
Citation: Wang, J.; Bi, J.; Xu, G.;

Liu, M. Characteristics Analysis of

IGZO TFT and Logic Unit in the

Temperature Range of 8–475 K.

Electronics 2024, 13, 1427. https://

doi.org/10.3390/electronics13081427

Academic Editors: Gerard Ghibaudo

and Francis Balestra

Received: 29 February 2024

Revised: 2 April 2024

Accepted: 6 April 2024

Published: 10 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Characteristics Analysis of IGZO TFT and Logic Unit in the
Temperature Range of 8–475 K
Jianjian Wang 1,2, Jinshun Bi 2,3,*, Gaobo Xu 1 and Mengxin Liu 1,2,4,*

1 Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China;
wangjianjian@ime.ac.cn (J.W.); xugaobo@ime.ac.cn (G.X.)

2 School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
3 School of Microelectronics, Guizhou Normal University, Guiyang 550025, China
4 Beijing Zhongke Newmicro Technology Co., Ltd., Beijing 100029, China
* Correspondence: bijinshun@gznu.edu.cn (J.B.); liumengxin@ime.ac.cn (M.L.)

Abstract: The effect of high- and low-temperature conditions on the performance of IGZO TFT and
logic circuits were investigated in this work. In the temperature range of 250−350 K, the performance
of the IGZO TFT did not show significant changes and exhibited a certain degree of high- and
low-temperature resistance. When the temperature was below 250 K, as the temperature decreased,
the threshold voltage (VTH) of the IGZO TFT significantly increased, the field effect mobility (µFE)
and the on state current (ION) significantly decreased. This is attributed to the lower excitation degree
of charge carriers at extremely low temperatures, resulting in fewer charge carriers transitioning to
the conduction or valence bands, and the formation of defects also limits carrier migration. When
the temperature exceeded 350 K, as the temperature increased, more electrons could escape from the
bandgap trap state and become free charge carriers, and the IGZO layer was thermally excited to
produce more oxygen vacancies, resulting in higher µFE and lower VTH. In addition, the drain current
noise spectral density of IGZO TFT conformed to the 1/ƒ noise characteristic, and the degradation
mechanism of IGZO TFT over a wide temperature range was confirmed based on the changes in noise
spectral density at different temperatures. In addition, an inverter logic unit circuit was designed
based on IGZO TFT, and the performance changes over a wide temperature range were analyzed.
This lays the foundation for IGZO TFT to be applied in integrated circuits with harsh environments.

Keywords: indium–gallium–zinc oxide (IGZO); thin-film transistors (TFTs); high temperature;
low temperature; 1/ƒ noise; integrated circuits

1. Introduction

In recent years, amorphous indium–gallium–zinc oxide (a-IGZO) thin-film transistor
(TFT) has been widely used in various fields such as displays, sensors, memory, and neural
morphology systems due to its unique advantages in off-state leakage current, carrier
mobility, threshold voltage, and manufacturing process [1–5]. In addition, a-IGZO TFT has
broad application prospects in the field of monolithic 3-D (M3D)-integrated circuits due
to its high compatibility with complementary metal oxide semiconductors (CMOS), wide
bandgap (Eg~3.05 eV), and excellent manufacturing yield characteristics [6–9]. Furthermore,
considering that the electron conduction path in IGZO is mainly formed by the extended
spherical 5s orbitals of In3+, the overlap between the 5s wave functions of adjacent In3+ is
not sensitive to the disordered local structure of a-IGZO,s making IGZO TFT a potential
device for applications in harsh environments [10,11].

Given the current promising development potential of IGZO TFTs in many fields, and
with the push towards employing circuits fabricated in the latest technology for space and
military environments, it is necessary to evaluate the performance changes of IGZO TFTs
in extreme environments [12]. Current research indicates that amorphous materials have a
more flexible atomic bond structure compared to crystalline silicon, and their structural
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plasticity leads to easy defect reconstruction, with the potential to achieve large-scale
scalable radiation resistance [13]. The research on the radiation effects of IGZO TFT for space
applications is also actively advancing, and preliminary results have been achieved [14–20].
In addition, the stable operating temperature range of commercial integrated circuits (ICs)
is usually between 25–85 ◦C (298–358 K). However, with the development of aerospace,
gas, down-hole oil, and other fields, the performance of semiconductor devices and circuits
in higher- or lower-temperature ranges is facing enormous challenges [21]. In order to
comprehensively explore the potential of IGZO TFT for harsh environmental applications,
it is necessary to study the performance changes of IGZO TFT and related circuits over a
wide temperature range. At present, there has been research progress on IGZO TFT under
high-temperature conditions, and the device exhibits strong temperature dependence under
high-temperature conditions [22,23]. However, the degradation mechanism of IGZO TFT
and related logic unit circuits over a wide temperature range is currently unclear.

