware resources. So, how to determine the suitable unrolling factor is one
of the main directions of loop unrolling research. Research on the unrolling factor can be
broadly divided into two categories at present. One is to use machine learning algorithms
to predict the unrolling factor, and the other is to build the cost model to calculate the
unrolling factor automatically.

The main reason for using machine learning algorithms to predict the unrolling
factor is that they automatically extract features and make predictions by being trained
on a large dataset. Monsifrot et al. used a mapping mechanism based on BDT learning
techniques to determine which loops should be unrolled [46]. Wang Dong et al. processed
the conventional random forest model with weighted and unbalanced datasets and then
used the improved model to predict the unrolling factor [47].

There are many studies on building cost models to automatically compute the un-
rolling factor. The common approaches are Simple Counting, Path Cover, and Data De-
pendency. Simple Counting calculates the unrolling factor by dividing the loop iteration
times by the number of statements in the loop. Path Cover calculates the unrolling factor
by estimating the number of paths to be executed in the algorithm. Data Dependency
determines the unrolling factor by analyzing the relationship between variable definition
and variable use within the loop. There are many examples of in-depth studies based on the
above approaches. For example, UTBPC (Unrolling-Times-Based Program Characteristics)
can better calculate the unrolling factor and apply it to the software pipeline and then
consider the effect of loop unrolling on data prefetching to optimize the original data
prefetching process [48]. Liu X et al. propose an approach that combines loop unrolling op-
timization with register pressure for estimating the unrolling factor based on the GCC-5.3.0
compiler [49]. VALU (Vectorization-aware loop unrolling) forwards the vectorizable code
to SLP, allowing it to bypass its greedy search for vectorizable seed instructions, exposing
more vectorization opportunities [40].

2.2. Relationship to Prior Work

In this paper, the unrolling factor is calculated by building a cost model. The approach
proposed in this paper uses a paper that estimates the unrolling factor after combining
loop unrolling with register pressure as the base theory [49] and the implementation
of its unrolling factor algorithm on the vector DSP as the conventional loop unrolling
approach. While considering the register pressure, this approach makes full use of the two
characteristics of the vector DSP’s multiple register files and multiple addressing methods
so that the unrolling factor increases compared to the conventional loop unrolling approach,
and reduces the number of instructions in the loop.

3. Framework and Model
3.1. Limitations of the Conventional Loop Unrolling Approach

Differences in the form of the loops can lead to different identified induction vari-
ables, even if the loops have the same arithmetic logic. Take Listing 1 and Listing 2, for
example. Since both the conventional loop unrolling approach and the loop unrolling
approach proposed in this paper are based on the consideration of the register resources in
the hardware, the high-level language cannot fully explain the utilization of the register
resources. Therefore, we take the instruction-level intermediate code as input. To illustrate

Electronics 2024, 13, 1425 4 of 23

the limitations of the conventional loop unrolling approach in register usage, the loops of
Listing 1 and Listing 2 use instruction sequences internally, while the loop control section
retains the high-level language format.

There are two types of variables that are special for addressing in a loop, address
variables and offset variables. These two types of variables refer to address registers (Rx)
and offset registers (Ry) in instruction-level intermediate code. The conventional loop
unrolling approach determines whether the address registers or the offset registers need to
be unrolled in the intermediate code based on the identification of induction variables.

The arithmetic logic of the two loops shown in Listing 1 and Listing 2 is to take out each
element of ARa in turn, add 1, and put them into ARb. The induction variables identified in
the conventional loop unrolling approach are different depending on the different forms of
a loop. The induction variables of the loop in Listing 1 are Ri and Ork. And the induction
variables of the loop in Listing 2 can be identified as Ri, Ara, and ARb.

Listing 1. The loop whose inductive variables are Ri and ORk.
Mov 0, ORk
do Ri = 1, Rn

Load ARb[ORk], Rb
Add 1, Rb, Ra
Store Ra, ARa[ORk]
Add 1, ORk, ORk

enddo

Listing 2. The loop whose inductive variables are Ri, ARa, and ARb.
Mov 0, ORk
do Ri = 1, Rn

Load ARb[ORk], Rb
Add 1, Rb, Ra
Store Ra, ARa[ORk]
Add 1, ARa, ARa
Add 1, ARb, ARb

enddo

Before unrolling the loop, it is necessary to identify whether the instruction operands
within the loop need to be created unrolling copies. The variables that require creating
unrolling copies identified by the conventional loop unrolling approach are made up of
inductive variables and loop variations. In Listing 1, they are Ri, ORk, Ra, and Rb, while in
Listing 2, these variables are Ri, ARa, ARb, Ra, and Rb. Taking Ra as an example, its copies
are written as Ra_1, Ra_2, and so on.

For the purpose of showing the limits of the conventional loop unrolling approach
when using address registers and offset registers, the following loop unrolling example
assumes that there are no restrictions on other types of register resources. This means that
the need for using other types of register resources during loop unrolling will be fully
satisfied and it is only guaranteed to consider the full use of the free resources in address
registers or offset registers.

Let the total number of address registers be e and the total number of offset registers be
f on the DSP hardware. Before the loop unrolling process, both Listing 1 and Listing 2 have
used two address registers (ARa and ARb) and one offset register (ORk). Because Listing
1’s set of variables that need to be created unrolling copies contains ORk, the unrolling
factor (UF) of the loop shown in Listing 1 is set to f in order to fully use the offset registers.
Similarly, the unrolling factor of the loop shown in Listing 2 is set to e/2. Listing 1 and
Listing 2 are translated into Listing 3 and Listing 4, respectively, after being processed by
the conventional loop unrolling approach.

Electronics 2024, 13, 1425 5 of 23

Listing 3. Listing 1 after being processed by the conventional loop unrolling approach.
Mov f, UF
Mov 0, ORk
Add 1, ORk, ORk_1
.
do Ri = 1, Rn/UF

Load ARb[ORk], Rb
Load ARb[ORk_1], Rb_1
.
Add 1, Rb, Ra
Add 1, Rb_1, Ra_1
.
Store Ra, ARa[ORk]
Store Ra_1, ARa[ORk_1]
.
Add UF, ORk, ORk
Add UF, ORk_1, ORk_1
.

enddo

Listing 4. Listing 2 after being processed by the conventional loop unrolling approach.
Mov e/2, UF
Mov 0, ORk
Add 1, ARa, ARa_1
.
Add 1, ARb, ARb_1
.
do Ri = 1, Rn/UF

Load ARb[ORk], Rb
Load ARb_1[ORk], Rb_1
.
Add 1, Rb, Ra
Add 1, Rb_1, Ra_1
.
Store Ra, ARa[ORk]
Store Ra_1, ARa_1[ORk]
.
Add UF, ARa, ARa
Add UF, ARa_1, ARa_1
.
Add UF, ARb, ARb
Add UF, ARb_1, ARb_1
.

enddo

When the UF of Listing 3 is equal to the UF of Listing 4, the number of self-incrementing
instructions in Listing 4 is twice that in Listing 3. This means that although there are differ-
ent ways to write the same loop logic, the conventional loop unrolling approach does not
have the ability to change the form of the loop, which may lead to redundant code lines
within the loop. When the loop is designed in the form of Listing 2, the conventional loop
unrolling approach can only process it into the form of Listing 4, ignoring the possibility of
further analyzing the types of the different variables to obtain a more concise loop form, as
shown in Listing 3.

The hardware resources provided by the processor should be fully considered during
loop unrolling in the vector DSP. The induction variables of the loop shown in Listing 3
include ORk, and the address registers ARa and ARb are used as loop invariants, so the
free resources of Rx are not fully used in loop unrolling. This will result in the resources in

Electronics 2024, 13, 1425 6 of 23

Rx appearing to be free when the loop is running. Similarly, the loop shown in Listing 4
suffers from the problem of under-use of free resources in Ry.

In order to solve the two problems of neglecting the number of instructions in the loop
which can be reduced and not fully using the free resources of a certain register type in the
conventional loop unrolling approach, this paper proposes an improved instruction-level
loop unrolling approach that unrolls both address registers and offset registers at the same
time to further improve loop optimization and increase the scheduling range of instruction-
level parallelism. This approach makes full use of the two kinds of register resources, Rx
and Ry, to further increase the unrolling factor when the general registers are sufficient.
And it can also be used flexibly to reduce the number of instructions in the loop according
to the unrolling situation of Rx and Ry.

3.2. The Mathematical Model for LUAEMA

ORk belonging to Ry in the loop shown in Listing 3 is the loop variation (the variable
that is needed to create the unrolling copies in loop unrolling) in the loop unrolling process.
ARa and ARb belonging to Rx are the loop invariants. This is the opposite case for the loop
shown in Listing 4, where ARa and ARb are the loop variations in the loop unrolling process
and ORk is the loop invariant. The two loop forms with the same arithmetic logic can only
make use of the free resources of one register in Rx or Ry after loop unrolling, which will
lead to the situation that the resources of the other register cannot be fully used. Therefore,
this section considers whether it is possible to have a loop unrolling approach that can use
the free resources of both types of registers, Rx and Ry, at the same time and proposes a
loop unrolling processing model extending memory accessing that unrolls both Rx and Ry.
The basic principle of the model is as follows.

