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Abstract: Mapping of link-level network topologies requires the processing of collected raw traces,
including the resolution of alias IPs of router interfaces and underlying subnetworks. There have
been several probing techniques for IP alias resolution along with an analytical resolution approach
which relies on the IP address assignment practices. The analysis of IP address assignments can also
reveal the underlying subnetworks, i.e., the link-level connectivity among the routers. In this paper,
we present a comprehensive Analytical Subnetwork and Alias IP Resolution (ASIAR) method that
relies on the analytical analysis of path traces to infer underlying subnetworks and router interfaces.
While ASIAR increases the efficiency of the analytical resolution method, it integrates additional
sanity checks and performs parameter adjustment based on the topology sampling characteristics
to improve the resolution accuracy. We explore how different network sampling issues affect the
analytical resolution, and analyze the accuracy of the ASIAR on synthetic and genuine networks.
Compared with the state-of-the-art analytical resolution method, ASIAR is able to increase both
precision and recall by fine-tuning the parameters of sanity checks used for analytical subnetwork
and IP alias resolution.

Keywords: Internet measurement; network topology; traceroute datasets

1. Introduction

The Internet grows with an interplay between competition and coordination of net-
work providers. As of July 2019, over 65 thousand Autonomous Systems (AS) connect
individuals, businesses, universities, and agencies while focusing on optimizing their
communication efficiency [1]. As each network is built by different AS for possibly dif-
ferent purposes, e.g., small local campus to a large transcontinental backbone provider,
a single or a subset of AS(es) is not representative of the whole Internet [2]. Measuring
and understanding Internet topology is essential for managing, securing, and enhancing
it, as it aids network practitioners in developing new protocols and services and helps
protect the national cyberinfrastructure. Researchers obtain sample network topologies by
generating measurement probes and collecting a large number of path traces to observe
characteristics of the underlying network [3,4]. Most topology measurement studies utilize
the well-known Internet debugging tool, traceroute [5], or its variants to collect path traces
from a set of vantage points [6–8]. Traceroute uses TTL-scoped probe packets to obtain
ICMP error messages from the routers on the path from a local system to a given remote
system. By collecting the source IP addresses from the incoming ICMP packets, traceroute
returns the path as a sequence of IP addresses. Network topology is then built as a graph
of router adjacency. In order to facilitate measurement studies, several research groups
have developed systems to collect the required information from geographically diverse
vantage points [9]. The measurement platforms include the Archipelago measurement
infrastructure of CAIDA [10], RIPE Atlas [11], measurement-lab [12], and the Internet
Mapping System [13].
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After collecting topology data, one needs to process this data to obtain the underlying
network topology [14]. Topology construction tasks include: (i) resolving unresponsive
routers that are marked by asterisks (‘*’) in trace output, since some routers do not re-
spond to the measurement probes [15,16], (ii) finding IP addresses belonging to the same
router as routers may appear with different IP addresses in different path traces [17,18],
and (iii) identifying underlying physical subnetworks among IP addresses that reveal the
link-level connectivity [19]. While the term subnet is used to refer to both the connection
medium and the IP address range, we use the term subnetwork to refer to the connection
medium and the term subnet to refer to the specific IP address range assigned to a connec-
tion medium (i.e., a subnetwork). Inaccuracies in topology collection and construction may
significantly affect the accuracy of the results obtained in the measurement study [20,21].
In general, finding the ground truth for the network topology measurement is very chal-
lenging [22]. When handling topology resolution tasks, one needs to make decisions based
on the observations to infer the underlying connectivity. As the earlier decisions affect the
later ones, obtaining the most likely topology under various conditions has been shown to
be NP-hard [23]. Several approaches have been proposed to reduce the set of hypotheses in
the decision making of the resolution tasks [24–26].

In this paper, we present the Analytic Subnetwork and IP Alias Resolution (ASIAR)
approach, which performs link and router inference using the common IP assignment prac-
tices. ASIAR enhances both the efficiency and accuracy of the analytical subnetwork and
IP alias resolution methods. We perform a detailed analysis of the resolution completeness
and accuracy using synthetic networks as the ground truth. We analyze different topology
sampling issues on the synthetic network to understand how network sampling affects the
resolution results. The results indicate that differing sample networks require a different
set of sanity checks and parameters to yield the best resolution performance. Hence, we
introduced an evolutionary computing approach to select the utilized sanity checks and
parameters on synthetic networks, which are generated based on the provided topology
measurements. Finally, we analyze the performance of ASIAR on a genuine network as the
ground truth.

In this study, we showed that one-fits-all approach is not suitable for analytical alias
resolution as different topology samples contain varying level of detail. Prior analytical
alias resolution tools utilized a single set of toolset for any network. Instead, ASIAR selects
the sanity checks and optimizes the parameters based on synthetic networks of similar
characteristics.

The contributions of this paper are (i) an improved and efficient analytical IP alias
resolution method, (ii) an improved subnetwork inference method, (iii) a systematic analy-
sis of factors influencing analytical subnetwork and IP alias resolution approaches, (iv) a
detailed analysis of the resolution performance with respect to different sampling ap-
proaches, (v) an integrated analytical resolution approach that considers the sampled
topology dataset characteristics to optimize resolution performance, and (vi) an automated
parameter optimization using evolutionary computing on a synthetic network to obtain
optimal parameters for the subnetwork and IP alias resolution of the given network. The
ASIAR source code and experimental data are available at https://github.com/netml/asiar
(accessed on 7 April 2024).

In the rest of the paper, Section 2 summarizes the related work. Section 3 provides
the background on the analytical subnetwork and IP alias resolution approaches. Section 4
describes the proposed analytical subnetwork resolution approach, and Section 5 details
the improved analytical IP alias resolution. Section 6 presents the automated parame-
ter optimization of ASIAR using evolutionary computing on synthetic networks and the
synthetic network generation methodology utilized for the evaluation of resolution param-
eters. Section 7 shows the evaluation of different analytical resolution conditions and their
contribution to handling various network sampling issues. Section 8 concludes the paper.

https://github.com/netml/asiar
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2. Related Work

In this section, we present related work on IP alias and subnetwork resolution to
produce link-level topologies from a sampled set of path traces.

2.1. IP Alias Resolution

Mercator [27] and iffinder [28] send a probe packet to a destination IP1 and if the
received ICMP response is from an IP2, they assume both IPs to be aliases. However, this
implementation is not common as most routers copy the IP address from the original packet.
In [29], we identified only a few IP aliases using this approach, as many routers reply with
the interface address targeted by the probe packet. The DNS-based method relies on the
similarities in the hostnames of routers and works when an AS uses a systematic naming
convention in assigning DNS names to router interfaces [30]. DNS can be utilized only
when a systematic naming scheme is used by the AS and the naming template is present in
the database. Another approach is to use the record route option of the IP protocol, which
records up to nine IPs of routers the packet has traversed. The recorded interfaces are
usually the outgoing interfaces while traceroute returns the incoming interfaces [28,31]. In
earlier experiments, we showed that the record route based method is not very successful
as routers generally dropped packages with the record route option set [29].

A commonly utilized approach relies on the IP identification field value in the IP
protocol header of the returned ICMP error messages [3]. Typically, the IP identification
field of IP header is implemented as a monotonically increasing counter [32]. Given two
IP addresses, the ally tool sends successive probe packets to each of the two addresses,
and a third packet to the address that responds first. If the responses have IP identification
values in sequence with a small difference in between, they are likely to be aliases. Since
this method requires O(n2) probes to test all possible pairs, several approaches have been
deployed to reduce the number of probes [17,32,33]. Moreover, as some routers do not
respond to certain probes, researchers have proposed alternative probes to increase the
elicited responses from routers [34]. Pamplona-traceroute [8] integrated IPID-based alias
resolution into topology discovery. RadarGun introduced an analysis of IPID velocity over
time rather than pairwise probing to reduce analysis overhead [17]. More recently, the
MIDAR tool has developed a parallelized version of the method by analyzing the change
in velocity of IP identifiers [35]. Ref. [36] presents a method to improve IP alias resolution
and dual-stack inference by using multiple protocols such as SSH and BGP, which respond
to unsolicited requests with unique device identifiers after a TCP handshake. Ref. [37]
introduces an alias resolution tool leveraging ICMP rate limiting for identifying router
interfaces as aliases. It uses ICMP probes and machine learning to improve the accuracy
of alias resolution. Ref. [38] presents a method improving router IP alias resolution
by using path length comparisons from traceroutes, avoiding reliance on router-specific
characteristics.