In this work, IGZO TFT devices with good electrical performance were prepared
using radio frequency (RF) magnetron sputtering technology. The inverter unit circuit was
designed based on IGZO TFT. The influence of temperature on the electrical performance of
IGZO TFT and an inverter circuit was studied within a wide temperature range of 8–475 K,
and the degradation mechanism of the device was analyzed based on the relationship
between key electrical parameters and temperature. This study aims to provide reference
for promoting the application of IGZO TFT and related circuits in harsh environments.

2. Devices and Methods

The IGZO TFTs were fabricated using a backed-gate process on the 8-inch pilot CMOS
line at the Institute of Microelectronics of the Chinese Academy of Sciences. For the device
fabrication, a 200 nm SiO2 buffer layer was deposited on a silicon substrate through plasma-
enhanced chemical vapor deposition (PECVD). Subsequently, 60 nm thick Mo layer was
sputtered and subjected to dry etching to form a bottom gate electrode. HfO2 with a
thickness of 15 nm was deposited as a gate insulator layer (GI) using the PECVD method.
Then, a 25 nm thick a-IGZO film was deposited and patterned using radio frequency
magnetron sputtering technology in an Ar/O2 atmosphere at room temperature. The
atomic ratio of the IGZO film was In:Ga:Zn = 1:1:1, the sputtering power was 200 W, and
the pressure was 1 mTorr. Mo with a thickness of 60 nm was sputtered and patterned
to form the source and drain electrodes, and a 100 nm thick SiO2 passivation layer was
deposited using the PECVD method. Finally, a-IGZO TFT devices were prepared by high-
temperature annealing treatment for 1 hour in a N2 atmosphere at 350 ◦C to improve their
electrical properties. The key process steps for IGZO TFT device manufacturing are shown
in Figure 1a.

Electronics 2024, 13, x FOR PEER REVIEW 3 of 13 
 

 

 
Figure 1. (a) Key fabrication process steps for the fabricated back-gated IGZO TFT devices, (b) cross-
section TEM image for the IGZO TFT, (c) partial HRTEM image of the interface between the IGZO 
layer and HfO2 layer, (d) FFT image, and (e) ESD image for the IGZO TFT. 

The transmission electron microscope (TEM) image was obtained by using a focused 
ion beam (FIB) to cut the cross-section of the device along the channel length direction, as 
shown in Figure 1b, where each layer of device structure can be clearly observed. Figure 
1c shows high-resolution transmission electron microscopy (HRTEM) image, and the rel-
atively clear and sharp interface on the IGZO/HfO2 film indicates good film quality. Figure 
1d shows the fast Fourier transform (FFT), which exhibits typical diffuse ring characteris-
tics, indicating that IGZO is amorphous. The elemental composition of IGZO TFT was 
analyzed using an energy dispersive spectrometer (EDS), as shown in Figure 1e. After O2 
annealing, the elemental densities of Si, Ga, and Hf remained basically unchanged, but 
the O concentration in the a-IGZO channel increased, indicating oxygen permeation and 
possible filling of oxygen vacancies during the O2 treatment process, which helps to im-
prove the quality of the IGZO thin film. 

The gate width (W) and length (L) of the IGZO TFT used are 2 µm and 0.5 µm, re-
spectively. The low-temperature test was conducted in the Institute of Physical Chemistry 
Technology, Chinese Academy of Sciences, and the low-temperature test was controlled 
and adjusted within the range of 8–300 K through Lake Shore CRX. The high-temperature 
test was performed on the Cascade SUMMIT 12,000 B semi-automatic probe platform of 
the Institute of Microelectronics, Chinese Academy of Sciences. The probe platform incor-
porates a thermal chuck, and its temperature can be controlled through the ESPEC ETC-
200 L unit. Measurements were carried out in the range of 300–475 K. In high-temperature 
testing, the ID–VG and ID–VD curves of the IGZO TFT were first tested at room temperature 
(300 K), and then, the temperature was increased in steps of 25 K until 475 K. At each 
temperature point, the ID–VG and ID–VD curves of the device were tested. In low-tempera-
ture testing, the device performance at room temperature was also initially tested as a 
reference, and then, the temperature was decreased in steps of 50 K until 10 K. At each 
temperature point, the ID–VG and ID–VD curves of the device were tested. 