3.2.1. Obtain the Set of Variables Aur

Loop unrolling needs to obtain the set of variables Aur that need to create unrolling
copies in the loop before determining the unrolling factor. Aur consists mainly of induction
variables and loop variations in the conventional loop unrolling approach. The induction
variables for the loop shown in Listing 1 are Ri and ORk, and the induction variables for
the loop shown in Listing 2 are Ri, ARa, and ARb. The induction variables for both loops
include Ri, since Ri is the loop control induction variable, and its main role is to guarantee
the loop times. The main purpose of the induction variables other than Ri is to ensure
that it is correct when accessing memory by address, except that the loop shown in Listing
1 uses Ry to access the memory correctly, and the loop shown in Listing 2 uses Rx. This
would ignore the fact that both Rx and Ry can be unrolled. In order to satisfy that Rx and
Ry are used in loop unrolling, this model adds the loop invariants belonging to Rx or Ry in
the original loop to Aur.

3.2.2. Calculate the Unrolling Factor

The calculation of the unrolling factor can be conducted in three steps: the classification
of Aur; calculation of UFx, UFy, UFxy, and UFR; and acquirement of the final unrolling factor
UF. This is performed as follows:

(1) Analyze Aur and classify all the variables in Aur into two—AurXY and AurOther—
according to whether they belong to Rx or Ry:

Aur = AurXY
⋃

AurOther, (1)

AurXY contains variables related to the Rx and Ry of Aur:

AurXY = {AurX , AurY} , (2)

Electronics 2024, 13, 1425 7 of 23

AurOther contains other variables in Aur that are not related to Rx and Ry, with scalar general
registers (SRs), vector general registers (VRs), and so on:

AurOther = {AurSR, AurVR, . . .} . (3)

AurX and AurY in Equation (2) represent the sets of variables that need to create
unrolling copies of Rx and Ry in the original loop. Similarly, AurSR and AurVR in Equation (3)
denote the sets of variables belonging to scalar general registers and vector general registers
that need to create unrolling copies in the original loop.

(2) Calculate unrolling factors for Rx and Ry. The unrolling factor of Rx is set to UFx,
and the unrolling factor of Ry is set to UFy. The equations for the unrolling factors are
as follows:

The initial value of UFx is given by the following:

UFx = numX−
∣∣AusingX

∣∣/|AurX |, (4)

where |...| refers to the total number of variables in the set, numX represents the total
number of Rx in the vector DSP, and AusingX refers to the Rx variables that are active before
or after the original loop. Similarly, the initial value of UFx is given by the following:

UFy = numY−
∣∣AusingY

∣∣/|AurY |. (5)

After obtaining the initial values of UFx and UFy, multiply them together to obtain
UFxy that Rx and Ry can provide for loop unrolling.

UFxy = UFx ∗ UFy. (6)

According to Equations (4) and (5), calculate the maximum unrolling times that can
be provided by each register type that does not belong to Rx and Ry such as scalar general
registers and vector general registers. Compare them and select the minimum value as UFR:

UFR = min{UFSR, UFVR, . . .}. (7)

(3) Compare UFxy with UFR. When UFxy is less than UFR, it means that the maximum
unrolling times that can be provided by AurXY are not limited by the other registers. This
situation achieves the effect that the free resources of Rx and Ry are fully used. Therefore,
the final unrolling factor UF is given by the following:

UF = UFxy. (8)

Conversely, when UFxy is greater than UFR, it indicates that the full use of Rx and Ry
leads to passive measures of register protection for other types of registers, which is not in
line with the original intention of loop unrolling in this paper. Therefore, it is necessary
to round down the smaller values of UFx or UFy. The update in UFx or UFy is given by
the following:

min
{

UFx, UFy
}
= UFR/max

{
UFx , UFy

}
+ 1. (9)

Update UFxy using Equation (8) after processing UFx or UFy according to Equation (9).
The updated UFxy must be within the range of

UFxy ∈
{

UFxy
∣∣UFR ≤ UFxy <

(
UFR + max

{
UFx, UFy

})}
. (10)

Then, the UF is given by the following:

UF = UFR. (11)

Electronics 2024, 13, 1425 8 of 23

When UFxy is equal to UFR, it indicates that the full use of the free resources of Rx and
Ry is accompanied by the full use of the free resources from one of the other register types.
The final unrolling factor UF in this case can be derived by Equation (8) or Equation (11).

3.2.3. Update the Identified Set of Induction Variables

After calculating UFx and UFy, judge whether the identified set of induction variables
needs to be updated. Calculate the total number of new instructions that need to be
generated for loop unrolling when either Rx or Ry is used as the induction variable and
compare to find out which one generates fewer new instructions. If the register type
resulting from the comparison is the same as the register type identified in the origin loop
as the induction variable, there is no need to update the set of induction variables. If
different, it is necessary to replace the variables belonging to Rx or Ry in the set of induction
variables with the register type derived from the comparison and replace the corresponding
code in the loop body during code transformation.

3.2.4. Initialize Unrolling Copies for Rx and Ry

In code transformation, initialize (UFx − 1) copies for Rx that need to be unrolled in
the loop and initialize (UFy − 1) copies for Ry that need to be unrolled in the loop.

Some rules should be followed when initializing unrolling copies of Rx and Ry. When
initializing copies of Rx, the following rule must be obeyed:

X_1 = X ± L, (12)

where X refers to a certain variable belonging to Rx that needs to create unrolling copies;
X_1 is the next unrolling copy that needs to be created for X; and L is the data volume that
can be computed in one iteration of the origin loop, which is typically 1 in scalar processors
but depends on the architecture of the processor in vector processors.

When initializing copies of Ry, the following rule must be obeyed:

Y1 = Y ±
(

L ∗ UFy
)
, (13)

where Y refers to a certain variable belonging to Ry that needs to create unrolling copies;
Y_1 is the next unrolling copy that needs to be created for Y.

The code example of Listing 2 after the LUAEMA is shown in Listing 5.
The LUAEMA includes the initialization of unrolling copies about ARa and ARb and

also the initialization of unrolling copies about ORk. Compared to the loop shown in Listing
4, which performed the conventional loop unrolling approach of Listing 2, the LUAEMA
replaces self-increasing instructions for ARa and ARb with self-increasing instructions
for ORk in the loop, which means that the induction variables are updated—the set of
induction variables consisting of Ri, Ara, and ARb is updated to the set of induction variables
consisting of Ri and ORk. This is due to the fact that the total number of instructions
generated by Rx and Ry as induction variables was compared after the computation of
the unrolling factor was completed, and the register type with the smaller total number
between them was selected as the register type with self-increasing instructions for the
induction variables within the loop.

The output of the LUAEMA is the optimized instruction-level intermediate code. This
intermediate code has a large number of instructions in the loop, so the scheduling domains
available for VLIW to choose from during code scheduling are large. One major advantage
of the LUAEMA is its ability to increase the parallel scheduling domains of instructions,
which is reflected in VLIW. The very long instruction word (VLIW) of the vector processor
can be filled with both scalar instructions and vector instructions simultaneously. For a
loop, the instructions that are involved in its computation (such as the memory access
instructions in Listing 5) are vector instructions. In contrast, the self-increasing instructions
that control the loop iterations and correct memory access in the loop (such as the self-
increasing instruction of ORk in Listing 5) are oriented towards data, so they can only

Electronics 2024, 13, 1425 9 of 23

be used with scalar instructions. Loop unrolling increases the number of instructions for
scalars and vectors. The increased number of instructions can provide VLIW with more
instruction sequences to choose from when filling instruction words, thereby ensuring
that the instruction words are fully filled multiple times during the execution of the loop,
improving the efficiency of the instruction sequences.

Listing 5. Listing 2 after being processed by the LUAEMA.
Mov e/2, UFx
Mov f, UFy
Mul UFx, UFy, UF
Mov 0, ORk
Add 1, ORk, ORk_1
.
Add UFy, ARa, ARa_1
.
Add UFy, ARb, ARb_1
.
do Ri = 1, Rn/UF

Load ARb[ORk], Rb
Load ARb[ORk_1], Rb_1
.
Load ARb_1[ORk], Rb_f
.
Add 1, Rb, Ra
Add 1, Rb_1, Ra_1
.
Store Ra, ARa[ORk]
Store Ra_1, ARa [ORk_1]
.
Store Ra_f, ARa_1[ORk]
.
Add UF, ORk, ORk
Add UF, ORk_1, ORk_1
.

enddo

4. Algorithms
4.1. Identification Algorithm of Variables That Need to Create Unrolling Copies

Each register in a loop can be classified as a loop variant or a loop invariant based on
whether or not its value is changed in the loop. When performing the conventional loop un-
rolling approach, the values of loop invariants are unchanged, and the loop variations need
to create unrolling copies based on the unrolling factor. Therefore, finding out the variables
that need to create unrolling copies in a loop is essential for loop unrolling processing.

The conventional loop unrolling approach identifies Rx or Ry when identifying the
variables that need to create unrolling copies. In order to satisfy the condition of creating
unrolling copies for both Rx and Ry proposed in this paper, it is necessary to judge Rx and
Ry again based on the identification of the set of variables that needs to create unrolling
copies by the conventional loop unrolling approach, to arrive at the final set of variables
Aur that needs to create unrolling copies.

A detailed flow chart is shown in the dashed box in Figure 2.

Electronics 2024, 13, 1425 10 of 23Electronics 2024, 13, x FOR PEER REVIEW 11 of 26

Figure 2. Flow chart for identifying the set of variables that needs to create unrolling copies.

The implementation can be found in Algorithm 1.

Algorithm 1. Identification algorithm of variables that need to create unrolling copies
Input: the set of induction variables(IVs); LCVs; LINVs; definition-use chain derived from
data
Output: Aur; Type
(1) CIVTimes = getCIVTimes()
(2) if CIVTimes > 2 then
(3) Aur.insert(CIV)
(4) endif
(5) for each IV in IVs do
(6) if IV != CIV then
(7) Aur.insert(IV)
(8) endif
(9) 2ndfor
(10) LCVs = getLCVs()
(11) Aur.insert(LCVs)
(12) if Aur.include(Rx) then
(13) Type = Ry
(14) else
(15) Type = Rx
(16) endif
(17) for each LINV in LINVs do
(18) if LINV.type = Type then
(19) Aur.insert(LINV)

Figure 2. Flow chart for identifying the set of variables that needs to create unrolling copies.