We introduced an Analytical Alias Resolution (AAR) [39] and complemented it with
probing in Analytical and Probe based Alias Resolution [18]. The analytical approach relies
on common IP address assignments to infer the underlying IP aliases (see Section 3.3 for
details). Kapar [40] improved analysis overhead of the approach by removing conflict sets.
Additionally, PalmTree [41] analyzes distance of IP addresses to vantage points to infer
the underlying IP aliases. In [42], the authors used a fingerprinting process to determine
the behavior of IPs that are alias candidates and determine which of the IP alias resolution
techniques (i.e., TreeNet, MIDAR, and Kapar) to use for the candidate subsets.

As probing approach is orthogonal to the analytic resolution, it is important to utilize
both in IP alias resolution [18]. Hence, one should use the state-of-the-art probing method,
i.e., currently MIDAR, along with the introduced analytical approach of ASIAR.
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2.2. Subnetwork Resolution

Subnetwork inference is pivotal for unveiling the underlying link-level connectivity of
routers across point-to-point or multi-access links, aiding in the comprehensive mapping
of internet architecture (refer to Section 3.2 for detailed insights).

On a ground truth sample of Internet2 backbone [19], we had an error rate of 7% in
detecting underlying links using the analytical approach. The analytical approach does not
require probing to elicit information from routers but benefits from IP address assignment
practices. Additionally, it may be utilized on historical datasets where probing based IP
alias resolution cannot be applied. TraceNET [6] implemented the approach as a stand-
alone subnetwork tracing tool similar to traceroute and exploreNET [43] performed subnet
level mapping of network topologies. TreeNET [44] further improved subnet discovery
using the tree-like discovery of the networks from a remote vantage point.

3. Background on the Analytical Resolution Approaches

In this section, we first present the common IP address assignment practices, and then
show how we utilize it to infer the underlying subnetworks [19] and IP alias resolution [18].

3.1. IP Address Assignment Practices

Networked devices are interconnected using a point-to-point or a multi-access link.
Devices connected over the same medium form a subnetwork and share the same link-layer
collision domain [45]. Devices on the same subnetwork are assigned IP addresses from
the same subnet prefix. The addressing of device interfaces usually adheres to the IETF
guidelines, particularly the RFC-2050 Internet Registry IP Allocation Guidelines. An AS
obtains a range of IP addresses with the same subnet prefix, which is divided into smaller
chunks to be assigned to individual interfaces connected to the same subnetwork. The
hierarchical assignment helps in reducing the routing table sizes. We utilize this IP address
assignment practice to infer the subnetworks and resolve IP aliases.

The smallest subnetwork is a point-to-point link with two device interfaces and needs
a /30 or a /31 subnet (the latter is introduced in RFC 3021). Larger subnet ranges (e.g.,
/29 or bigger) would waste IP addresses, a scarce commodity at IPv4, and hence, they are
usually avoided for point-to-point links. On the other hand, multi-access links connect
more than two devices and require a subnet range that is /29 or larger. For instance,
in a /29 subnet address, we have 2(32−29)− 2 = 6 IPv4 addresses for assignment, where
the first one is used as the network address and the last one is used as the subnetwork
broadcast address.

In general, a subnetwork with k devices needs a /x subnet address, where x =
32− ⌈log2(k + 2)⌉. The first x bits of the IP addresses denote the subnet address, and
the last 32 − x bits identify the interface connected to the subnetwork. For instance,
192.168.0.0/28 subnet has the last four bits to identify the individual IP addresses of
the device interfaces. These four bits can identify at most 14 interfaces connected to a
subnetwork. The remaining two IP addresses, namely 192.168.0.0 and 192.168.0.15, are
the subnetwork and the broadcast addresses, respectively, and typically are not assigned
to interfaces.

3.2. Subnetwork Inference

Subnetwork resolution identifies the underlying connectivity among router interfaces
to build link-level topologies from collected path traces [19]. Routers are connected over
point-to-point or multi-access links, and the subnetwork resolution helps in identifying
the underlying link structure. In the subnetwork resolution task, the IP addresses in a
dataset are analyzed to infer the subnetwork relations among them. This inference also
helps to detect the link-level connectivity between IP addresses, denoted with↔ in the rest
of the paper.

As an example, consider four routers A, B, C, and D, shown in Figure 1a, that are
connected to each other via a multi-access link. Assume that the collected set of path traces
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includes the A–B link and the B–C link and no path trace at hand include the A–C link or
any link between the router D and others from the subnetwork. In this case, a link-level
map that does not consider the subnetwork relation among these IP addresses will yield
a subgraph, as shown in Figure 1b, which is considerably different from the underlying
topology. A careful study of the IP addresses may detect the subnetwork relation between
the router IPs and improve the resulting map with the inclusion of the missing links, as
shown in Figure 1c.

(a) Multi-access link 

C D

A B

C D

A B

(c) Point-to-point model (b) Observed topology 

C D

A B

Figure 1. Subnetwork resolution.

The goal in subnetwork resolution is to identify multiple links that appear to be
separate and combine them to reveal their corresponding single-hop connection medium
(i.e., point-to-point or multi-access link) [19]. Subnetwork resolution also finds the missing
links between IP addresses that fall in the same subnetwork range but were not observed
in the path traces. For instance, in [29], subnetwork identification helped with the addition
of 16% more links that were not directly found in the path traces. Hence, the successful
inclusion of subnetwork relations among the routers yields topology maps that are closer
to the sampled segments of the networks at the link layer.

In order to identify link-level topology map from path traces, we need to analyze the
measurement dataset to infer subnet relations among the IP addresses. The IP address
assignment practices summarized in the previous subsection led to a subnet relation among
IP addresses connected to the same physical subnetwork. We can infer subnetworks
where IP addresses can be grouped into a subnet address range under an address prefix
of length /x. On the other hand, any two IP addresses can be grouped into an address
range for a sufficiently large subnet range (i.e., an amply small /x prefix length). Hence,
we need to look for evidence in measurements that two IP addresses are not in the same
physical subnetwork.

Each observed IP address belongs to some subnet where all interfaces on the subnet
have IP addresses with the same maximal x bit prefix. IP addresses of the subnet interfaces
have the same x bit prefix and no other interface IP address has the same x bit prefix. Note
that a loopback IP address has a subnet of /32, as it needs only one IP address to identify
the device. Based on this observation, we introduced an iterative approach to identify
subnetworks in [19]. We first form all candidate /x subnets from the dataset by combining
the IP addresses whose first x bits match. Next, we recursively construct smaller subnets
(e.g., /x, /(x + 1), . . ., /31 subnets) while there is lack of evidence for a physical subnetwork
among the subnet IP addresses. We need to detect and prune candidate subnets that do not
correspond to physical subnetworks, and, in [19], we developed a set of complementary
conditions to verify subnetworks, shown below.
Condition 1—Subnetwork Accuracy: Given a loop-free path trace, two or more IP ad-
dresses from the same subnetwork cannot appear in any path trace without having a
successor/predecessor relationship with each other. That is, IP addresses in a subnetwork
(or their aliases) should appear consecutively if they appear in the same trace. For instance,
consider the sample topology in Figure 2, where a · · · d are end-hosts and A · · · E are
routers. Without the knowledge of network topology, a path trace from a to b, i.e., (2, 10,
4), will indicate that interface IPs 2 and 4 cannot be in the same subnetwork. as they are
two hops away of each other in a trace. While RFC 1812 states that ICMP error messages
should be sent with the IP address of the outgoing interface toward the vantage point,
another interface’s IP might be returned. This practice could yield path traces with two
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IP addresses of the same subnetwork appear consequently, such as interfaces 9 and 10,
if router A was to reply with IP address of 9 instead of the expected IP of 2. Hence, the
accuracy condition allows a subnetwork with IP addresses that appear consecutively in a
trace but not farther apart.