3. Experimental Results and Discussion 
The transfer characteristics (ID–VG) of a-IGZO TFTs were measured at various tem-

peratures T (from 8 to 475 K) for the gate voltages VG ranging from −3 to 4 V with a fixed 
drain voltage VD = 1 V, as shown in Figure 2. In the low-temperature range of 8–300 K, the 
ID–VG curve shows a positive shift with the temperature decreases, while in the high-tem-
perature range of 300–475 K, the ID–VG curve shows a negative shift with the temperature 
increases. When the temperature reaches 475 K, the drain current seriously deviates from 
the normal value within the measurable voltage range, and the device cannot turn off 
normally. The gate control ability of the IGZO TFT is severely weakened under high tem-
perature. 

Figure 1. (a) Key fabrication process steps for the fabricated back-gated IGZO TFT devices,
(b) cross-section TEM image for the IGZO TFT, (c) partial HRTEM image of the interface between the
IGZO layer and HfO2 layer, (d) FFT image, and (e) ESD image for the IGZO TFT.
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The transmission electron microscope (TEM) image was obtained by using a focused
ion beam (FIB) to cut the cross-section of the device along the channel length direction,
as shown in Figure 1b, where each layer of device structure can be clearly observed.
Figure 1c shows high-resolution transmission electron microscopy (HRTEM) image, and
the relatively clear and sharp interface on the IGZO/HfO2 film indicates good film quality.
Figure 1d shows the fast Fourier transform (FFT), which exhibits typical diffuse ring
characteristics, indicating that IGZO is amorphous. The elemental composition of IGZO
TFT was analyzed using an energy dispersive spectrometer (EDS), as shown in Figure 1e.
After O2 annealing, the elemental densities of Si, Ga, and Hf remained basically unchanged,
but the O concentration in the a-IGZO channel increased, indicating oxygen permeation
and possible filling of oxygen vacancies during the O2 treatment process, which helps to
improve the quality of the IGZO thin film.

The gate width (W) and length (L) of the IGZO TFT used are 2 µm and 0.5 µm,
respectively. The low-temperature test was conducted in the Institute of Physical Chemistry
Technology, Chinese Academy of Sciences, and the low-temperature test was controlled
and adjusted within the range of 8–300 K through Lake Shore CRX. The high-temperature
test was performed on the Cascade SUMMIT 12,000 B semi-automatic probe platform
of the Institute of Microelectronics, Chinese Academy of Sciences. The probe platform
incorporates a thermal chuck, and its temperature can be controlled through the ESPEC
ETC-200 L unit. Measurements were carried out in the range of 300–475 K. In high-
temperature testing, the ID–VG and ID–VD curves of the IGZO TFT were first tested at
room temperature (300 K), and then, the temperature was increased in steps of 25 K until
475 K. At each temperature point, the ID–VG and ID–VD curves of the device were tested.
In low-temperature testing, the device performance at room temperature was also initially
tested as a reference, and then, the temperature was decreased in steps of 50 K until 10 K.
At each temperature point, the ID–VG and ID–VD curves of the device were tested.

3. Experimental Results and Discussion

The transfer characteristics (ID–VG) of a-IGZO TFTs were measured at various temper-
atures T (from 8 to 475 K) for the gate voltages VG ranging from−3 to 4 V with a fixed drain
voltage VD = 1 V, as shown in Figure 2. In the low-temperature range of 8–300 K, the ID–VG
curve shows a positive shift with the temperature decreases, while in the high-temperature
range of 300–475 K, the ID–VG curve shows a negative shift with the temperature increases.
When the temperature reaches 475 K, the drain current seriously deviates from the normal
value within the measurable voltage range, and the device cannot turn off normally. The
gate control ability of the IGZO TFT is severely weakened under high temperature.
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Figure 2. (a) The relationship between the ID–VG curve and low-temperature changes. The curve
shifts in a positive direction with the temperature decreases. (b) The relationship between the
ID–VG curve and high-temperature changes. The curve shifts in a negative direction with the
temperature increases.
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The key electrical parameters that affect the static characteristics of IGZO TFT include
threshold voltage (VTH), field effect mobility (µFE), subthreshold swing (SS), and current
switching ratio (ION/IOFF). The extraction of VTH adopts the constant-current method in
this work. The VTH is defined as the particular gate voltage (VG) at which drain current
(ID) = 10−8 × (W/L) A [24]. The µFE and SS of IGZO TFT is calculated according to the
Equations (1) and (2), respectively, where COX is the gate dielectric capacitance per unit
area [25]. COX is calculated by the Equation (3).