The implementation can be found in Algorithm 1.

Algorithm 1. Identification algorithm of variables that need to create unrolling copies

Input: the set of induction variables(IVs); LCVs; LINVs; definition-use chain derived from data
Output: Aur; Type

(1) CIVTimes = getCIVTimes()
(2) if CIVTimes > 2 then
(3) Aur.insert(CIV)
(4) endif
(5) for each IV in IVs do
(6) if IV != CIV then
(7) Aur.insert(IV)
(8) endif
(9) 2ndfor
(10) LCVs = getLCVs()
(11) Aur.insert(LCVs)
(12) if Aur.include(Rx) then
(13) Type = Ry
(14) else
(15) Type = Rx
(16) endif
(17) for each LINV in LINVs do
(18) if LINV.type = Type then
(19) Aur.insert(LINV)
(20) LINVs.clear(LINV)
(21) endif
(22) endfor

The content note for Algorithm 1:

(1) LCVs is the set of loop variants in the loop.
(2) LINVs is the set of loop invariants in the loop.
(3) getCIVTimes() is to analyze the times that the loop control induction variable (CIV, i.e.,

Ri in Listing 1) has been used during the loop.

Electronics 2024, 13, 1425 11 of 23

(4) Aur is the set of variables that needs to create unrolling copies in the loop.
(5) getLCVs() is to obtain the set of loop variations.
(6) Type is Rx or Ry that is not included in the induction variables of the origin loop but can

become induction variables in loop unrolling. Induction variables in the conventional
loop unrolling approach contain Rx or Ry, depending on the form of the loop. Instead
of determining which one of Rx or Ry is the induction variable based on the loop
form, the LUAEMA compares the total number of new instructions that need to be
generated after Rx or Ry is a part of the induction variables.

Unlike the identification algorithm of variables that need to create unrolling copies in
the conventional loop unrolling approach, the algorithm proposed in this section takes a
certain type of register that would otherwise be part of the loop invariants out of the set of
loop invariants and puts it into Aur and provides the Type for subsequent updates to the set
of induction variables.

4.2. Algorithm for Calculating Unrolling Factor

After determining which variables in the loop need to create unrolling copies, the
conventional loop unrolling approach needs to analyze the register types of variables in Aur,
calculate the total number of free registers in each register type in the loop, determining
the unrolling factor for each register type, and then derive the unrolling factor of the loop.

The unrolling factor algorithm for the LUAEMA divides the registers into two groups,
registers for memory access (Rx and Ry) and other registers (VR, SR, etc.), and sets the
unrolling factors UFx and UFy for Rx and Ry, respectively. The product of the two unrolling
factors is the maximum unrolling factor UFxy that memory access registers can provide.

Other registers are categorized by the register type, and the unrolling factors that the
different register types can provide are calculated from the total number of free resources in
the different register types. The unrolling factors that are available for each register type are
compared and the smallest value is derived as the unrolling factor UFR that other registers
can provide.

The UFxy and UFR are compared and calculated to obtain the final unrolling factor UF.
A flow chart of the unrolling factor algorithm for the LUAEMA is shown in the dashed

box in Figure 3.
The process of realization is described in Algorithm 2.

Algorithm 2. The algorithm for calculating the loop unrolling factor

Input: LINVs; Aur; LiveVs; numReg
Output: UFx; UFy; UF; newIVs

(1) for each Regtype in RegTypes do
(2) numUnroll = Aur(RegType).size
(3) numFree = numReg(RegType)- LINVs(RegType).size- LiveVs(RegType).size
(4) factor(RegType) = numFree / numUnroll
(5) endfor
(6) UFx = factor(Rx)
(7) delete factor(Rx)
(8) UFy = factor(Ry)
(9) delete factor(Ry)
(10) UFxy = UFx × UFy
(11) UFR = min{factor(SR), factor(VR); . . .}
(12) if UFxy > UFR then
(13) min{UFx, UFy} = UFR / max{UFx, UFy} + 1
(14) UF = UFR
(15) else
(16) UF = UFxy
(17) endif
(18) getNewIVs()

Electronics 2024, 13, 1425 12 of 23Electronics 2024, 13, x FOR PEER REVIEW 13 of 26

Figure 3. Flow chart of the unrolling factor algorithm.

The process of realization is described in Algorithm 2.

Figure 3. Flow chart of the unrolling factor algorithm.

This algorithm contains the following main elements:

(1) numUnroll is the number of variables that need to create unrolling copies in each
register type.

(2) Aur is the set of variables that needs to create unrolling copies in the loop.
(3) numFree is the number of free resources for each register type. This value is obtained

by taking the total number of resources of the register type, numReg, and subtract-
ing the number of loop invariants of this class in the loop, LINVs(RegType).size,
and subtracting the number of this register type that are active outside the loop,
LiveVs(RegType).size.

(4) LINVs is the set of loop invariants in the loop.
(5) LiveVs is the set of registers that are not used in the loop but are still active outside

the loop.
(6) factor is the function to obtain the maximum unrolling factor that each register type

can provide for loop unrolling processing. This value is obtained by dividing numFree
by numUnroll.

(7) UFx is the maximum unrolling factor determined by Rx.
(8) UFy is the maximum unrolling factor determined by Ry.
(9) UFR is the minimum of the maximum unrolling factors for each register type except

Rx and Ry.
(10) UF is the final unrolling factor.
(11) getNewIVs() is used to update the set of IVs. The process is mainly performed to obtain

the smaller value of the product of UFx and Aur(Rx).size and the product of UFy and
Aur(Ry).size, then determine whether the register type that the smaller value belongs

Electronics 2024, 13, 1425 13 of 23

to is the same as the register type recorded by the Type. If yes, there is no need to
update the IVs. If no, the registers belonging to the Type in the set of registers that
need to create unrolling copies are put into the IVs, and the Rx or Ry in the IVs that do
not belong to the Type are moved out.

Unlike the conventional algorithm for calculating the unrolling factor, the unrolling
factor algorithm in this section fully analyzes the register resources of vector DSP and its
characteristics and targets to improve the conventional loop unrolling approach to make it
more suitable for the hardware architecture of vector DSP. More specifically, the unrolling
factor algorithm of the conventional loop unrolling approach restricted by both Rx and Ry
is improved to the algorithm that treats Rx and Ry as the same register type, and the flexible
updating of the self-increasing instructions for Rx or Ry as induction variables in the loop is
taken into account prior to code transformation.

4.3. Code Transformation

Code transformation of the origin loop is required after determining the unrolling
factor. The LUAEMA takes instruction-level intermediate code as input, and the code has
been divided into basic blocks. The flow graph for the loop shown in Listing 1 is shown in
Figure 4.

Electronics 2024, 13, x FOR PEER REVIEW 15 of 26

Unlike the conventional algorithm for calculating the unrolling factor, the unrolling
factor algorithm in this section fully analyzes the register resources of vector DSP and its
characteristics and targets to improve the conventional loop unrolling approach to make
it more suitable for the hardware architecture of vector DSP. More specifically, the un-
rolling factor algorithm of the conventional loop unrolling approach restricted by both
Rx and Ry is improved to the algorithm that treats Rx and Ry as the same register type,
and the flexible updating of the self-increasing instructions for Rx or Ry as induction var-
iables in the loop is taken into account prior to code transformation.

4.3. Code Transformation
Code transformation of the origin loop is required after determining the unrolling

factor. The LUAEMA takes instruction-level intermediate code as input, and the code
has been divided into basic blocks. The flow graph for the loop shown in Listing 1 is
shown in Figure 4.

The three basic blocks from top to bottom in Figure 4 are named according to the
function of the different basic blocks: the first basic block is the initialization basic block;
the second basic block is the loop control basic block; and the third basic block is the
loop calculation basic block. The number of basic blocks involved in the loop will be five
after the loop has been processed by the LUAEMA, including the three basic blocks of
the original loop, as shown in Figure 4, and the two new basic blocks added to ensure
the correctness of the program after the loop unrolling process—the recovery basic block
and the tail processing basic block. Therefore, this section divides the code transfor-
mation into five parts in terms of the different basic blocks involved in loop unrolling:

Figure 4. Flow graph of the loop shown in Listing 1.

The first part is the initialization basic block, which is generally located in the last
basic block before entering the loop. The code transformation for this basic block is used
to add initialization instructions for UFx, UFy, and the final unrolling factor UF, to add an
initialization instruction for the total number that the loop can calculate by iterating
once, and to add the instructions that initialize the unrolling copies of Rx and Ry accord-
ing to the unrolling factors of UFx and UFy (following the initialization rules of Equations
(12) and (13)).

The second part is the loop control basic block. The code transformation in this
basic block mainly replaces the variables that represent the data volume that can be cal-
culated in each iteration of the loop.

The third part is the loop calculation basic block. The code transformation of this
basic block needs to traverse each of the instructions in turn. If one of the variables in the
instruction is in the set of variables that needs to create unrolling copies, the instructions
for its unrolling copies are added after this instruction. The instructions in this basic
block, other than the calculation-related instructions, are the self-increasing instructions

Figure 4. Flow graph of the loop shown in Listing 1.