E

C

D

A

B

a

b

c

d

1 2

4 5

9

10

11 21

24

26

28 29

30 31

Figure 2. Sample network with point-to-point and multi-access links connecting.

Condition 2—Subnetwork Distance: Given a candidate /x subnetwork, IP addresses of the
subnetwork should be at a similar distance to vantage points. For instance, for the same
trace between a to b in Figure 2, we would observe that interface IP 2 is at one hop to host a
but interface IP 4 is three hops away.
Condition 3—Completeness: Completeness is a measure that determines how many of
the subnet IPs are observed in the collected traces. The condition ignores candidate
subnetworks that have less than a given fraction (e.g., one quarter or half) of their IP
addresses present in the collected dataset. A /x subnet can include up to 232−x − 2 IP
addresses and observing a sparse set of IP addresses in a subnet may lack evidence to
verify the conditions 1 or 2. Without this requirement, it would be easy to form a large
subnetwork using a few IP addresses. However, with only a few observances, it is difficult
to verify the existence of a physical subnetwork. Depending on the completeness ratio,
this condition may cause us to discard a real subnetwork of size, say /25, and instead, to
consider one or more smaller subnets that satisfy the completeness criteria.

After assessing the previous conditions, we ignore candidate subnetworks that are
a subset of bigger candidate subnetworks. IP addresses of a /x subnet could appear in a
smaller (e.g., /(x + 1), /(x + 2), etc.) subnet, and we accept the largest one as valid. The only
exception is when an IP address appears to be in both a /30 and a /31 candidate subnets.
In this case, /31 subnetwork is chosen as the valid one.

3.3. IP Alias Identification

As routers have multiple interfaces, each interface typically has a unique IP address.
Note that an interface could borrow another interface’s IP address through an IP unnum-
bered mechanism [46]. Additionally, a globally unique loopback address might be assigned
to the router using a /32 subnet [47]. In a given set of path traces, a router may appear
on numerous path traces with different IP addresses. Therefore, there is a need to identify
and group IP addresses belonging to the same router, denoted with ≡. Without the IP alias
resolution, the resulting network graph may be significantly different from the underlying
topology [20]. For instance, in Figure 3a, each router has multiple interfaces with unique
IP addresses. Collecting traces between all pairs of X, Y, and Z end systems, we would
obtain a sampled topology as in Figure 3b without the alias IP resolution. We need to
identify IP aliases for each router and cluster them as shown with the green circles. Several
studies pointed out the impact of incomplete IP alias resolution in certain measurement
studies [20,48]. Varying the resolution success rate, we showed that the IP alias resolution
process has a significant impact on the observed topological characteristics [20].
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Figure 3. IP aliases in a sampled topology.

We introduced an analytical IP alias resolution methodology based on the IP address
assignment practices [18,39]. After inferring the underlying subnetworks, we can identify
IP aliases when multiple traces cross the same subnetwork from different directions. For
instance, given a trace from a to b and b to a in Figure 2, we would have traces of (2, 10, 4)
and (5, 9, 1). Reverse alignment of the traces would lead to:

(2, 10, 4) trace from a to b
(1, 9, 5) reversed trace from b to a

This alignment, dictated by the subnetwork relation among 2↔1, 10↔9, and 4↔5, not
only reveals alias pairs of 2≡9 for router A and 10≡5 for router B, but also allows us to infer
IP aliases from path traces rooted in the subnetwork relation between IP addresses of trace
segments. Moreover, while the alignment of reversed trace routes is possible based on these
subnetwork relations, there exist specific conditions that help negate any misalignments.
This method significantly improves our understanding of network topology by accurately
identifying routers and their connections within the vast expanse of the Internet, thereby
enhancing network management and security measures.

As there would be conflicting observations, the processing order of aliases would
influence the results. Hence, during IP alias resolution, we process IP aliases introduced
by subnetworks with a higher completeness ratio, as they have a stronger verification
compared to a subnetwork with lower completeness. For subnetworks with the same com-
pleteness, priority is given to the ones involving more path traces. Note that, by definition,
all /31 and /30 subnets are 100% complete and are processed before other subnets.
Condition 4—IP Alias Accuracy: Assuming that path traces are loop-free to start with,
the inferred IP alias pairs should not introduce any routing loop in any of the path traces.
Additionally, no pair of subnetwork IP addresses should be set as aliases. While there
could be multiple interfaces of a device connected to the same subnetwork to increase its
throughput, this is an extremely rare practice. Note that in a recent study [49], we observed
that 4.4% of path traces have a routing loop within an autonomous system, but we assume
path traces to be loop-free when IP aliases are introduced.
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Condition 5—IP Alias Distance: Given two IP addresses that are candidate aliases for a
router, they should be at the same distance to the vantage points. The distance check helps
to improve the accuracy of the resolution. Different from subnetwork distance, in the IP
alias resolution, we require IPs to be at the same distance.
Condition 6–Common Neighbor: Given two IP addresses that are candidate aliases (e.g.,
2 and 9 in Figure 2) for a router (i.e., A) because of subnetwork relation on one side of the
alignment, one of the following rules should hold for the other side of the alignment in
order to set the IP pair as an alias:
(i) They have a common neighbor in any path trace;
(ii) There exists a previously inferred IP alias pair (e.g., 5≡10) such that 5 is a successor

(or a predecessor) of 2 and 10 is a predecessor (or a successor, respectively) of 9;
(ii) The involved path traces are aligned such that they form two subnetworks, one at

each side of the router.
This rule helps to avoid misalignment of a subnetwork of a multi-access link as

multiple pairs of subnetwork IPs could be aligned. For instance, a trace of (2, 10, 4) from a
to b could be aligned with a trace of (28, 21, 9, 1) from c to a as follows:

(2, 10, 4) trace from a to b
(1, 9, 21, 28) reversed trace from c to a

In this alignment, we have two subnetworks 2↔1 and 10↔9. Since alias pair 2≡9 is
between two subnetworks, we could set it correctly. However, 10blue≡21 pair has only
one neighboring subnetwork between 10blue↔9, while the other side lacks an alias (i.e.,
between 4blue≡28) or a subnetwork (i.e., between 4blue↔21). Hence, this condition would
avoid incorrectly setting 10blue≡21 as an alias pair.

4. Analytic Subnetwork Resolution

In this study, we extend Ref. [19] by revising the conditions that are utilized for
subnetwork resolution. The distance condition that required IP addresses of a subnetwork
to be at similar distances was employed with respect to vantage points. In this study, we
extend the distance condition to be with respect to the reference points, which include
ingresses and egresses of the AS in addition to any vantage point that might be in the AS.
This allows for a better granularity in tabulating IP distances as it eliminates trace segments
through the neighboring ASes. Given that AS-level paths are much more dynamic than
router level paths within an AS [49], this change reduces the impact of path dynamics on
the distances.

Resolving IP aliases of ingresses and egresses would help in reducing the number of
columns in the distance matrix and more importantly merge the information of IPs of the
same ingress or egress router. Hence, to improve resolution accuracy and computation
efficiency, one should utilize the IP identifier-based probing technique to resolve alias
IPs before running the analytical subnetwork resolution method. We also update the
IP completeness condition, which requires a certain percentage of subnetwork IPs to be
observed, to use thresholds rather than a fixed value.