µFE =
L

WCOXVDS
· dID

dVG
(1)

SS = (
d log(ID)

dVG
)−1|max (2)

COX =
ε0 · εOX

tOX
(3)

where ε0 is the vacuum dielectric constant, and the value is 8.85 × 10−14 F/cm; εOX is the
oxide layer dielectric constant, and the value is 20; tOX is the thickness of the oxide layer,
and the value is 15 nm. These parameters are inputted into the Equation (4), it can be
calculated COX = 1.18 × 10−6 F/cm2.

Key parameters that characterize the electrical performance of IGZO TFT are extracted
according to the ID–VG curves at various temperatures in Figure 2, including ∆VTH, ∆SS,
∆µFE, and ∆ION. The variation of each parameter with temperature is shown in Figure 3.
These parameters are all based on 300 K as a reference point. Taking ∆VTH as an example,
∆VTH represents the difference between the threshold voltage at a specific temperature and
the threshold at room temperature, as shown in Equation (4).

∆VTH = VTH@T −VTH@300K (4)
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to temperature.

Figure 3 shows that there is no significant change in the key electrical parameters
of the IGZO TFT within the temperature range of 250–350 K, indicating that the device
exhibits a certain degree of high- and low-temperature resistance.

When the temperature is below 250 K, as the temperature decreases, the VTH of the
IGZO TFT significantly increases, and the µFE and ION significantly decrease. This is
attributed to the lower excitation degree of charge carriers at extremely low temperatures,
resulting in fewer charge carriers transitioning to the conduction or valence bands, and the
formation of defects also limits carrier migration [8,21]. When the temperature exceeds
350 K, as the temperature increases, more electrons can escape from the sub bandgap trap
state and become free charge carriers, and the IGZO layer is thermally excited to produce
more oxygen vacancies, resulting in larger ION and smaller VTH [22,26]. Therefore, the
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observed lower VTH with increasing temperature may be due to the combined effect of
these free electrons escaping from the sub bandgap trap state together with the generation
of oxygen vacancies because of thermal excitation [23,27]. The increase in ∆µFE is also
attributed to the increase in thermal energy provided by high temperatures, which increases
the kinetic energy of charge carriers and reduces the scattering mechanism that hinders their
movement. Furthermore, within the temperature range of 8 K to 450 K, the ∆SS shows a
slight increasing trend. When the temperature reaches 475 K, the ∆SS abnormally increases.
This may be related to the fact that the oxygen vacancies generated by thermal excitation
provide more traps, and charge capture occurs in the gate oxide through thermally assisted
tunnelling, leading to an increase in ∆SS [28].

The relationship between the ID–VD curves and temperature of a-IGZO TFT is shown
in Figure 4. In the low-temperature range, the ID decreases with decreasing temperature; in
the high-temperature range, the ID increases with increasing temperature.
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Figure 4. (a) The relationship between the ID–VD curve and low-temperature changes. The ID

decreases with the temperature decreases. (b) The relationship between the ID–VD curve and high-
temperature changes. The ID increases with the temperature increases.

The variation relationship between a-IGZO TFT devices and temperature was simu-
lated using TCAD. Specifically, the a-IGZO mobility model related to lattice temperature
was used to simulate the changes in device electrical characteristics with temperature.
The mobility model was designed to work in conjunction with the defect density model
of electronic states [29]. Physical models such as the IGZO.TOKYO temperature model,
Shockley–Read–Hall (SRH) generation and recombination, and Fermi statistical model
were used in the simulation process [30]. The ID–VD curve obtained from TCAD simulation
showed a consistent trend with the experimental test results as a function of temperature.
Figure 5 shows the variation curve of channel electron concentration with temperature
in TCAD simulation. As the temperature increases, the channel electron concentration
significantly increases.
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Figure 5. Channel electron concentration variation with temperature for TCAD simulation.

Figure 6a,c show the linear temperature dependence of the logarithm of ID and 1/kT
under different VG voltages at low and high temperatures, respectively, and satisfies
the Arrhenius relationship. The relationship between drain current and temperature is
described by the Arrhenius Equation (5) [31,32].

