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Abstract: In the rapidly evolving domain of question answering systems, the ability to integrate
machine comprehension with relational reasoning stands paramount. This paper introduces a novel
architecture, the Dependent Syntactic Semantic Augmented Graph Network (DSSAGN), designed
to address the intricate challenges of multi-hop question answering. By ingeniously leveraging the
synergy between syntactic structures and semantic relationships within knowledge graphs, DSSAGN
offers a breakthrough in interpretability, scalability, and accuracy. Unlike previous models that either
fall short in handling complex relational paths or lack transparency in reasoning, our framework
excels by embedding a sophisticated mechanism that meticulously models multi-hop relations and
dynamically prioritizes the syntactic–semantic context.

Keywords: question answering; knowledge graph-based multi-hop QA; knowledge graph embed-
ding; deep learning

1. Introduction

In the dynamic landscape of service mining and analytics, knowledge-based ques-
tion answering (KBQA) systems, as outlined by Xiao et al. [1], have garnered significant
interest across both academic and commercial sectors. These systems, designed to deduce
precise target entities in response to queries posed in natural language, leverage extensive
knowledge bases (KBs) as delineated by Bin et al. [2]. The core of KBQA’s efficacy lies in
its adeptness at interpreting complex semantic nuances inherent in natural language and
pinpointing accurate responses within vast, structured knowledge repositories. A notable
subset within this domain is knowledge graph question answering (KGQA), highlighted
in studies by Hao et al. [3] and Michael et al. [4], which specifically employs knowledge
graphs (KGs) for its knowledge repository. This approach, further explored by Bin et al. [2]
and Yunshi et al. [5], capitalizes on the distinct organizational structure of KGs and their pro-
ficient querying mechanisms, offering users expedited access to deep, actionable insights
encapsulated within KGs, thereby enhancing the overall user experience.

In the evolving landscape of multi-hop question answering (QA), the quest for sophis-
ticated models capable of navigating complex information development across multiple
documents has led to the development of specialized datasets like OpenBookQA [6], Nar-
rativeQA [7], MultiRC [8], WikiHop [9], CommonsenseQA [10], and HotpotQA [11]. These
platforms are designed to challenge the abilities of QA systems to perform intricate rea-
soning, with tasks ranging from identifying the correct answer from a set of options in
WikiHop to locating specific answer snippets within paragraphs in HotpotQA.

Initial strategies focused on leveraging recurrent neural networks (RNNs) equipped
with attention mechanisms to distill and extract pertinent information from texts, as seen
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in the early query-focused extractor (QFE) method by Nishida et al. [11] and the Decom-
pRC approach by Min et al. [12], which simplifies complex multi-hop questions into more
manageable sub-questions. Subsequent innovations have explored the selection of rele-
vant document paragraphs and the utilization of chain reasoning, as demonstrated by the
Dynamically Fused Graph Network (DFGN) by Qiu et al. [13] and hierarchical memory
network models proposed by Jiang and Bansal [14], reflecting a growing sophistication in
tackling multi-hop QA tasks. Recent advancements have embraced attention-based mecha-
nisms and adaptive reinforcement learning, notably improving performance on complex
QA tasks, as evidenced by the work of Zhao et al. [15] and the adaptive reinforcement
learning (ARL) framework by Zhang et al. [16]. These developments underscore a shift
towards more detailed and adaptive QA systems.