Line 1 parses traces into IPs array of length numIP and Distances of length NumRP
by NumIP data structures. ParseIPs obtains trace segments of the given AS# based on the
BGP announcements, which include subnetwork regions from the AS. If the trace did not
start from a vantage point within the AS, the first IP of the trace segment is considered as an
ingress point. Algorithm 1 presents the pseudocode for the identification of subnetworks.
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Algorithm 1 SubnetworkIdentification(Traces, BGP, AS#)

1: (IPs, Dists)← ParseIPs(Traces, BGP, AS#)
2: IPs[0].bound← true
3: IPs[numIP].bound← true
4: for i← 2 to numIP do
5: IPs[i-1].bound← false
6: if Mask(IPs[i-1], IPs[i]) < 31 then
7: for j← 0 to numRP do
8: if |Dists[j][i]−Dists[j][i-1]| > 1 then
9: IPs[i-1].bound← true

10: break
11: end if
12: end for
13: end if
14: end for
15: GroupDistanceCheck(IPs, Dists)
16: CompletenessCheck(IPs, Dists)
17: Subnets← SortedSubnets(IPs)

Similarly, the last non-AS IP, if any, is assumed to be an egress point. For example,
in a trace of (A, B, C, D, E, F, G) where IP addresses C, D, and E belong to the AS, IP B
is considered an ingress of the AS, while IP F is marked as egress. The distances of all
IPs within the trace segment is updated with respect to the Reference Points, which are
(i) vantage or ingress point and (ii) egress point if any.

The algorithm then considers every consecutive pair of IPs and checks whether they
should be in separate subnetworks based on the distances lines 3–8). As a subnet mask
of /31 indicates a point-to-point link, IPs within a /31 subnet are not separated (line
5). If for any reference point, the distance between IPs is more than one hop, then the
IPs are separated (lines 7–8). After separating consecutive IPs that could not be in the
same subnetwork, the algorithm checks whether the IPs within each subnetwork group
satisfies the distance condition using the GroupDistanceCheck, presented in Algorithm 2.
After identifying potential subnetwork boundaries, it checks if the blocks of IPs satisfy the
completeness condition, presented in Algorithm 3. Finally, subnets are ranked by their
completeness and observation frequency (line 11).

Algorithm 2 checks if IPs within a candidate subnetwork satisfy the distance condition
as a group or whether they should be separated into multiple subnetworks. It first identifies
the current group’s boundaries (lines 1–3) and then analyzes the IP block with respect
to each reference point (lines 5–6). If the distances between any two IPs are greater than
one hop for any reference point, the IPs are separated into different subnetworks (line 10).
The Mask function in line 11 identifies the maximal subnet mask that would separate the
conflicting IPs. The loop in lines 13–15 determines the boundary between both IPs. The
loop in lines 17–19 identifies the boundary between the smaller IP and the upper region
of the IP list so that a larger subnet does not contain both IPs. Similarly, the loop in lines
21–23 identifies the boundary between the larger IP and the lower region. If there is any
division while checking the current IP block, the outer loop backtracks with a new end
position (line 25). If there is no division within the current IP block, then the outer loop
advances to check the next IP block for the distance condition (line 26).
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Algorithm 2 GroupDistanceCheck(IPs, Dists)

1: start← 0
2: end← 0
3: while start < numIP do
4: while !IPs[++end].bound do
5: goBack← false
6: for j← [0, RP) do
7: for i← [start, end] do
8: min← ∞; max← 0
9: if Dists[j][i] < min then

10: min← Dists[j][i]; minP← j
11: end if
12: if Dists[j][i] > max then
13: max← Dists[j][i]; maxP← j
14: end if
15: if max - min > 1 then
16: match← Mask(IPs[minP], IPs[maxP])
17: from← max(minP, maxP); to← from
18: while ++ to ≤ end do
19: if Mask(IPs[from], IPs[to]) ≤ match then
20: IPs[to− 1].bound← true; break
21: end if
22: end while
23: to← from
24: while −− to ≥ minP do
25: if Mask(IPs[from], IPs[to]) ≤ match then
26: IPs[to].bound← true; break
27: end if
28: end while
29: from← to
30: while −− to ≥ start do
31: if Mask(IPs[from], IPs[to]) ≤ match then
32: IPs[to].bound← true; break
33: end if
34: end while
35: goBack← true
36: break
37: end if
38: end for
39: if goBack then break
40: end if
41: end for
42: end while
43: if !goBack then start← end + 1; end← start
44: end if
45: end while

Algorithm 3 checks for the completeness condition of subnetworks to assure that they
have a sufficient number of IPs observed in the trace dataset. For each subnetwork that is
not point-to-point (i.e., /30 or /31), the algorithm counts the number of observed IPs from
the IP block with compl (line 7) and the number of observed IPs for each reference point
with refCompl (lines 8–13) variables. If either is below the selected thresholds, it divides
the IP block into two subnets (lines 14–17). The observation threshold checks the number
of IP observations with respect to a particular reference point.
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Algorithm 3 CompletenessCheck(IPs, Dists)

1: start← 0
2: end← 0
3: while start < numIP do
4: while !IPs[++end].bound do
5: goBack← false
6: mask← Mask(IPs[start], IPs[end])
7: if mask < 30 then
8: matches← 0; compl← (end− start)/2(32−mask) − 2
9: for i← [0, RP) do

10: obs← 0
11: for j← [start, end] do
12: if Dists[j][i] ̸= ∅ then obs ++
13: end if
14: end for
15: if obs/(end− start) > obsThld then matches ++
16: end if
17: end for
18: refCompl← matches/(31−mask)
19: if compl < compThld | refCompl < refThld then
20: for i← (start, end] do
21: if Mask(IPs[start], IPs[i]) ≤ mask then
22: IPs[i− 1].bound← true;
23: goBack← true
24: break
25: end if
26: end for
27: end if
28: end if
29: if !goBack then start← end + 1; end← start
30: end if
31: end while
32: end while

5. Analytic IP Alias Resolution

Analytic and Probe-based Alias Resolver (APAR) [18] utilizes the common IP address
assignment scheme (RFC 2050) to infer IP aliases. Given a set of path traces, APAR uses
inferred subnets to align symmetric segments of different path traces and identifies alias
pairs among involved IP addresses. Path asymmetry is a commonly observed characteristic
on the Internet. However, the approach does not require complete path symmetry and relies
on symmetric path segments to resolve IP aliases. Additionally, APAR uses a lightweight
probing component, i.e., O(n) probes, to improve its accuracy. APAR is a scalable approach
that could work with historical datasets and produced IP aliases that had a false positive
rate of less than 10% [18].

As pointed out in the Kapar enhancement [32], original APAR implementation had
high storage requirements. In this study, we modified the neighbor matching to focus on
neighboring subnets, as shown in Figure 4. The red arrows indicate a subnetwork relation
between IP addresses from two different path segments of (IP1, IP2) and (IPb, IPa), and the
green circle indicates the alias IPs. In the proposed modification, we identify IP aliases that
are between two subnets without requiring to record the triplets as in [32]. We also included
additional sanity checks as indicated below, where a subset of the modes is selected based
on the sampled network topology characteristics.

These changes facilitate the elimination of the necessity to retain complete path traces
in memory for IP alias resolution, significantly enhancing the processing of candidate
aliases. When evaluating an alias pair, as illustrated in Figure 4, there exists an alternative
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alignment where IPa is an alias to IP2, necessitating extra conditions to ascertain the
most plausible alignment for accurately identifying the correct alias pair. This strategic
refinement in methodology not only streamlines the data management process but also
elevates the precision of network mapping by discerning the true connections between IP
addresses, thereby refining our approach to network analysis and security.

IP1 IP2

IPa IPb

Figure 4. IP aliases.