IDS = IDS0 exp(−EA
kT

) (5)

where k is the Boltzmann constant, T is the temperature, EA is the active energy, IDS0 is the
pre-factor, and EA and IDS0 are gate-voltage-dependent quantities.
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Figure 6. (a) The linear low-temperature dependence between the logarithm of ID and 1/kT under
different VG voltages; lines are used to extract EA. (b) EA as a function of VG within different low-
temperature ranges, (c) the linear high-temperature dependence between the logarithm of ID and 1/kT
under different VG voltages. (d) EA as a function of VG within different high-temperature ranges.

The transport of charge carriers in channels is mainly influenced under different
temperatures and VG by three transport mechanisms, namely variable range hopping
(VRH), trap-limited conduction (TLC), and percolation [33]. Among them, when VG is
small, at lower temperatures, carriers in the tail states lack sufficient thermal energy to cross
the mobility edge (above a specific energy level near the conduction band minimum), and
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hence, transport is dominated by carriers undergoing VRH, tunneling between localized
tail states, with lower carrier mobility in the channel, resulting in small ID. At higher
temperatures, Fermi-level (EF) in the localized tail states and transport is dominated by
TLC where carriers are thermally excited from the localized tail states to the extended
states above mobility edge, resulting in an increase in carrier mobility and ID compared
to low temperatures; when VG is large, as EF efficiently moves above the mobility edge,
percolation-dominated transport is observed for all temperatures, with higher carrier
mobility in the channel, resulting in large ID.

The activation energy of drain current shows differences in the temperature ranges of
50–150 K, 200–300 K, 300–375 K, and 400–475 K. The activation energy corresponding to
different VG in the higher-temperature region is generally higher than that in the lower-
temperature region. Specifically, Figure 6b,d summarize the variation curves of activation
energy with gate voltage over different temperature ranges. This is because for amorphous
semiconductor TFTs, most of the charge induced by the gate electric field goes into the
tail states, with a small fraction going into the conduction band [34]. As the gate voltage
increases, the movement of EF towards EC leads to a change of the occupancy of the
localized state, which in turn leads to a gradual decrease in activation energy [22].

Figure 7 shows the ID–VG curves with VD = 0.1 V and VD = 1 V under different
temperatures. Usually, the VTH shift in short-channel TFT devices is denoted by drain-
induced barrier lowering (DIBL), which originates from the effective lowering of the
barrier for current conducting between source and channel [35,36]. To determine the DIBL
characteristics, we used the DIBL factor (λDIBL) defined in the Equation (6) [36].

λDIBL =
VT(@VD1 = 0.1V)−VT(@VD2 = 1V)

VD2 −VD1
(6)
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Figure 7. (a) Variation of ID–VG curves for IGZO TFT at VD = 0.1V and VD = 1V within the temper-
ature range of 150−300 K; (b) the DIBL effect of IGZO TFT varies with temperature at extremely
low temperature; (c) variation of ID–VG curves for IGZO TFT at VD = 0.1V and VD = 1V within
the temperature range of 300−400 K; (d) the DIBL effect of IGZO TFT varies with temperature at
extremely high temperature.

It is worth noting that when IGZO TFT is exposed to harsh temperature environments,
such as temperatures below 150 K and above 425 K, the DIBL effect becomes more severe,
as shown in Figure 7b,d. The reason is as follows: At extremely low temperature, the carrier
mobility and density decrease, resulting in a more uneven electric field between the gate
and channel of the transistor, making it more difficult to control the channel and leading
to adverse DIBL effects; at high temperature, the thermally excited oxygen atoms will
leave their original positions and generate vacancies as the temperature increases. Oxygen
vacancies act as electron donors as VO = VO

2+ + 2e− [37,38]. The oxygen vacancies near
the drain side and source side affect the overall carrier concentration of the active channel.
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As VD increases, VTH shifts in the negative direction, and the number of thermally excited
oxygen atoms increases with temperature, resulting in a more severe DIBL. The ∆λDIBL of
IGZO TFT at different temperatures is summarized in Table 1.

Table 1. The ∆λDIBL of IGZO TFT varies with temperature.

T (K) ∆λDIBL (mV/V) T (K) ∆λDIBL (mV/V)

8 355.5 325 10.52
50 75.5 350 −11.08

100 62.5 375 −10.98
150 29.2 400 33.32
200 15.5 425 133.32
250 10.5 450 466.22
300 0 475 >1166.2

In order to analyze the effect of temperature on the charge transfer mechanism of
IGZO TFT, the noise characteristics of the device at different temperatures were studied. At
room temperature, the normalized drain current noise spectral density (SID/ID

2) and the
transconductance to drain current squared (gm/ID)2 of IGZO TFT exhibited an approximate
trend of variation with drain current, as shown in Figure 8a. Among them, the SID/ID

2

was extracted at ƒ = 0.1 Hz for the device. This indicates that the noise spectral density and
transconductance of IGZO TFT satisfy the carrier number fluctuation (CNF) theory shown
in Equations (7) and (8) [3,39].