Simultaneously, the integration of graph neural networks (GNNs) has emerged as a
pivotal innovation, enhancing the representation of complex entity relationships essen-
tial for multi-hop QA. The introduction of methods like multi-task prompting for graph
neural networks highlights the potential of leveraging pre-trained models across various
graph tasks, effectively bridging the gap between general graph knowledge and specific
application needs [17]. The exploration of hypergraph representation for sociological
analysis emphasizes the richness of social interactions and environments, providing a
novel approach to understanding complex sociological phenomena through data mining
techniques [18]. The factor-mixed Hawkes process (FMHP) for event-based incremental
recommendations introduces a nuanced understanding of event generation, considering in-
trinsic, external, and historical intensities, thereby enhancing recommendation systems [19].
Furthermore, graph-masked autoencoders (GMAEs) represent a significant step forward
in learning graph representations, adopting a self-supervised, transformer-based model
that addresses the challenges of training deep transformers from scratch [20]. The novel
recommendation model based on graph diffusion and the Ebbinghaus curve offers insights
into users’ evolving online interests, incorporating a graph diffusion method and neural
network inspired by the Ebbinghaus curve to capture long-term and short-term tastes [21].

In the field of multi-hop QA, GNN-based models, such as those developed by Kipf and
Welling [22] and Veličković et al. [23], have shown significant promise as well. Coref-GRU
by Dhingra et al. [24], MHQA-GRN by Song et al. [25], and the breadth first reasoning
graph (BFR-Graph) by Huang and Yang [26] exemplify the integration of entity recognition
and graph construction to facilitate deeper information analysis. Moreover, the from easy
to hard (FE2H) model by Li et al. [27] and the bidirectional recurrent graph neural network
(BRGNN) by Zhang et al. [28] illustrate the ongoing evolution of graph-based reasoning in
multi-hop QA, highlighting efforts to minimize errors and leverage relational patterns for
improved QA performance.

However, as user queries become more complex, especially in multi-hop QA tasks
that require synthesizing information from multiple knowledge points, the limitations of
existing QA frameworks have become more pronounced. This includes challenges such
as data sparsity, the difficulty of mapping complex queries to specific knowledge graph
nodes and edges, and the need to dynamically update the knowledge base to incorporate
the latest information. These issues highlight the need for adaptive, robust, and context-
aware models that can navigate intricate knowledge graph structures with greater accuracy
and comprehension.

In confronting these challenges, our paper introduces the Dependent Syntactic Se-
mantic Augmented Graph Network (DSSAGN), an architecture designed to revolutionize
QA systems’ approach to multi-hop relational reasoning. To address the identified limita-
tions, DSSAGN integrates external knowledge graphs to enrich the model with relevant
entities, thereby providing a richer context for answering complex queries. Furthermore,
by incorporating graph convolutional networks (GCNs) alongside dependency syntax
analysis, DSSAGN significantly boosts the semantic understanding and interpretation of
queries. These approaches not only facilitate a deeper comprehension of the relationships
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and entities within the knowledge graph, but also mirror the cognitive processes involved
in human reasoning and comprehension.

Specifically, we present innovations in the realm of knowledge graph-based question
answering, encapsulating our novel architecture, the DSSAGN. Our contributions are
manifold, incorporating dependent syntactic analysis for a refined understanding of ques-
tions, graph convolutional networks (GCNs) for capturing intricate entity relationships, a
KG Embedding Generator for advanced entity and relation embeddings, and an Answer
Scoring Module for precise answer identification and ranking. These elements collectively
propel DSSAGN beyond the current state-of-the-art, showcasing superior performance in
multi-hop reasoning tasks through a synergistic approach that marries syntactic clarity
with semantic depth and graph-based insights. The detailed source code is available at
https://github.com/USTBSCCE1028/DSSAGN (accessed on 6 April 2024).

2. Materials and Methods
2.1. Materials
2.1.1. Dataset and Settings

In the experimental setup, two benchmark datasets are utilized to evaluate the perfor-
mance of knowledge graph question answering tasks, which include CommonsenseQA [10]
and OpenbookQA [6]. Success in these tests demands a deep grasp of world knowledge
that surpasses mere textual comprehension. CommonsenseQA challenges users with a
requirement for diverse kinds of commonsense reasoning. It generates its questions using
elements from ConceptNet, aiming to explore the underlying complex relationships among
these elements within ConceptNet’s framework. OpenBookQA adopts the structure of an
open-book test to evaluate an individual’s grasp of a subject. Accompanying the queries
are 1326 points of scientific knowledge tailored for elementary school education. Around
6000 crafted questions aim to test the comprehension of these knowledge points and their
adaptability in unfamiliar situations. The data set in the experiment was divided as shown
in Table 1.