Algorithm 4 identifies IP aliases from identified subnetworks, starting with ParseEdges
to collect AS edges and path trace sources and destinations (line 1). This initial step
forms the groundwork for a deeper analysis into the network’s structure, enabling the
algorithm to efficiently uncover IP aliases by understanding how various network segments
interconnect. Edges contain the set of edges where e = (IP1, IP2) and both IP1 and IP2
belong to the BGP announcements of the AS. SortEdges sorts the edges by the geometric
mean of the completeness and the reference completeness of the subnetworks of the IPs on
both sides of the edge (line 2). Depending on the number of sources and destination IPs of
the network, the modes which are to be considered when performing IP alias resolution
is determined (line 3). The modes depending on the network characteristics as explored
in Section 7. For each mode to be considered (line 4), the edges are iterated one by one to
determine IP aliases (line 5). For each edge e1 considered, the algorithm finds the edges
epairs

1 to be compared to e1 (line 6). The edges in epairs
1 have at least one IP which is in the

same subnetwork as one of the IPs of e1.
SortEdges then sorts the edges in epairs

1 by the geometric mean of the completeness and
the reference completeness of the subnetworks of the IPs on both sides of the edge (line 7).
For each edge in epairs

1 (line 8), the algorithm initially checks which of its IPs are in the same
subnetwork as IP1 of e1. The IP that is in the same subnetwork as IP1 is named IPa, and the
other one is named IPb (lines 9–12). Next, potential IP aliases are formed as pair1 and pair2
(line 13). Note that, depending on the alignment of subnets in Figure 4, we can have a pair
of aliases as IP1≡IPb or IP2≡IPa.

The algorithm then runs the DistanceMatch for pair1 and pair2 in line 14. Distance-
Match function checks and returns the number of reference points that observed the IPs
of the pair at the same distance. If any of the reference points reach the IPs at different
hops, the function returns f alse. If none of the reference points observe both of the IPs,
the function returns null. Note that if either of the IPs is already aliased with another IP,
the combined distances are utilized for distance check. In line 15, the algorithm runs the
NonConflictMatch for pair1 and pair2. NonConflictMatch function checks whether or not
the IPs in the pair were at conflict. Then, the algorithm calls the CheckAlias function along
with the modes to check whether either of the potential alias pairs satisfies the conditions
and is to be added to the Aliases list.
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Algorithm 4 AliasResolution(Traces, IPs, Dists, Subnets)

1: (Edges, Sources, Destinations)← ParseEdges(Traces)
2: SortEdges(Edges, Subnets)
3: Modes← findModes(IPs, Sources, Destinations)
4: for ∀mode ∈ Modes do
5: for ∀e1 ∈ Edges do
6: epairs

1 ← GetSubnetEdges(Edges, eIP1
1 , eIP2

1 )

7: SortEdges(epairs
1 , Subnets)

8: for ∀e2 ∈ epairs
1 do

9: if inSub(eIP1
1 , eIP1

2 )|inSub(eIP2
1 , eIP2

2 ) then
10: IPa ← eIP1

2
11: IPb ← eIP2

2
12: else
13: IPa ← eIP2

2
14: IPb ← eIP1

2
15: end if
16: pair1 ← (eIP1

1 , IPb)

17: pair2 ← (eIP2
1 , IPa)

18: (pairdist
1 , pairdist

2 )← DistanceMatch(pair1, pair2)

19: (pairnoConf
1 , pairnoConf

2 )← NonConflictMatch(pair1, pair2)
20: if CheckAlias(Aliases, mode, pair1, pair2) then
21: Aliases← Aliases ∪ pair1
22: else if CheckAlias(Aliases, mode, pair2, pair1) then
23: Aliases← Aliases ∪ pair2
24: end if
25: end for
26: end for
27: end for

Table 1 outlines modes for validating candidate IP alias pairs using conditions such as
IP alias sanity checks, comparing potential pairs on distance and accuracy. Unconsidered
conditions are marked with a ‘-’. The table specifies necessary conditions for each mode, af-
fecting performance as analyzed in Section 7. Other combinations, not offering advantages
in simulations, were excluded from the discussion.

Table 1. IP alias resolution modes using different condition combinations.

Mode Common Neighbor Distance Accuracy
Paira Pairb Paira Pairb

1 Subnet ✓ × ✓ ×
2 Subnet ✓ × or ? ✓ ×
3 Subnet ✓ × - -
4 Subnet ✓ × or ? - -
5 Subnet - - ✓ ×
6 Alias ✓ × ✓ ×
7 Alias ✓ × or ? ✓ ×
8 Alias ✓ × - -
9 Alias ✓ × or ? - -

10 Alias - - ✓ ×
11 - ✓ - - -
12 - - - ✓ -
13 - ✓ - ✓ -
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Recall that when considering an alias IP pair due to a subnet relation, there are two
alignments, resulting in two possible IP alias pairs. Hence, we need sanity checks (i.e.,
common neighbor, distance, and accuracy conditions) to determine which is more likely.
The common neighbor condition indicates whether a subnet or an alias is needed for the
other side of the edge. The column indicates whether the pair of IP addresses considered
as an alias is wrapped within another subnet or an alias. In case of point-to-point links,
the common neighbor requirement is ignored, as there is only one pair of IP addresses
within a subnet to be considered for the alignment and there is only one alignment of the
subnet IPs in any trace they are involved with. Modes 1–5 require the IPs both sides of the
pair to be in a subnet (as in Figure 4); modes 6–10 require the IPs on the other side to have
an alias as a neighbor (e.g., an alias of IP2 is observed while IP2 is not necessarily in the
same subnetwork as IPb in Figure 4); and modes 11–13 ignore the neighbor condition for
point-to-point links.

The distance condition checks the potential aliases of both IP pairs, i.e., possible
alignments due to a subnetwork, for a distance match. In contrast to previous research,
this study employs ingress and egress points as references, based on a detailed analysis
that demonstrated their greater reliability compared to a vantage point. In particular, in a
recent study [49], we showed that intra-AS paths are highly dynamic while inter-AS paths
are more consistent. There are three possibilities with the distances of candidate alias IPs;
(i) If potential IP aliases are observed at different distances by one or more reference points,
the distance condition is not met and is marked as ‘×’, (ii) If any of the reference points
do not observe both of the IPs at the same time, the distance is unknown and marked as
‘?’; (iii) if the distance condition is met, indicated with a ‘✓’, where the distance of both IP
addresses are the same for at least one reference point and there is no reference point that
yields conflicting distances.

Finally, the accuracy condition checks if aliased IPs appear in the same trace consider-
ing the whole trace dataset. Hence, either there is a conflict due to IPs appearing in any of
the traces, or they do not appear together in any of the traces.

In this paper, different from earlier studies, we implemented different combinations
of sanity checks and developed an evolutionary algorithm that perform a subset of them
based on the characteristics of the given network topology. In particular, we realized that
different sample topologies required a different set of checks to optimize both precision and
recall. Hence, rather than performing all sanity checks simultaneously, using evolutionary
computing, we explore combinations of the conditions and different ordering of the modes
to increase IP alias resolution performance, as detailed in the next section.

6. Network-Specific Parameter Optimization

Internet topology measurements obtain topologies with various density of path traces,
and hence, a single parameter is not suitable in all cases. In order to assure the most optimal
parameters to be used with every network that ASIAR is run on, we use evolutionary
computing to automatically detect the best parameters on a synthetic network that mimics
the input network generated by SONET [50,51].

We first determine the number of sources, destinations, and IPs within the input
network. Then, we generate a network with the same network size to simulate traces on
the input network using a similar number of sources and destinations. We run ASIAR on
the sampled topology from the synthetic network with different parameter sets in order to
achieve the best set of parameters for subnetwork and IP alias resolution. The synthetic
network generation process is explained in detail in Section 6.1. To avoid having to run
ASIAR for every possible combination of values for the parameters, we utilize a genetic
algorithm (GA) to automate parameter search and to make the process as efficient as
possible. The parameter optimization using evolutionary computing, i.e., GA, is explained
in detail in Section 6.2.
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6.1. Simulation on a Synthetic Network

We obtain synthetic networks that contain subnetworks and routers with multiple
interfaces using the Subnetwork Oriented NETwork (SONET) topology generator [50,51].
The IP distribution for the 1000 and 10,000 node networks are provided in Figure 5 using a
Hilbert curve plot. The yellow marks are the IPs assigned, the red marks are the IP space
left empty while increasing the mask of the subnet needed, and the black marks are the
unassigned IPs.