The three basic blocks from top to bottom in Figure 4 are named according to the
function of the different basic blocks: the first basic block is the initialization basic block;
the second basic block is the loop control basic block; and the third basic block is the
loop calculation basic block. The number of basic blocks involved in the loop will be five
after the loop has been processed by the LUAEMA, including the three basic blocks of the
original loop, as shown in Figure 4, and the two new basic blocks added to ensure the
correctness of the program after the loop unrolling process—the recovery basic block and
the tail processing basic block. Therefore, this section divides the code transformation into
five parts in terms of the different basic blocks involved in loop unrolling:

The first part is the initialization basic block, which is generally located in the last
basic block before entering the loop. The code transformation for this basic block is
used to add initialization instructions for UFx, UFy, and the final unrolling factor UF,
to add an initialization instruction for the total number that the loop can calculate by
iterating once, and to add the instructions that initialize the unrolling copies of Rx and
Ry according to the unrolling factors of UFx and UFy (following the initialization rules of
Equations (12) and (13)).

The second part is the loop control basic block. The code transformation in this basic
block mainly replaces the variables that represent the data volume that can be calculated in
each iteration of the loop.

The third part is the loop calculation basic block. The code transformation of this
basic block needs to traverse each of the instructions in turn. If one of the variables in the

Electronics 2024, 13, 1425 14 of 23

instruction is in the set of variables that needs to create unrolling copies, the instructions
for its unrolling copies are added after this instruction. The instructions in this basic
block, other than the calculation-related instructions, are the self-increasing instructions
for the induction variables. The code transformation of these instructions needs to judge
and update the self-increasing instructions of the induction variables belonging to Rx
and Ry—firstly, according to getNewIVs() in the unrolling factor algorithm to determine
which one of Rx and Ry determines the self-increasing instructions, and then adding the
self-incrementing instructions for the unrolling copies of the induction variables using
either UFx or UFy.

The fourth part is the recovery basic block for Rx and Ry. The loop calculation basic
block may have substitutions for the induction variables, e.g., the induction variables
in the loop shown in Listing 2 contain Rx, but after being processing by the LUAEMA
(i.e., Listing 5), the induction variables for addressing are changed to Ry. To ensure that the
code runs correctly, the values of the induction variables belonging to Rx and Ry need to
be modified in accordance with the loop form of the origin loop to fit the subsequent tail
processing basic block.

The fifth part is the tail processing basic block. The data volume that can be calculated
in one iteration of the unrolled loop is the multiplication result of the unrolling factor and
the data volume calculated in one iteration of the original loop. If the total data volume of
the loop cannot be evenly divisible by the data volume in one iteration after the LUAEMA,
there are two ways to handle it. One is that the total data volume is increased to the point
where it can be exactly divided by the data volume in one iteration of the loop, which can
lead to the generation of invalid data. The other is to split the total data volume into the
largest number that can be divided by the data volume calculated in one iteration and the
tail number; the tail number part is calculated by adding the tail processing basic block.
The second processing method is used here—the original loop code is added as the tail
processing basic block at the end of the unrolling loop.

5. Case Study

In order to demonstrate the processing effect of the LUAEMA, we built a vector DSP
processor model based on multiple register types. The model is an SIMD architecture,
where vectors are set to calculate eight pieces of data at a time. The register resources can
be divided into the following:

a. Sixty-four vector registers (VRs), each of them can calculate eight pieces of data and
have vector processing units and instructions to support this register type;

b. Sixty-four scalar registers (Rs), each of them can calculate one piece of data;
c. Eight address registers (Rx) to hold the contents of the base addresses;
d. Eight offset registers (Ry) to hold the offset of the base addresses.

The vector instruction-level intermediate code of Listing 1 is processed on the basis of
this model using the approach proposed in this paper for loop unrolling. Table 1 shows the
instruction-level intermediate code of Listing 1.

The instruction-level intermediate code in Table 1 differs from the scalar loop in Listing
1 in that the instruction-level intermediate code uses vector instructions. However, the
control instructions for the vector loop are still determined by the SR.

According to the definition of inductive variables, the inductive variables (IVs) for
Table 1 are Ri (derived by S13) and ORi (derived by S14), where Ri controls the loop times.
The analysis of BasicBlock2 yields Ri as the loop control induction variable (CIV).

First, the variables that need to create unrolling copies are identified. The first step is
to analyze the times that the CIV (Ri) has been used in BasicBlock2 and BasicBlock3. Ri is
the source operand in S3 and S13, so Ri has been used two times, and there is no need to
create its unrolling copies. The other inductive variable (ORi) is placed into the Aur. The
loop variations of BasicBlock3 are VRx, VRz, Ri, and ORi, so VRx and VRz are placed into
the Aur. The loop invariants are ARx, ARz, and VRy, and since they contain Rx (ARx, ARz)
that need to be unrolled, ARx and ARz are cleared from the loop invariants and placed into

Electronics 2024, 13, 1425 15 of 23

the Aur. The updated loop invariant is VRy. Finally, the Aur contains ORi, VRx, VRz, ARx,
and ARz. And the value of the Type is Rx.

Table 1. The instruction-level intermediate code of Listing 1.

Instruction-Level Intermediate Code

BasicBlock1:
S1 SR_To_VR 1, VRy
S2 MOV_SR 8, Rstep
S3 MOV_SR 0, Ri
S4 MOV_SR 0, ORi

BasicBlock2:
S5 ADDI_SR Ri, Rstep, Ra
S6 LT_SR Ra, Rsum, Rb
S7 EQ_SR Ra, Rsum, Rc
S8 OR_SR Rb, Rc, Rc
S9 [!Rc]SBR BasicBlock4

BasicBlock3:
S10 LD_VR ARx[ORi], VRx
S11 ADDI_VR VRx, VRy, VRz
S12 ST_VR VRz, ARz[ORi]
S13 ADDI_SR Rstep, Ri, Ri
S14 ADDI_SR Rstep, ORi, ORi
S15 SBR BasicBlock2

BasicBlock4:
.

The intermediate code in Table 1 is processed in the algorithm for calculating the un-
rolling factor: Grouping the Aur by the register types, the number of numUnroll corresponds
to 2, 0, 2, and 1 for VR, R, Rx, and Ry, respectively. The numAll for VR, R, Rx, and Ry is
64, 64, 8, and 8, respectively. The number of loop invariants (LINVs) for VR, R, Rx, and Ry
is 1, 0, 0, and 0. LiveVs need to be determined based on the number of each register type
used when running to the loop head (S5) and loop tail (runs to BasicBlock4); the number of
LiveVs for VR, R, Rx, and Ry can be set to 20, 30, 3, and 0.

From the above information, the number of numFree for VR, R, Rx, and Ry is 43, 34,
5, and 8, respectively, so their factor is 21, 30, 2, and 8. Then, the value of UFx is 2 and
the value of UFy is 8. UFx and UFy are removed from factors, which now only contains
the factors of VR and R. The minimum value in all factors is compared with the product
of UFx and UFy, i.e., 21 > 2 × 8. The final unrolling factor UF is 16. Finally, we compare
the product of UFx and the number of variables (ARx, ARz) needed to create the unrolling
copies for Rx (2 × 2) with the product of UFy and the number of variables needed to create
the unrolling copies for Ry (ORi) (8 × 1), to obtain the Type. Rx is determined as the register
type to be self-incremented in the loop.

After obtaining UFx, UFy, and UF, the code transformation of the original code is
started. The following is the description of the transformation of each basic block:

(1) Firstly, there is the initialization basic block, which is BasicBlock1 in Table 1. The
definitions of UFx, UFy and UF are added, the data volume in one iteration of the loop
is updated, and instructions for initializing the unrolling copies that need to be newly
created in Rx and Ry are added. The BasicBlock1 processed by the LUAEMA is shown
in Table 2.

In Table 2, S1 is the definition of UFx, S2 is the definition of UFy, and S3 is the definition
of UF; S6 is the update instruction for the data volume in one iterate of the loop. S9 and S10
are the instructions for initializing the unrolling copies that need to be newly created in Rx.
S12 to S18 are the instructions for initializing the unrolling copies that need to be newly
created in Ry.

Electronics 2024, 13, 1425 16 of 23

Table 2. BasicBlock1 processed by the LUAEMA.

Instruction-Level Intermediate Code

BasicBlock1:
S1 MOV_SR 2, Rfactor_AR
S2 MOV_SR 8, Rfactor_OR
S3 MOV_SR 16, Rfacter
S4 SR_To_VR 1, VRy
S5 MOV_SR 8, Rstep
S6 MUL_SR Rstep, Rfactor, RunrollingStep
S7 MOV_SR 0, Ri
S8 MUL_SR Rfactor_OR, Rfactor, Rstep_AR
S9 ADD_SR Rstep_AR, ARx, ARx_1

S10 ADD_SR Rstep_AR, ARz, ARz_1
S11 MOV_SR 0, ORi
S12 ADD_SR Rstep, ORi, ORi_1

.
S18 ADD_SR Rstep, ORi_6, ORi_7

(2) The loop control basic block, i.e., BasicBlock2. Rstep is updated to the data volume in
one iterate of the loop after the LUAEMA, RunrollingStep. BasicBlock2 processed by
the LUAEMA is shown in Table 3.

Table 3. BasicBlock2 processed by the LUAEMA.

Instruction-Level Intermediate Code

BasicBlock2:
S1 ADDI_SR Ri, RunrollingStep, Ra
S2 LT_SR Ra, Rsum, Rb
S3 EQ_SR Ra, Rsum, Rc
S4 OR_SR Rb, Rc, Rc
S5 [!Rc] SBR BasicBlock4

(3) The loop calculation basic block, i.e., BasicBlock3. It is divided into two parts: the first
is to add the calculation instructions in the loop by Aur and the unrolling factor; the
second is to add or update the self-increment instructions of the inductive variables.
BasicBlock3 processed by the LUAEMA is shown in Table 4.