SID

ID
2 = (

gm

ID
)2 · SV f b (7)

with

SV f b =
q2NtkTλ

WLCox
2 f

(8)

where SVfb is the power spectral density of flat-band voltage fluctuations, Nt is the volume
trap density, kT is the thermal energy, λ is the oxide tunneling attenuation distance, WL is
the channel area, Cox the gate oxide capacitance per unit area, and f is the frequency [40].
The extracted value of SVfb is 8.9 × 10−13 V2/Hz for the IGZO TFT device in this work.
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Figure 8. (a) The SID/ID
2 and the (gm/ID)2 as functions of drain current, in which SID/ID

2 follows
the trend of (gm/ID)2; (b) the relationship between SID and frequency at different temperatures, in
which SID shows an increasing trend with the temperature increases.
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The relationship between the drain current noise spectral density and frequency at
different temperatures is shown in Figure 8b. The SID of the drain current increases with
the increase of temperature, which confirms the degradation mechanism of the active layer
of IGZO TFT devices being thermally excited under high-temperature conditions, resulting
in an increase in carrier concentration.

The inverter circuit was designed based on the IGZO TFT device, as shown in Figure 9.
The transistor T1 with gate drain short circuit is used as the load transistor, T2 is the driving
transistor, and the aspect ratios of T1 and T2 are 2/0.5 (µm) and 30/0.5 (µm), respectively.
The purpose of using a large-sized T2 is to provide sufficient driving capacity for the
inverter to increase output swing. The voltage transmission characteristic (VTC) curve of
the inverter was tested at different temperatures and is shown in Figure 8, where the power
supply voltage VDD = 3 V. In low-temperature environments, the VTC curve shifts to the
right as the temperature decreases; in a high-temperature environment, the VTC curve
moves horizontally to the left with the temperature increases. This is consistent with the
trends of the ID–VG curves of IGZO TFT in Figure 2a,b under low- and high-temperature
environments, respectively. This is reasonable because compared to the output drain
current of a single transistor, the presence of load transistor T1 in the inverter converts the
drain current of transistor T2 into output voltage.
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The inserted diagram is the circuit diagram of the inverter, with T1 as the load transistor and
T2 as the drive transistor; (b) the VTC curve of the inverter composed of IGZO TFT varies with
high temperature.

In order to analyze the impact of temperature on the inverter circuit, key parameters
affecting inverter performance, such as noise margin values and switching thresholds, were
extracted based on the VTC curves at different temperatures. At 300 K, the input low (VIL)
and high (VIH) voltage and the output low (VOL) and high (VOH) voltage were extracted
from the voltage unit gain points (dVOUT/dVIN =−1), respectively. The specific relationship
between the key parameters of the inverter and temperature is shown in Figure 10. Both the
high noise margin (NMH = |VOH-VIH|) and low noise margin (NML = |VIL-VOL|) show
an increasing trend with the increased temperature [41]. The switching threshold voltage
(VM) of the inverter is defined as the point where VIN = VOUT [42]. It is expected that the
VM is located near the midpoint of the voltage swing (VDD/2). As shown in Figure 8, it can
be seen that the VM shows a decreasing trend with the temperature increasing.
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4. Conclusions

In this work, the electrical performance of IGZO TFT devices and related circuits were
studied in the wide temperature range of 8–475 K. The experimental results show that
within the range of 250–350 K, the IGZO TFT device is less affected by temperature and
exhibits high- and low-temperature resistance. When the temperature exceeds this range,
the device exhibits a certain degree of performance degradation with the temperature
increases or decreases, and the DIBL effect of the device will gradually become significant.
When the temperature reaches a high temperature of 475 K, the device cannot turn off
normally, indicating that the gate control ability of the device is seriously affected at high
temperatures. The 1/ƒ noise characteristics of the device show a significant increase in
noise spectral density with increasing temperature, indicating that the IGZO active layer
is thermally excited under high-temperature conditions, leading to an increase in carrier
concentration. This work provides a reference for the application research of IGZO-based
integrated circuits in harsh environments.
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