(a) 1000 node network. (b) 10,000 node network
Figure 5. IP space allocation of the synthetic networks.

We then collected path traces using a number of random source and destination nodes
in the generated synthetic network. The number of sources and destinations is obtained
from the genuine topology data to mimic the sampling density. During path tracing, we can
utilize unit edge weights to obtain the shortest paths or weighted edges to obtain the non-
shortest paths. In some cases, ASes tend to route packets over longer paths due to traffic
engineering rather than forwarding packets over the optimal shortest paths [49]. Hence,
we obtain similar non-shortest paths by assigning power-law based edge weights. As
observed path traces are not the shortest paths even within the network of an Autonomous
System [49], we implemented a power-law edge weight distribution to obtain non-shortest
paths while tracing synthetic networks. For instance, 10% of the generated edge weights
were set to two units, 1% was set to three units, 0.1% was set to four units, and so on.
Such a weighted graph produced non-shortest paths during path tracing, which replicated
observation of the path characteristics observed in [49].

Additionally, as not all routers are responsive, such unresponsive routers are marked
as an asterisk (‘*’) in the traceroute output [15]. Hence, we consider when a subset of
routers is set as unresponsive routers with a power-law length distribution based on the
measurements from [52]. In particular, we generated path traces when approximately 10%
had one, 1% had two consecutive, 0.1% had three consecutive, and so on unresponsive
routers in the path.

6.2. Automated Parameter Optimization Using Evolutionary Computing

A Genetic Algorithm (GA) is a computational model based on the process of natural
selection inspired by evolution. A chromosome-like data structure is adapted to represent a
potential solution and operations to the bits contained in the chromosomes are performed
while preserving information-gaining knowledge encoded in the chromosome.

There exist three parameters that need to be optimized for subnetwork resolution.
For IP alias resolution, we need to determine the modes to be considered among possible
combinations of conditions and the order in which they need to be executed. Note that
59 out of 72 modes that did not contribute to any of the simulations were ignored. For the
chromosome length in GA, we dedicate four bits for the representation of each subnetwork



Electronics 2024, 13, 1426 16 of 26

parameters and IP alias resolution modes. Since there are 3 subnetwork parameters and
13 alias resolution modes, the chromosome length is 16× 4 = 64. Since the consideration
of 264 combinations is not practical, we utilize a GA to efficiently detect as optimal values
for the parameters as possible.

To determine the contribution of a potential parameter set to the subnetwork and IP
alias resolution, we implemented a fitness function that GA uses to test the contribution
of a chromosome. We observed cases where the F-measure of two possible solutions
are very similar, yet the precision and recall differ considerably. Since we are concerned
with as high precision as possible and f-measure weights the precision and recall at the
same level, we preferably implemented the weighted fitness function. The fitness function
used with ASIAR is formulated as: Fitness = w1 × Precision + w2 × Recall. To prioritize
precision over recall in our subnetwork and IP alias resolution efforts, the weights are set
at w1 = 0.8, w2 = 0.2. However, the user can determine the values for these parameters
depending on how much prioritization for the precision and recall is desired.

GA determines optimal solution parameters for the subnetwork and IP alias resolution,
while ASIAR is run on the network sampled from the synthetic network. After determining
the optimal parameters on the sampled synthetic network using evolutionary computing,
ASIAR is executed on the actual sampled topology data to obtain high subnetwork and IP
alias resolution results, as presented in the next section.

7. Performance Evaluation

In this section, we present the simulation results with various synthetic networks
considering different sampling approaches. We also compare ASIAR with the state-of-the-
art analytical IP alias resolution tool Kapar [40]. Futhermore, we present the results on a
genuine network and compare ASIAR with the state-of-the-art analytical IP alias resolution
tool Kapar [40].

7.1. Synthetic Network Generation

We utilized the SONET topology generator to obtain synthetic networks with power-
law distributions for the subnetworks and IP aliases [50,51]. We generated five networks,
each containing 1000 routers, which included around 1900 IP addresses and 600 subnets.
Note that while we can specify the number of routers in SONET, it determines the subnet-
work and IP address distributions based on public Internet measurements and generated
1886 to 1899 IP addresses in the synthetic networks. Then, we randomly selected source
and destination IPs and performed path tracing from each of these source IPs to each of the
destination IPs. We used different source–destination combinations, i.e., 1 × 1000, 1 × all,
10 × 1000, 10 × all, 100 × 1000, and 100 × all of the path traces as sample data.

During path tracing, we can utilize unit edge weights to obtain the shortest paths
or weighted edges to obtain the non-shortest paths. In some cases, ASes tend to route
packets over longer paths due to traffic engineering rather than forwarding packets over
the optimal shortest paths [49]. Hence, we obtain similar non-shortest paths by assigning
power-law-based edge weights. For instance, 10% of the generated edge weights were set to
two units, 1% was set to three units, 0.1% was set to four units, and so on. Such a weighted
graph produced non-shortest paths during path tracing, which replicated observation of the
path characteristics observed in [49]. Additionally, as not all routers are responsive, such
unresponsive routers are marked as an asterisk (‘*’) in the traceroute output [15]. Hence, we
consider when a subset of routers is set as unresponsive routers with a power-law length
distribution based on the measurements from [52]. In particular, we generated path traces
when approximately 10% had one, 1% had two consecutive, 0.1% had three consecutive,
and so on unresponsive routers in the path. Then, we performed ASIAR on the sampled
networks with every possible combination of the parameters to optimize the precision and
recall measures of the subnetwork and IP alias resolution with respect to the ground truth.
We also generated network topologies of 10,000 routers involving about 19,000 IP addresses
and 6000 subnets in a similar way.
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The IP distribution for the 1000 and 10,000 node networks are provided in Figure 5
using a Hilbert curve plot. Yellow marks are the IPs assigned, the red marks are the IP
space left empty while increasing the mask of the subnet needed, and the black marks are
the unassigned IPs.

7.2. Parameter Space Exploration

In ASIAR, parameters that need to be optimized for subnetwork detection are the
Completeness threshold used for checking the completeness of subnets and the Pair-error
and Group-error thresholds used to allow a certain amount of error in the number of
distance matches for the reference points. These thresholds provide the flexibility to tune
the system for performing subnetwork resolution with varying trace density. Additionally,
different modes of IP alias resolution conditions could be combined arbitrarily for 72 differ-
ent sanity checks. Hence, it is essential to make sure that suitable values are selected for
these thresholds and optimal sanity checks are performed to have a system that produces
accurate resolution results.

We tested every combination of the three parameters to optimize the subnetwork
resolution thresholds. We explored the parameter space for different sized networks to find
the best solutions that would allow ASIAR to perform well on various networks. However,
as shown below, depending on the network sample characteristics, the utilized p arameters
differed. Hence, we introduced an evolutionary computing approach in Section 6.2 to
determine the parameter set based on the sampled network’s topological characteristics.

We calculated the average of the precision and recall of every sample and selected the
parameter combination that gave the highest results. The precision, recall, and F-measure
of different parameters are provided in Table 2 for the completeness condition with the
subnetwork accuracy condition, Table 3 for the completeness and subnetwork distance
conditions, and Table 4 for a combination of all. Note that the equation for precision is
TP/(TP + FP) and recall is TP/(TP + FN), where TP is the number of IP pairs correctly
identified as a pair, FP is the number of IP pairs that are not considered to be a pair
although they are, and FN is the number of IP pairs that are considered to be a pair
although they are not. In each analysis, the completeness condition is essential to prevent
reliance on subnetworks with sparse data. The tables display the optimal parameters
discovered for each sample size after examining all combinations in 10% increments.
Although a Genetic Algorithm (GA) is used for efficiency in finding the best solutions, a full
search was initially conducted to gauge the impact of different condition thresholds. This
comprehensive exploration helped to understand the contributions of various thresholds,
ensuring the optimization is empirically grounded and aims to improve the accuracy of
our methodology.