Table 4. BasicBlock3 processed by the LUAEMA.

Instruction-Level Intermediate Code

BasicBlock3:
S1 LD_VR ARx[ORi], VRx

.
S8 LD_VR ARx[ORi_7], VRx_7
S9 LD_VR ARx_1[ORi], VRx_8

.
S16 LD_VR ARx_1[ORi_7], VRx_15
S17 ADDI_VR VRx, VRy, VRz

.
S32 ADDI_VR VRx_15, VRy, VRz_15
S33 ST_VR VRz, ARz[ORi]

.
S40 ST_VR VRz_7, ARz[ORi_7]
S41 ST_VR VRz_8, ARz_1[ORi]

.
S48 ST_VR VRz_15, ARz_1[ORi_7]

Electronics 2024, 13, 1425 17 of 23

Table 4. Cont.

Instruction-Level Intermediate Code

S49 ADDI_SR Rstep, Ri, Ri
S50 ADDI_SR RunrollingStep, ARx, ARx
S51 ADDI_SR RunrollingStep, ARx_1, ARx_1
S52 ADDI_SR RunrollingStep, ARz, ARz
S53 ADDI_SR RunrollingStep, ARz_1, ARz_1
S54 SBR BasicBlock2

S1 to S48 are the additions of memory access and calculation instructions in the loop.
S50 to S53 are the update instructions for the inductive variables. In the original loop, ORi
is the inductive variable, but it is updated here to be the self-increment instructions for ARx
and ARz.

(4) The recovery basic block for Rx and Ry. This basic block does not exist in the original
code. Before the loop unrolling process, the Rx of the loop in Table 1 are the loop
invariants and the Ry are the inductive variables, whereas after the loop unrolling to
further improve the performance, the Rx are changed to the inductive variables and
the Ry are the loop invariants. To handle data in Rsum that are not evenly divided by
RunrollingStep, Rx and Ry used in the loop need to be changed to the values of the
original loop format, so this basic block needs to be added. The basic block is placed
between BasicBlock3 and BasicBlock4, as shown in Table 5.

Table 5. The recovery basic block for Rx and Ry.

Instruction-Level Intermediate Code

BasicBlock_Recover:
S1 MOV_SR Ri, ORi
S2 SUB_SR Ri, ARx, ARx
S3 SUB_SR Ri, ARz, ARz

(5) The tail processing basic block. The basic block of Table 5 has restored Rx and Ry used
in the loop to their values at the corresponding runtime in the intermediate code of
Table 1. The instructions for BasicBlock2 and BasicBlock3 in Table 1 are placed after
the basic block of Table 5.

The LUAEMA has completed the processing of the intermediate code in Table 1.
Unlike the conventional loop expansion approach, the unrolling factor of the loop is greatly
improved, and the number of instructions in the loop is reduced. The conventional loop
unrolling approach for the intermediate code in Table 1 yields a value of 8 in the calculation
of the unrolling factor, whereas the LUAEMA’s unrolling factor is 16. And the LUAEMA
reduces the number of instructions in the loop by replacing the self-increment instructions
of the inductive variables in the loop under the same unrolling factor, which further
improves the performance of the loop.

6. Performance Analysis

In order to test the effect of the LUAEMA in this paper, the YHFT high-performance
DSP FT-M7002 was selected as the hardware platform for testing.

The FT-M7002 is a DSP-based 40 nm process chip with a main frequency of 1 GHz,
which has two DSP cores and one CPU core. Each DSP core has 64 KB L1D Cache and
32 KB L1P Cache with 32 KB of in-chip scalar space and 768 KB of in-chip vector space. The
global shared Cache is 2 MB, and there is up to 32 GB of synchronous Dynamic Random
Access Memory (DDR) outside the core [50].

The DSP core of the FT-M7002 is based on the VLIW structure, which contains a
five-outflow scalar process unit (SPU) and a six-outflow vector process unit (VPU), and

Electronics 2024, 13, 1425 18 of 23

the two processing units work in a tightly coupled manner, as shown in Figure 5. The SPU
contains only one processing unit, which is mainly responsible for serial task processing
and program control. The VPU consists of 16 vector process engines (VPEs) that support
up to 16 vector operations on 32-bit data, providing parallel processing for intensive
computation. DMA (direct memory access) provides a high-speed data transfer path for the
core, enabling fast data exchange between out-of-core DDR and SM or AM. AM is a data
memory exclusive to VPU, which can support two vectors for read/write operations and
two DMAs for read/write operations at the same time when the accesses are not conflicting,
for a total of four parallel requests. Through reasonable data arrangement, DMA transfer
and vector memory access can be realized in parallel.

Electronics 2024, 13, x FOR PEER REVIEW 20 of 26

greatly improved, and the number of instructions in the loop is reduced. The conven-
tional loop unrolling approach for the intermediate code in Table 1 yields a value of 8 in
the calculation of the unrolling factor, whereas the LUAEMA’s unrolling factor is 16.
And the LUAEMA reduces the number of instructions in the loop by replacing the
self-increment instructions of the inductive variables in the loop under the same un-
rolling factor, which further improves the performance of the loop.

6. Performance Analysis
In order to test the effect of the LUAEMA in this paper, the YHFT high-performance

DSP FT-M7002 was selected as the hardware platform for testing.
The FT-M7002 is a DSP-based 40 nm process chip with a main frequency of 1 GHz,

which has two DSP cores and one CPU core. Each DSP core has 64 KB L1D Cache and 32
KB L1P Cache with 32 KB of in-chip scalar space and 768 KB of in-chip vector space. The
global shared Cache is 2 MB, and there is up to 32 GB of synchronous Dynamic Random
Access Memory (DDR) outside the core [50].

The DSP core of the FT-M7002 is based on the VLIW structure, which contains a
five-outflow scalar process unit (SPU) and a six-outflow vector process unit (VPU), and
the two processing units work in a tightly coupled manner, as shown in Figure 5. The
SPU contains only one processing unit, which is mainly responsible for serial task pro-
cessing and program control. The VPU consists of 16 vector process engines (VPEs) that
support up to 16 vector operations on 32-bit data, providing parallel processing for in-
tensive computation. DMA (direct memory access) provides a high-speed data transfer
path for the core, enabling fast data exchange between out-of-core DDR and SM or AM.
AM is a data memory exclusive to VPU, which can support two vectors for read/write
operations and two DMAs for read/write operations at the same time when the accesses
are not conflicting, for a total of four parallel requests. Through reasonable data ar-
rangement, DMA transfer and vector memory access can be realized in parallel.

Figure 5. Structure of the FT-M7002 DSP core.

We note that both the output code of the LUAEMA and that of the conventional
loop unrolling approach are optimized instructor-level intermediate codes. These inter-
mediate codes need to be further processed by register allocation, code scheduling, and
other back-end procedures to obtain the corresponding assembly codes of FT-M7002.

For the algorithms suitable for loop unrolling optimization, we notice that they of-
ten have a concise data association relationship, and the data dependency between loop

Figure 5. Structure of the FT-M7002 DSP core.

We note that both the output code of the LUAEMA and that of the conventional loop
unrolling approach are optimized instructor-level intermediate codes. These intermediate
codes need to be further processed by register allocation, code scheduling, and other
back-end procedures to obtain the corresponding assembly codes of FT-M7002.

For the algorithms suitable for loop unrolling optimization, we notice that they often
have a concise data association relationship, and the data dependency between loop
iterations is weak. The calculations in these algorithms are mostly array-oriented. Therefore,
we use the following representative digital signal algorithms to analyze the effect of the
above-mentioned approach:

(1) The complex data conjugation algorithm. (2) The real data subtraction algorithm.
(3) The real data summation algorithm. (4) The real data dot product algorithm. The
core codes of the loops of them are “y_r[j] = x_r[i], y_i[j] = −x_i[i]”, “c[i] = a[i] − b[i]”,
“sum + = a[i]”, and “sum + = a[i] × b[i]”, respectively.

These algorithms differ in the amount of Rx and Ry within their computing loops. The
complex data conjugation algorithm needs two Rx and two Ry; the real data subtraction
algorithm needs three Rx and one Ry; the real data summation algorithm needs one Rx and
one Ry; and the real data dot product algorithm needs two Rx and one Ry. Therefore, their
unrolling factors are different. In this section, we discuss the efficiency of the LUAEMA by
analyzing the unrolling factor and speedup ratio.

6.1. Analysis of Timing Cycles for Algorithms

The input vector intermediate code of the algorithm is the same for both the conven-
tional loop unrolling approach and the LUAEMA. For each algorithm, we consider several
data volumes and obtain corresponding timing cycles by experiment. We use C, N, and V

Electronics 2024, 13, 1425 19 of 23

to represent the timing cycle, data volume, and speedup ratio, respectively. The results are
shown in Figures 6 and 7, where CLUA means that the corresponding values are obtained
under the conventional loop unrolling approach, CnCon refers to the complex data conju-
gation algorithm, RnSub refers to the real data subtraction algorithm, RnSum refers to the
real data summation algorithm, and RnDot refers to the real data dot product algorithm.

Electronics 2024, 13, x FOR PEER REVIEW 21 of 26

iterations is weak. The calculations in these algorithms are mostly array-oriented.
Therefore, we use the following representative digital signal algorithms to analyze the
effect of the above-mentioned approach:

(1) The complex data conjugation algorithm. (2) The real data subtraction algo-
rithm. (3) The real data summation algorithm. (4) The real data dot product algorithm.
The core codes of the loops of them are “y_r[j] = x_r[i], y_i[j] = −x_i[i]”, “c[i] = a[i] − b[i]”,
“sum + = a[i]”, and “sum + = a[i] × b[i]”, respectively.