Table 1. Partitioning of the data set in the experiment.

Dataset Training Set Test Set Validation Set

CommonsenseQA 9741 1140 1221
OpenbookQA 4957 500 500

In addition, our evaluation uses ConceptNet, a knowledge graph across multiple
domains proposed by Speer et al. [29], as an external knowledge base to assess the model’s
ability to utilize structured knowledge sources.

The initial configuration for training neural network models employs several key
parameters designed to optimize performance and efficiency. Central to these settings
is the use of the Adam optimizer, which is popular in deep learning applications due
to its adaptive learning rate feature. The learning rate is set to 5 × 10−4, a value that
balances the risk of rapid convergence and minimization of the overshooting loss function.
The batch size is set to 128, which is large enough to ensure that each batch captures
representative samples of the dataset’s diversity and thus stabilizes the gradient update.
The training process was designed to run continuously for 30 epochs. This predetermined
length of training time allows the model enough time to learn from the data and adjust the
weights to effectively minimize the loss function. The discard rate is set to 0.3, a technique
that prevents the network from over-relying on any one neuron, thus reducing model
redundancy. Finally, BatchNorm (batch normalization) is enabled. It reduces internal
covariance bias by normalizing the inputs of each layer, thereby increasing the learning
rate, reducing the model’s sensitivity to initialization, and ultimately speeding up the
training process.

https://github.com/USTBSCCE1028/DSSAGN
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2.1.2. Experimental Environment

In this study, the DSSAGN model was built using the deep learning framework
PyTorch, a Python3.7-based scientific computing library that provides highly flexible deep
learning tools that support dynamic computational graphs and static computational graphs.
The experimental environment and parameter settings are shown in Table 2 below.

Table 2. Experimental platform and environmental parameters.

Computer
Information

Operating System Windows 10 64-bit

CPU Intel(R) Core (TM) i5-8265U CPU @ 1.60 GHz
(8 CPUs) ~1.8 GHz

GPU RTX 3060

RAM 16 GB

Toolkit Python 3.7

Numpy 1.21.5

Scikit_Learn 1.0.2

Pandas 0.25.1

Torch 1.12.0

Matplotlib 3.5.2

2.2. Methods

This section presents the details of the DSSAGN framework designed for knowledge
graph question answering (KGQA) tasks, as illustrated in Figure 1. The framework in-
corporates various components and strategies, including a feature extractor, dependent
syntactic analysis, graph neural network, graph embedding generator, and an answer
scoring module.
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The initialization vectors of the question text are extracted using the BRET pre-training
model [30], which is a popular word embedding learning method that incorporates lo-
cal contextual information to learn word vectors. The Q&A text is fed into the KG to
extract the entities associated with the text. BiLSTM works by reading an input sequence
forward and backward twice to obtain context-sensitive hidden states at each time step.
Specifically, for the input sequence {x1, x2, x3, . . . , xn} (where n is the number of words
in the sequence), BiLSTM will generate a series of hidden states, H = {h1, h2, h3, . . . , hn}.
The GCN network [22] leverages the structure of the graph to capture the relationships
between nodes by aggregating and passing information across the nodes within the graph.
Within the structure of G = (V, E), where each vertex, v, is endowed with a feature, x, the
graph convolutional network (GCN) is employed to construct a representational vector,
h, for every vertex. The updating mechanism of each vertex’s representation leverages
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both the features of the vertex itself and the representations of its neighboring vertices. By
iterating this mechanism, the representations of the vertices are progressively enriched to
encapsulate the local and global attributes of G = (V, E).