When considering the subnetwork accuracy condition, i.e., no two IPs of the subnet-
work can appear in any trace unless they are consecutive; the only parameter that changes is
the subnetwork completeness, as tabulated in Table 2. Varying the completeness threshold
with 10% increments from 0% to 100%, we observe that when 100 IPs were traced, at least
10% to 30% of the IPs need to be detected in each subnetwork. When 1000 IPs were traced,
at least 10% to 40% of the IPs need to be seen in each subnetwork, and when all the IPs were
traced, at least 10% to 60% of the IPs need to be observed in each subnetwork depending on
the number of sources. For networks with 1, 10, and 100 sources, the necessity to identify a
minimum of 10% to 60% of IPs within each subnetwork varies according to the number of
destinations. This requirement highlights that, as the network sample becomes denser, the
threshold for what constitutes sufficient data completeness to ensure accuracy naturally
rises. This observation underscores the critical relationship between the depth of network
data collected and the confidence in the analysis performed.
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Table 2. Subnetwork completeness condition parameter with the accuracy condition.

Completeness Precision Recall F-Measure

1 × 100 ≥10% 54.5% 84.4% 65.2 %
≥20% 77.0% 39.1% 50.1%

1 × 1000 ≥40% 82.8% 86.4% 84.4%

1 × all ≥60% 75.9% 66.2% 70.6%

10 × 100 ≥20% 81.0% 82.6% 81.4%

10 × 1000 ≥50% 91.0% 80.6% 85.4%

10 × all ≥60% 75.8% 68.0% 71.7%

100 × 100
≥20% 70.3% 91.8% 79.3%
≥10% 57.9% 98.6% 72.5%
≥30% 80.5% 62.8% 70.5%

100 × 1000 ≥50% 91.6% 87.5% 89.4%

100 × all ≥50% 71.7% 89.1% 79.4%
≥60% 85.5% 67.9% 75.7%

1000 × 1000 ≥10% 98.4% 100% 99.2%

1000 × all ≥10% 99.0% 100% 99.5%

Table 3. Subnetwork completeness and distance condition parameters.

Completeness Pair Error Group Error Precision Recall F-Measure

1 × 100

≥10 % ≤90% ≤90% 56.1% 84.4% 66.2%
≥10% ≤90% ≤100% 55.3% 84.4% 65.6%
≥10% ≤100% ≤100% 52.8% 84.4% 64.0%
≥20% ≤90% ≤90% 78.1% 39.1% 50.3%

1 × 1000 ≥40% ≤90% ≤90% 89.1% 86.4% 87.7%

1 × all ≥50% ≤ 90% ≤90% 65.7% 86.7% 74.7%
≥60% ≤90% ≤90% 81.9% 66.2% 73.1%

10 × 100 ≥20% 0% 0% 82.5% 82.6% 82.2%

10 × 1000 ≥40% 0% 0% 91.0% 92.5% 91.6%

10 × all ≥50% 0% 0% 85.1% 89.1% 87.0%

100 × 100

≥20% 0% 0% 72.3% 91.8% 80.6%
≥10% 0% 0% 61.3% 98.7% 75.1%
≥0% 0% 0% 58.7% 100% 73.3%
≥30% 0% 0% 81.8% 62.8% 71.0%

100 × 1000 ≥40% 0% 0% 95.5% 94.2% 94.8%

100 × all ≥20% 0% 0% 92.2% 98.4% 95.2%

1000 × 1000 ≥10% 0% 0% 98.7% 94.8% 96.6%

1000 × all ≥10% 0% 0% 99.5% 86.8% 92.3%
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Table 4. Subnetwork completeness and distance condition parameters with the accuracy condition.

Completeness Pair Error Group Error Precision Recall F-Measure

1 × 100
≥10% ≤90% ≤90% 56.1% 84.4% 66.2%
≥10% ≤100% ≤100% 54.5% 84.4% 65.2%
≥20% ≤90% ≤90% 78.1% 39.1% 50.3%

1 × 1000 ≥40% ≤90% ≤90% 89.1% 86.4% 87.7%

1 × all ≥50% ≤90% ≤90% 65.7% 86.7% 74.7%
≥60% ≤90% ≤90% 81.9% 66.2% 73.1%

10 × 100 ≥20% 0% 0% 82.5% 82.6% 82.2%

10 × 1000 ≥40% 0% 0% 91.0% 92.5% 91.6%

10 × all ≥50% 0% 0% 85.1% 89.1% 87.0%

100 × 100 ≥20% 0% 0% 71.8% 91.8% 80.3%

100 × 1000 ≥40% 0% 0% 95.5% 94.2% 94.8%

100 × all ≥20% 0% 0% 92.0% 98.4% 95.1%

1000 × 1000 ≥10% ≤10% ≤10% 98.5% 100% 99.3%

1000 × all ≥10% ≤10% ≤10% 99.5% 100% 99.7%

When considering the subnetwork distance condition, we have two parameters for
the pair error rate and group error rate, in addition to the subnetwork completeness. While
the completeness threshold is a lower bound, error thresholds are upper bound thresholds.
In Table 3, we observe similar completeness ranges as in Table 2, where the subnetwork
accuracy condition was considered. In the distance error thresholds, we observe that
in networks with a single vantage point, the error parameters allow for 90% to 100% of
distances to be mismatched. This indicates they do not affect the results, since there only
exists a single vantage point (VP). In networks with 10 or more VPs, we observe that there
could be no error with the distances of subnet IPs with respect to the reference points.
Overall, as the sampling density increases, the error parameters become more stringent.

When considering the subnetwork accuracy and distance conditions along with the
completeness condition in Table 4, we observe similar parameters to that of Table 3 without
the accuracy condition. The precision and recall for both cases are very similar, which
indicates that the accuracy condition does not contribute much over the distance condition.
The highest contribution of the accuracy condition is observed when the number of VPs
is 1000.

Finally, Table 5 provides the order of modes used for different network samples. In
order to determine the orders that yield the highest accuracy, we employ an iterative
consideration of all possible modes. We initially test how well each of the modes performs
by themselves and select the one that has the highest precision. If multiple modes were
yielding the highest accuracy, we prioritize the more strict ones to assure high precision in
IP alias resolution. However, it is important to keep appending modes to increase the recall
rate. Once we determine the first mode to be considered, we append the modes one by
one to the previous modes, and observe whether or not the precision decreases immensely.
It is possible that the precision decreases slightly, while the recall increases considerably.
In those cases, we continue appending best of the remaining modes. We iterate until we
observe a large decrease in the precision and terminate the mode selection process. Table 5
lists the modes in the order of which yielded the highest precision and recall values for the
synthetic networks we generated. In most samples, we observe a consistency in the order
of modes selected. However, when the network contains a very small number of sources or
destinations, different modes became more useful to obtain high resolution accuracy.
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Table 5. IP alias resolution mode order for different samples.

No. of src IPs No. of dst IPs Modes

1 100 or 1000 1, 2, 3, 4, 5
all 1, 6, 2, 7, 3, 8, 4, 9, 10

10
100 5
1000 1, 2, 3
all 1, 2, 3, 4

100 100 5
1000 or all 1, 2, 3, 4

1000 1000 or all 1, 2, 3, 4

7.3. ASIAR Performance with Synthetic Network

In this section, we assessed the performance of ASIAR with the identified parameters
from Section 7.2 on a new set of networks. We also analyzed performance with differing
network sizes and performed IP alias resolution with the well-known Kapar tool.