These algorithms differ in the amount of Rx and Ry within their computing loops.
The complex data conjugation algorithm needs two Rx and two Ry; the real data subtrac-
tion algorithm needs three Rx and one Ry; the real data summation algorithm needs one
Rx and one Ry; and the real data dot product algorithm needs two Rx and one Ry. There-
fore, their unrolling factors are different. In this section, we discuss the efficiency of the
LUAEMA by analyzing the unrolling factor and speedup ratio.

6.1. Analysis of Timing Cycles for Algorithms
The input vector intermediate code of the algorithm is the same for both the con-

ventional loop unrolling approach and the LUAEMA. For each algorithm, we consider
several data volumes and obtain corresponding timing cycles by experiment. We use C,
N, and V to represent the timing cycle, data volume, and speedup ratio, respectively.
The results are shown in Figures 6 and 7, where CLUA means that the corresponding
values are obtained under the conventional loop unrolling approach, CnCon refers to
the complex data conjugation algorithm, RnSub refers to the real data subtraction algo-
rithm, RnSum refers to the real data summation algorithm, and RnDot refers to the real
data dot product algorithm.

Figure 6. The comparisons of timing cycles and speedup ratios for CnCon and RnSub.

Figure 6 shows that for CnCon, when compared with the conventional loop un-
rolling approach, the speedup gradually increases with the increase in data volume, and
the average speedup ratio is 1.16. When the data volume is 1024 or 2048, the timing cy-
cles of RnSub under the LUAEMA are greater than those under the conventional loop
unrolling approach. This is because the loop times are very small under our approach
for small data volumes, and thus the profit of the decrease in loop times is smaller than
the time cost of the auxiliary instructions introduced in this approach. As the data vol-
ume increases, the advantage of the LUAEMA becomes obvious. Compared with the
conventional loop unrolling approach, the maximum speedup ratio of the LUAEMA is
1.38, and the average speedup ratio is 1.14.

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

0

100

200

300

400

500

600

700

800

900

1000

1024 2048 4096 8192 16384 24384

VC

N

CLUA for CnCon
LUAEMA for CnCon
CLUA for RnSub
LUAEMA for RnSub
V for CnCon
V for RnSub

Figure 6. The comparisons of timing cycles and speedup ratios for CnCon and RnSub.

Electronics 2024, 13, x FOR PEER REVIEW 22 of 26

Figure 7. The comparisons of timing cycles and speedup ratios for RnSum and RnDot.

Figure 7 shows that for RnSum, when the data volume is larger, the loop unrolling
approach in this paper can obtain higher speedup than the conventional loop unrolling.
And when the data volume reaches 90,112, the speedup ratio can be 2.11, and the aver-
age speedup ratio is 1.81; for RnDot, the increase in V gradually slows down as the data
volume increases. When the data volume is around 90,112, V becomes a fixed value, and
the speedup ratio is about 1.60.

The overall comparisons show that the LUAEMA can obtain an average speedup
ratio of 1.36 over the conventional loop unrolling approach with the same algorithm.

6.2. Analysis of Unrolling Factors for Algorithms
In addition to analyzing the speedup ratios of the different algorithms, the internal

unrolling of the algorithms provides a more intuitive demonstration of how the LU-
AEMA improves the code performance compared to the conventional loop unrolling
approach.

We use UF to represent the unrolling factor. Figure 8 shows that the unrolling factor
under the conventional loop unrolling approach for CnCon is 4, while the LUAEMA
unrolls Rx and Ry to obtain the unrolling factor with a value of 16, which is a triple in-
crease over the value of the unrolling factor compared to the conventional loop unrolling
approach; the unrolling factor for RnSub under the LUAEMA is four times higher than
that under the conventional loop unrolling approach; the unrolling factor for RnSum
under the LUAEMA is increased by a factor of 6.25; and the unrolling factor of RnDot
under the LUAEMA is increased by a factor of 2.75.

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0

200

400

600

800

1000

1200

1400

1600

1800

2000

8192 16384 24576 32768 40960 49152 57344 65536 73728 81920 90112

VC

N

CLUA for RnSum
LUAEMA for RnSum
CLUA for RnDot
LUAEMA for RnDot
V for RnSum
V for RnDot

Figure 7. The comparisons of timing cycles and speedup ratios for RnSum and RnDot.

Figure 6 shows that for CnCon, when compared with the conventional loop unrolling
approach, the speedup gradually increases with the increase in data volume, and the
average speedup ratio is 1.16. When the data volume is 1024 or 2048, the timing cycles of
RnSub under the LUAEMA are greater than those under the conventional loop unrolling
approach. This is because the loop times are very small under our approach for small data
volumes, and thus the profit of the decrease in loop times is smaller than the time cost
of the auxiliary instructions introduced in this approach. As the data volume increases,
the advantage of the LUAEMA becomes obvious. Compared with the conventional loop

Electronics 2024, 13, 1425 20 of 23

unrolling approach, the maximum speedup ratio of the LUAEMA is 1.38, and the average
speedup ratio is 1.14.

Figure 7 shows that for RnSum, when the data volume is larger, the loop unrolling
approach in this paper can obtain higher speedup than the conventional loop unrolling.
And when the data volume reaches 90,112, the speedup ratio can be 2.11, and the average
speedup ratio is 1.81; for RnDot, the increase in V gradually slows down as the data volume
increases. When the data volume is around 90,112, V becomes a fixed value, and the
speedup ratio is about 1.60.

The overall comparisons show that the LUAEMA can obtain an average speedup ratio
of 1.36 over the conventional loop unrolling approach with the same algorithm.

6.2. Analysis of Unrolling Factors for Algorithms

In addition to analyzing the speedup ratios of the different algorithms, the internal
unrolling of the algorithms provides a more intuitive demonstration of how the LUAEMA
improves the code performance compared to the conventional loop unrolling approach.

We use UF to represent the unrolling factor. Figure 8 shows that the unrolling factor
under the conventional loop unrolling approach for CnCon is 4, while the LUAEMA unrolls
Rx and Ry to obtain the unrolling factor with a value of 16, which is a triple increase over
the value of the unrolling factor compared to the conventional loop unrolling approach;
the unrolling factor for RnSub under the LUAEMA is four times higher than that under the
conventional loop unrolling approach; the unrolling factor for RnSum under the LUAEMA
is increased by a factor of 6.25; and the unrolling factor of RnDot under the LUAEMA is
increased by a factor of 2.75.

Electronics 2024, 13, x FOR PEER REVIEW 23 of 26

Figure 8. The comparison of UFs after processing four algorithms using two loop unrolling ap-
proaches.

The original loop of CnCon uses two Rx, which are used to determine the base ad-
dresses of the real and imaginary parts of the complex array, and two Ry, which are used
to read or write the different elements of the complex array in order. Whether the array
is accessed sequentially by incrementing Rx or incrementing Ry, the unrolling factor un-
der the conventional loop unrolling approach is 4. However, the LUAEMA can obtain an
unrolling factor of 16 (4 × 4).

RnSub uses three address registers in the original loop to hold the base addresses of
the minuend, subtracted, and resultant arrays and one offset register to read or write the
elements of the three arrays sequentially. The unrolling factor under the conventional
loop unrolling approach is 8, whereas the LUAEMA can obtain an unrolling factor with
a value of 16.

The original loop of RnSum uses one address register to read the base address of
the array. And the number of offset registers used is one. The unrolling factor under the
conventional loop unrolling approach for RnSum is 8. The LUAEMA, on the other hand,
can obtain an unrolling factor of 64 while ensuring that the other register resources are
sufficient (in practice, it can only unroll 58 times because the number of other register
resources available is not sufficient to unroll 64 times).

When the input code is RnDot, the unrolling factor under the conventional loop
unrolling approach is 8. However, the LUAEMA considers the full utilization of memory
access registers and obtained an unrolling factor of 30. Before register spilling happens,
the unrolling factor by Rx is 4 and that by Ry is 8. Fully utilizing Rx and Ry in the LUAE-
MA can increase the unrolling factor to 32, but the unrolling factor for the general regis-
ter is 30. Therefore, the final unrolling factor is 30.

Combining the speedup ratios of the timing cycles derived from the comparisons
and the increase in the unrolling factors of the different algorithms, it can be found that
when the unrolling factor is larger, the advantage in timing cycles is greater. The con-
ventional loop unrolling approach cannot take full advantage of the multi-register types
of vector DSP, while the LUAEMA can achieve better performance before register spill-
ing happens.

7. Conclusions and the Future Work
In this paper, we propose an instruction-level loop unrolling approach for a vector

DSP that makes full use of different register types, the LUAEMA, in response to the lim-
itation that the conventional loop unrolling approach leads to unused free registers in
vector DSPs. Firstly, the authors analyze the limitations of the conventional loop un-

4
8 8 8

16
16

58

30

0

10

20

30

40

50

60

70

80

CnCon RnSub RnSum RnDot

UF

Algorithms

Conventional loop unrolling approach LUAEMA

Figure 8. The comparison of UFs after processing four algorithms using two loop unrolling approaches.

The original loop of CnCon uses two Rx, which are used to determine the base
addresses of the real and imaginary parts of the complex array, and two Ry, which are
used to read or write the different elements of the complex array in order. Whether the
array is accessed sequentially by incrementing Rx or incrementing Ry, the unrolling factor
under the conventional loop unrolling approach is 4. However, the LUAEMA can obtain
an unrolling factor of 16 (4 × 4).