Figure 6 presents the ASIAR subnetwork and IP alias resolution performance results
along with the Kapar IP alias resolution for five networks of 1000 nodes. Each subfigure
presents the precision alongside the recall of networks with a given number of sources and
destinations. In the figures, the x-axis presents the precision and recall values. Furthermore,
the y-axis indicates the synthetic network characteristic, where 1 is for the unit network,
1* is for the unit network with unresponsive routers, w is for the weighted network, and
w* is for the weighted network with unresponsive routers. Each box plot shows the five-
number summary statistics of (min, first quartile, median, third quartile, and max), where
a narrower band indicates a more consistent result. Note that while there are 1000 router
nodes, they contain approximately 1900 interfaces, each with a unique IP address. We
generated network samples with unit edge weights where all path traces are the shortest
paths and weighted edges where some of the paths are not the shortest. We also considered
when about 12% of routers were set as unresponsive, i.e., their IP addresses were hidden,
based on the measurements of [53].

With the subnetwork resolution, we observe that as the number of IPs traced increases,
the precision decreases if the number of VPs does not increase at the same time. We
also observe that as the number of VPs increases, the precision increases. We observe a
minimum of 84% precision and 64% recall when the number of VPs is small. However, a
minimum of 91% precision and 86% recall is reached when the number of VPs is increased.
As traces get denser where both the number of VPs and destinations are increased, ASIAR
was able to perform subnetwork resolution at a minimum of 95% precision and recall. We
achieve 100% recall when all of the IPs are traced.

In IP alias resolution, we observe that ASIAR increases the precision as the number of
VPs increase, and it increases the recall with an increasing number of destinations. Even
with 10 VPs, we achieve a minimum of 87% precision. Although Kapar achieves higher
recall in many cases, it obtains very low precision in almost all of those cases. In all modes,
ASIAR prioritizes the IP alias resolution precision while obtaining an acceptable level of
recall. As the network gets denser, ASIAR reaches a minimum of 96% precision when half
of the IPs are traced toward.
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Figure 6. Simulation with varying sources and destinations on 1000-node networks.

After analyzing performance of ASIAR on newly generated networks based on pa-
rameters selected from the prior analysis, we tested ASIAR and Kapar on a larger network
where we did not perform parameter selection. We generated a network of 10,000 nodes
and tested both tools on this network. Since it was computationally complicated to obtain
10,000-node networks and sample traces, we tested ASIAR and Kapar on a single network.



Electronics 2024, 13, 1426 22 of 26

During our discussion, we will focus more on the results obtained from the weighted
unresponsive traces, since those are the most difficult ones to resolve.

Figures 7 and 8 present the results for 1* unit and w* weighted networks, respectively,
where unresponsive routers are considered. In the figures, the x-axis indicate the obtained
precision or recall. Similar to what we observe with 1000-node networks, ASIAR is able
to keep its precision high in all cases. We also observe that, as the traces become denser,
Kapar increases its recall while sacrificing the precision. ASIAR is able to keep precision as
high as possible in almost all cases while having an acceptable level of recall even without
parameter optimization.

Our analysis indicates that ASIAR effectively adapts to diverse network characteristics,
carefully choosing parameters that guarantee high precision in all analyzed networks.
Conversely, Kapar, although it exhibits higher recall in networks with lower density,
struggles with precision, underlining ASIAR’s enhanced adaptability and superior accuracy
for thorough network analysis tasks.
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Figure 7. Simulation of a 10,000-node network with 1* unit weights and unresponsive routers.

7.4. Evaluation on a Genuine Network

In this section, we present results for a real network with multiple points of presence
in Nevada for which we obtained detailed subnetwork and IP alias information. Note that
while system administrators have network maps, they typically do not contain detailed
information on subnetworks and router interfaces. Even if such detailed maps are available,
they are not made public or shared with researchers. We obtained traces traversing the
network from the Internet Measurement (IM) platform [13] we had developed, without
any tweaks to the system for the destination AS. IM collects publicly available topology
measurement datasets and BGP announcements, and traces toward each of the IP address
of an AS observed in these datasets using 20 to 30 vantage points deployed globally. We
simply filtered trace segments belonging to the destination AS for the analysis.
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Figure 8. Simulation of a 10,000-node network with w* weighted edges and unresponsive routers.

Our methodology began with deploying MIDAR on the network traces to establish
an initial benchmark against the network’s verified ground truth. MIDAR achieved an
impressive precision rate of 99.5%, although its recall rate stood at 42.5%, indicating a high
level of accuracy in identifying true aliases, but also suggesting room for improvement in
uncovering a more comprehensive set of alias pairs within the network. To further refine
our understanding and assessment of network analysis tools, we extended our examination
to include ASIAR and Kapar. This phase involved conducting performance tests on these
tools within the same network environment, implementing scenarios where they either
had access to the alias pairs previously identified by MIDAR or operated without this
pre-identified data. This dual approach allowed us to to explore the synergistic potential
that might emerge from leveraging MIDAR’s findings as a foundational dataset. Through
this layered testing strategy, we aimed to comprehensively evaluate the effectiveness of
each tool in enhancing the precision and recall rates of network alias detection, thereby
contributing valuable insights into their operational efficacy and potential integrations for
advanced network topology analysis.

As seen in Table 6, ASIAR outperforms Kapar in both cases. Similar to the synthetic
networks, ASIAR prioritizes the precision over the recall, while Kapar yields higher recall
than the precision. Additionally, Kapar benefits significantly from the input from MIDAR
with considerable improvement in both the precision and recall. On the other hand, ASIAR
has mixed results with MIDAR input, where recall improves at the expense of precision.
Overall, ASIAR achieves much higher precision and recall than Kapar.
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Table 6. Subnetwork and IP alias resolution on a genuine network.

Without MIDAR With MIDAR

Precision Recall Precision Recall

ASIAR Subnetwork 87.0% 78.0% 86.0% 78.0%
ASIAR IP Alias 88.0% 71.4% 82.3% 78.0%
Kapar IP Alias 48.1% 53.5% 65.5% 75.5%

8. Conclusions

In this paper, we presented an efficient implementation of the Analytical Subnetwork
and IP Alias Resolution (ASIAR) technique, significantly advancing the field by introducing
additional sanity checks aimed at improving resolution accuracy. Through a detailed
analysis of these sanity checks across varied network samples, we showcased their efficacy
in enhancing IP alias resolution. Furthermore, we unveiled a comprehensive analytical tool
that employs evolutionary computing to fine-tune ASIAR’s parameters based on analogous
synthetic networks. Our findings demonstrate that ASIAR outperforms the current state-of-
the-art analytical IP alias resolution tools in both synthetic and genuine networks. ASIAR
maintains superior precision and recall rates under complex conditions, including dense
trace data, non-shortest path traces, and encounters with non-responsive routers.

ASIAR’s adaptability extends to its ability to dynamically adjust the stringency of
sanity checks based on the specific characteristics of the sampled measurement data, making
it a versatile solution for various network samples. This flexibility contrasts with previous
approaches that applied a uniform toolset across all networks, overlooking the nuanced
differences in topology samples. By tailoring sanity checks and parameters optimization
to synthetic networks with comparable characteristics, ASIAR offers a more nuanced and
effective approach to analytical alias resolution, emphasizing the importance of customizing
methods to suit the intricacies of each network scenario.

In our analysis of synthetic network data, we conducted extensive trace experiments
to evaluate the impact of network sampling on subnetwork and IP alias precision and recall.
To enhance accuracy and flexibility, we introduced three parameters within the ASIAR
tool, allowing us to navigate a nuanced parameter space and identify optimal threshold
values for our system. Through this exploration, we consistently achieved impressive
precision and recall rates for both subnetwork and IP alias resolution tasks. Notably,
when compared to Kapar, ASIAR demonstrated a remarkable ability to maximize recall
without compromising precision. Particularly in denser trace scenarios, ASIAR exhibited
significantly higher precision and recall rates, reaching 99% and 70% respectively, compared
to Kapar’s 56% precision and 43% recall. This highlights ASIAR’s effectiveness in handling
complex network data with superior performance metrics.
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