RnSub uses three address registers in the original loop to hold the base addresses of
the minuend, subtracted, and resultant arrays and one offset register to read or write the
elements of the three arrays sequentially. The unrolling factor under the conventional loop
unrolling approach is 8, whereas the LUAEMA can obtain an unrolling factor with a value
of 16.

Electronics 2024, 13, 1425 21 of 23

The original loop of RnSum uses one address register to read the base address of
the array. And the number of offset registers used is one. The unrolling factor under the
conventional loop unrolling approach for RnSum is 8. The LUAEMA, on the other hand,
can obtain an unrolling factor of 64 while ensuring that the other register resources are
sufficient (in practice, it can only unroll 58 times because the number of other register
resources available is not sufficient to unroll 64 times).

When the input code is RnDot, the unrolling factor under the conventional loop
unrolling approach is 8. However, the LUAEMA considers the full utilization of memory
access registers and obtained an unrolling factor of 30. Before register spilling happens, the
unrolling factor by Rx is 4 and that by Ry is 8. Fully utilizing Rx and Ry in the LUAEMA
can increase the unrolling factor to 32, but the unrolling factor for the general register is 30.
Therefore, the final unrolling factor is 30.

Combining the speedup ratios of the timing cycles derived from the comparisons and
the increase in the unrolling factors of the different algorithms, it can be found that when
the unrolling factor is larger, the advantage in timing cycles is greater. The conventional
loop unrolling approach cannot take full advantage of the multi-register types of vector
DSP, while the LUAEMA can achieve better performance before register spilling happens.

7. Conclusions and the Future Work

In this paper, we propose an instruction-level loop unrolling approach for a vector DSP
that makes full use of different register types, the LUAEMA, in response to the limitation
that the conventional loop unrolling approach leads to unused free registers in vector DSPs.
Firstly, the authors analyze the limitations of the conventional loop unrolling approach
implemented on a vector DSP, which in turn leads to its insufficient use of registers.
Secondly, a mathematical model is constructed to elucidate the basic principles of the
LUAEMA. Then, the implementation process of the LUAEMA is explained by introducing
several algorithms for loop unrolling. In order to verify the effectiveness of this approach,
the authors selected four algorithms on the FT-M7002 DSP. The experiments show that
the LUAEMA’s code optimization on the FT-M7002 DSP significantly outperforms the
conventional loop unrolling approach, where the unrolling factor is increased by 3.25 on
average, and the speedup ratio is up to 1.36 on average. The LUAEMA is a loop unrolling
approach in compilation optimization, which is an automatic processing pass for its input
code, and thus the output unrolled loop code is automatically generated. However, because
its input is instruction-level intermediate code, we need to manually write the instruction-
level intermediate code corresponding to the high-level language. The same applies to the
conventional approach.

A vector DSP not only uses the address register and offset register to access memory
but also uses the address register and immediate number to access memory. This indicates
that the immediate value can be used in the instruction instead of the offset register, and
the usable number of the offset register can be the sum of the actual total number and the
number of immediate values. Therefore, our next work is to consider the memory access
mode of the address register and immediate number to improve the LUAEMA. Besides, the
unrolling factor is not restricted by the requirement of avoiding the generation of register
spilling code. Therefore, we can try to study the method to further expand the unrolling
factor, so that the corresponding code can run more effectively on vector DSPs.

Author Contributions: Conceptualization, Y.H.; methodology, Y.H.; software, A.C.; validation, A.C.;
formal analysis, W.L.; investigation, Z.T. and P.L.; writing—original draft preparation, Y.H. and
A.C.; writing—review and editing, Y.H. and A.C. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the National Science and Technology Major Project
(No. 2022ZD0119003) and the Hunan Provincial Natural Science Foundation (No. 2023JJ50019).

Data Availability Statement: The authors approve that data used to support the findings of this
study are included in the article.

Electronics 2024, 13, 1425 22 of 23

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Frantz, G. Digital signal processor trends. IEEE Micro 2000, 20, 52–59. [CrossRef]
2. Bariko, S.; Arsalane, A.; Klilou, A.; Abounada, A. Efficient parallel implementation of Gaussian Mixture Model background

subtraction algorithm on an embedded multi-core Digital Signal Processor. Comput. Electr. Eng. 2023, 110, 108827. [CrossRef]
3. Khan, S.; Alzaabi, A.; Iqbal, Z.; Ratnarajah, T.; Arslan, T. A Novel Digital Twin (DT) Model Based on WiFi CSI, Signal Processing

and Machine Learning for Patient Respiration Monitoring and Decision-Support. IEEE Access 2023, 11, 103554–103568. [CrossRef]
4. Mohammed, A.A.A.; Husam, A.W.; Ahmed, A.A. Design and Implementation of Communication Digital FIR Filter for Audio

Signals on the FPGA Platform. J. Commun. 2023, 18, 89–96.
5. Gouveia, C.; Albuquerque, D.; Vieira, J.; Pinho, P. Dynamic Digital Signal Processing Algorithm for Vital Signs Extraction in

Continuous-Wave Radars. Remote Sens. 2021, 13, 4079. [CrossRef]
6. Ibrahim, D.; Davies, A. The Evolution of Digital Signal Processors. In Proceedings of the 2019 6th IEEE History of Electrotechnol-

ogy Conference (HISTELCON), Glasgow, UK, 18–19 September 2019.
7. Who, M.; Seo, S.; Mahlke, S.; Mudge, T.; Chakrabarti, C.; Flautner, K. AnySP: Anytime Anywhere Anyway Signal Processing.

IEEE Micro 2010, 30, 81–91.
8. Rowen, C.; Nicolaescu, D.; Ravindran, R.; Heine, D.; Martin, G.; Kim, J.; Maydan, D.; Andrews, N.; Huffman, B.; Papaparaskeva,

V.; et al. The world’s fastest DSP core: Breaking the 100 GMAC/s barrier. In Proceedings of the 2011 IEEE Hot Chips 23
Symposium (HCS), Stanford, CA, USA, 17–19 August 2011.

9. Texas Instruments. TMS320C6678 Multicore Fixed and Floating-Point Digital Signal Processor, Data Manual; Texas Instruments:
Dallas, TX, USA, 2010.

10. Wang, Y.; Li, C.; Liu, C.; Liu, S.; Lei, Y.; Zhang, J.; Zhang, Y.; Guo, Y. Advancing DSP into HPC, AI, and beyond: Challenges,
mechanisms, and future directions. CCF Trans. High Perform. Comput. 2021, 3, 114–125. [CrossRef]

11. Wang, Z.; Dong, X.; Kang, Y.; Chen, H. Parallel SHA-256 on SW26010 many-core processor for hashing of multiple messages.
J. Supercomput. 2022, 79, 2332–2355. [CrossRef]

12. Reay, D.S. Digital Signal Processing Using the ARM Cortex M4; Wiley: Hoboken, NJ, USA; Blackwell: Hoboken, NJ, USA, 2015;
pp. 2–7.

13. van Berkel, K.; Heinle, F.; Meuwissen, P.P.E.; Moerman, K.; Weiss, M. Vector Processing as an Enabler for Software-Defined Radio
in Handheld Devices. EURASIP J. Adv. Signal Process. 2005, 2005, 906408. [CrossRef]

14. Damjancevic, S.A.; Matus, E.; Utyansky, D.; van der Wolf, P.; Fettweis, G.P. Channel Estimation for Advanced 5G/6G Use Cases
on a Vector Digital Signal Processor. IEEE Open J. Circuits Syst. 2021, 2, 265–277. [CrossRef]

15. Synopsys, Inc. ASIP Designer Website. Available online: https://www.synopsys.com/asip (accessed on 9 August 2020).
16. Lu, K.; Wang, Y.; Guo, Y.; Huang, C.; Liu, S.; Wang, R.; Fang, J.; Tang, T.; Chen, Z.; Liu, B.; et al. MT-3000: A heterogeneous

multi-zone processor for HPC. CCF Trans. High Perform. Comput. 2022, 4, 150–164. [CrossRef]
17. Razilov, V.; Matúš, E.; Fettweis, G. Communications Signal Processing Using RISC-V Vector Extension. In Proceedings of the 2022

International Wireless Communications and Mobile Computing (IWCMC), Dubrovnik, Croatia, 30 May–3 June 2022.
18. Jumana, M.; Mohamed, A.B.; Roel, J. Fast and Portable Vector DSP Simulation Through Automatic Vectorization. In Proceedings

of the 21st International Workshop on Software and Compilers for Embedded Systems (SCOPES ‘18), Association for Computing
Machinery, New York, NY, USA, 28 May 2018.

19. VanHattum, A.; Nigam, R.; Lee, V.T.; Bornholt, J.; Sampson, A. Vectorization for digital signal processors via equality saturation.
In Proceedings of the 26th ACM International Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ‘21), Association for Computing Machinery, New York, NY, USA, 17 April 2021.

20. Hu, Y.H.; Zhang, X.; Wang, S.Y.; Liang, W.; Li, K.C. Research on global register allocation for code containing array-unit dual-usage
register names. Concurr. Comput. Pract. Exp. 2023, 35, e7519. [CrossRef]

21. Zhao, X.L.; Chen, Z.Y.; Shi, Y.; Wen, M.; Zhang, C.Y. Kernel Code Automatic Generation Framework on FT-Matrix. J. Comput. Res.
Dev. 2023, 60, 1232–1245.

22. Wang, C.W.; Zhao, D.S. The Design of TMS320 DSP Simulation and Testing System. In Proceedings of the 2010 Second World
Congress on Software Engineering, Wuhan, China, 19–20 December 2010.

23. Ghassan, S.; Vahl, S.G.; Paul, M.; Theodore, D.; Austin, K. Register-Pressure-Aware Instruction Scheduling Using Ant Colony
Optimization. ACM Trans. Archit. Code Optim. 2022, 19, 1–23.

24. Kim, M.; Park, J.; Moon, S.M. Irregular Register Allocation for Translation of Test-pattern Programs. ACM Trans. Archit. Code
Optim. 2021, 18, 1–23. [CrossRef]

25. Xiong, N.; Han, W.; Vandenberg, A. Green cloud computing schemes based on networks: A survey. IET Commun. 2012, 6,
3294–3300. [CrossRef]

26. Wang, J.; Jin, C.; Tang, Q.; Xiong, N.; Srivastava, G. Intelligent ubiquitous network accessibility for wireless-powered MEC in
UAV-assisted B5G. IEEE Trans. Netw. Sci. Eng. 2020, 8, 2801–2813. [CrossRef]

27. Wan, R.; Xiong, N.; Hu, Q.; Wang, H.; Shang, J. Similarity-aware data aggregation using fuzzy c-means approach for wireless
sensor networks. EURASIP J. Wirel. Commun. Netw. 2019, 2019, 59. [CrossRef]

https://doi.org/10.1109/40.888703
https://doi.org/10.1016/j.compeleceng.2023.108827
https://doi.org/10.1109/ACCESS.2023.3316508
https://doi.org/10.3390/rs13204079
https://doi.org/10.1007/s42514-020-00057-2
https://doi.org/10.1007/s11227-022-04750-7
https://doi.org/10.1155/ASP.2005.2613
https://doi.org/10.1109/OJCAS.2020.3047007
https://www.synopsys.com/asip
https://doi.org/10.1007/s42514-022-00095-y
https://doi.org/10.1002/cpe.7519
https://doi.org/10.1145/3427378
https://doi.org/10.1049/iet-com.2011.0293
https://doi.org/10.1109/TNSE.2020.3029048
https://doi.org/10.1186/s13638-019-1374-8

Electronics 2024, 13, 1425 23 of 23

28. Zhang, S.; Hu, B.; Liang, W.; Li, K.C.; Gupta, B.B. A Caching-Based Dual K-Anonymous Location Privacy-Preserving Scheme for
Edge Computing. IEEE Internet Things J. 2023, 10, 9768–9781. [CrossRef]

29. Diao, C.; Zhang, D.; Liang, W.; Li, K.C.; Hong, Y.; Gaudiot, J.L. A Novel Spatial-Temporal Multi-Scale Alignment Graph Neural
Network Security Model for Vehicles Prediction. IEEE Trans. Intell. Transp. Syst. 2023, 24, 904–914. [CrossRef]

30. Kang, L.; Chen, R.S.; Xiong, N.; Chen, Y.C.; Hu, Y.X.; Chen, C.M. Selecting Hyper-Parameters of Gaussian Process Regression
Based on Non-Inertial Particle Swarm Optimization in Internet of Things. IEEE Access 2019, 7, 59504–59513. [CrossRef]

31. Cai, J.; Liang, W.; Li, X.; Li, K.; Gui, Z.; Khan, M.K. GTxChain: A Secure IoT Smart Blockchain Architecture Based on Graph
Neural Network. IEEE Internet Things J. 2023, 10, 21502–21514. [CrossRef]

32. Hu, W.J.; Fan, J.; Du, Y.X.; Li, B.S.; Xiong, N.; Bekkering, E. MDFC–ResNet: An Agricultural IoT System to Accurately Recognize
Crop Diseases. IEEE Access 2020, 8, 115287–115298. [CrossRef]

33. Wang, Y.; Fang, W.; Ding, Y.; Xiong, N. Computation offloading optimization for UAV-assisted mobile edge computing: A deep
deterministic policy gradient approach. Wirel. Netw. 2021, 27, 2991–3006. [CrossRef]

34. Shen, X.; Yi, B.; Liu, H.; Zhang, W.; Zhang, Z.; Liu, S.; Xiong, N. Deep variational matrix factorization with knowledge embedding
for recommendation system. IEEE Trans. Knowl. Data Eng. 2019, 33, 1906–1918. [CrossRef]

35. Shen, Y.; Fang, Z.; Gao, Y.; Xiong, N.; Zhong, C.; Tang, X. Coronary Arteries Segmentation Based on 3D FCN With Attention Gate
and Level Set Function. IEEE Access 2019, 7, 42826–42835. [CrossRef]

36. Li, Y.; Liang, W.; Xie, K.; Zhang, D.; Xie, S.; Li, K.C. LightNestle: Quick and Accurate Neural Sequential Tensor Completion via
Meta Learning. In Proceedings of the IEEE INFOCOM 2023—IEEE Conference on Computer Communications, New York, NY,
USA, 17–20 May 2023.

37. Liu, S.; Zhao, B.; Jiang, Q.; Wu, W.G. A Semi-Automatic Coarse-Grained Parallelization Approach for Loop Optimization and
Irregular Code Sections. Chin. J. Comput. 2017, 40, 2127–2147.

38. Kumar, S.A. Enhancing the Scope for Automated Code Generation and Parallelism by Optimizing Loops through Loop Unrolling.
In Proceedings of the 2020 Fourth International Conference on Inventive Systems and Control (ICISC), Coimbatore, India, 8–10
January 2020.

39. Gao, W.; Zhao, R.C.; Yu, H.N.; Zhang, Q.H. Loop Unrolling in Vectorized Programs. Comput. Sci. 2016, 43, 226–231, 245.
40. Rocha, R.C.O.; Porpodas, V.; Petoumenos, P.; Góes, L.F.W.; Wang, Z.; Cole, M.; Leather, H. Vectorization-aware loop unrolling

with seed forwarding. In Proceedings of the 29th International Conference on Compiler Construction (CC 2020), Association for
Computing Machinery, New York, NY, USA, 24 February 2020.

41. Yang, C.; Yang, X.; Xue, J. Improving the Performance of GCC by Exploiting IA-64 Architectural Features. In Proceedings of the
10th Asia-Pacific Conference on Advances in Computer Systems Architecture (ACSAC), Berlin, Germany, 24–26 October 2005.

42. Monniaux, D.; Six, C. Formally Verified Loop-Invariant Code Motion and Assorted Optimizations. ACM Trans. Embed. Comput.
Syst. 2022, 22, 1–27. [CrossRef]

43. Dong, Y.; Li, C.; Xu, Y. Implementation and effects of loop-array-prefetching optimization in GCC. Comput. Eng. Appl. 2016, 52,
19–25.

44. Stephenson, M.; Amarasinghe, S. Predicting Unroll Factors Using Supervised Classification. In Proceedings of the International
Symposium on Code Generation and Optimization (CGO ’05). IEEE Computer Society, Washington, DC, USA, 20–23 March 2005.

45. Li, G.; Hu, Y.; Qiu, Y.; Huang, W. Investigation on the Optimization for Storage Space in Register-Spilling. In Proceedings of the
Collaborate Computing: Networking, Applications and Worksharing, Berlin, Germany, 5 July 2017.

46. Monsifrot, A.; Bodin, F.; Quiniou, R. A Machine Learning Approach to Automatic Production of Compiler Heuristics. In
Proceedings of the 10th International Conference on Artificial Intelligence: Methodology, Systems, and Applications (AIMSA),
Varna, Bulgaria, 4–6 September 2002.

47. Wang, D.; Zhao, R.C.; Gao, W.; Li, Y.B. Loop unrolling method based on random decision forest. Comput. Eng. Des. 2018, 39, 1–6.
48. Li, W.L.; Liu, L.; Tang, Z.Z. Loop unrolling optimization for software pipelining. J. Beijing Univ. Aeronaut. Astronaut. 2004, 30,

1111–1115.
49. Liu, X.; Ding, L.; Li, Y.; Chen, G.; Du, J. Research of Register Pressure Aware Loop Unrolling Optimizations for Compiler. In

Proceedings of the 3 International Conference on Circuits and Systems (CAS 2018), Seoul, Republic of Korea, 14 November 2018.
50. Xie, A.; Hu, Y.; Cheng, A.; Tang, Z.; Liu, P.; Zhang, X. Advancing Matrix Decomposition Efficiency: A Study on FT-Matrix

DSP Based SVD Optimization. In Proceedings of the 2023 IEEE 10th International Conference on Cyber Security and Cloud
Computing (CSCloud)/2023 IEEE 9th International Conference on Edge Computing and Scalable Cloud (EdgeCom), Xiangtan,
China, 1–3 July 2023.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/JIOT.2023.3235707
https://doi.org/10.1109/TITS.2022.3140229
https://doi.org/10.1109/ACCESS.2019.2913757
https://doi.org/10.1109/JIOT.2023.3296469
https://doi.org/10.1109/ACCESS.2020.3001237
https://doi.org/10.1007/s11276-021-02632-z
https://doi.org/10.1109/TKDE.2019.2952849
https://doi.org/10.1109/ACCESS.2019.2908039
https://doi.org/10.1145/3529507

	Introduction
	Related Work
	The Loop Unrolling Approach
	Relationship to Prior Work

	Framework and Model
	Limitations of the Conventional Loop Unrolling Approach
	The Mathematical Model for LUAEMA
	Obtain the Set of Variables Aur
	Calculate the Unrolling Factor
	Update the Identified Set of Induction Variables
	Initialize Unrolling Copies for Rx and Ry

	Algorithms
	Identification Algorithm of Variables That Need to Create Unrolling Copies
	Algorithm for Calculating Unrolling Factor
	Code Transformation

	Case Study
	Performance Analysis
	Analysis of Timing Cycles for Algorithms
	Analysis of Unrolling Factors for Algorithms

	Conclusions and the Future Work
	References