2.2.1. KG Embedding Generator

In our study, inspired by the outstanding results demonstrated in previous work,
especially those of EmbedKGQA [31] and Rce-KGQA, proposed by Jin et al. [32], we
explore the use of knowledge graph (KG) embedding techniques to solve some problems
that are difficult to cope with through traditional methods, such as the inference of implicit
relations and the handling of subgraph localization. We found that by embedding the global
relational knowledge and structural information of KG into a continuous low-dimensional
space, we can not only simplify the processing flow of KG, but also expect to improve the
overall accuracy of the question answering process.

In this work, we adopt the method of mapping entities and relations in KG into
a low-dimensional continuous vector space to obtain a sparse representation of these
elements. In particular, we employ the Complex Embeddings model [33], which maps
entities and relations into a complex vector space, in conjunction with considering semantic
associations between elements. Compared to previous KG embedding techniques such as
TransE [34] and its variants, semantic matching models such as ComplEx typically provide
superior performance.

In the initialization phase of the embedding, the vector representations of all KG
elements are randomly selected from a uniform distribution. The embedding dimensions of
entities and relations are usually set to be no less than 100, and 200 dimensions are chosen
in this study to be consistent with related studies. The training process involves extracting
positive example fact triples of real-world relations from the KG while introducing false fact
triples in the negative example generation step through negative sampling, i.e., randomly
replacing tail entities or relations. This method helps the model learn to distinguish between
true and false relationships.

Further analysis by Trouillon et al. points out that increasing the number of nega-
tive samples usually improves model performance. An appropriate ratio of positive to
negative samples of about 1:50 balances both inference accuracy and training overhead.
This empirical setting was followed in this study. For each relational triple T, O ∈ ε and
Q ∈ R, our embedding method assigns it to a representation vT , vQ, vO ∈ Cd in the d-
dimension complex vector space, and the scoring function is computed according to the
following definition:

∅(T, Q, O) = Re
(
< vT , vQ, vO >

)
= Re

(
d
∑

k=1
v(k)T v(k)Q v(k)O

)
(1)

∅(T, Q, O) > 0 ∀{T, Q, O} ∈ A (2)

∅
(
T, Q, O

)
< 0 ∀

{
T, Q, O} /∈ A (3)

where Re(·) denotes the real portion of a complex number, while vO indicates the complex
conjugate of a specified target entity, vO. Moreover, Q′ and O′ are used to denote sets of
alternative triples; these are generated by selecting incorrect relations or tail entities at
random, respectively. {T, Q, O} refers to a relational triple composed of entities T, O and
relation Q. Set A aggregates all the triples that reflect real-world knowledge.

Our goal is to optimize specific formulas to reduce the scores of false triples with
negative values, while increasing the scores of true triples with positive values. This
optimization process can be smoothly executed in each training round by stochastic gradient
descent (DAD) or the Adam optimizer. In this way, the initial structural and relational
information in the knowledge graph (KG) is preserved in the learned vectors, which
effectively supports the execution of various downstream applications.
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2.2.2. Dependent Syntactic Analysis Module

The feature vectors output from BiLSTM are fed into the dependency syntactic anal-
ysis module to obtain new feature representations. Dependency syntactic analysis is
used to parse natural language sentences with the aim of revealing the dependencies
between words. Specifically, a dependency tree is constructed, where each node repre-
sents a vocabulary word and each edge represents a syntactic dependency between words,
forming a structured sentence representation. Its core objective can be expressed by the
following formula:

L = ∑
(i,j)∈E

log P
(
rij
∣∣wi, wj, θ

)
(4)

where L symbolizes the log-likelihood of a sentence’s dependency tree, with E representing
the collection of edges where each edge (i, j) signifies a dependency from word i to word j.
Here, rij is defined as the relationship type between word i and word j, while wi and wj
correspond to the lexical representations of word i and word j, respectively. θ denotes the
parameters of the model.

The analysis process starts with the identification of the main verb of the sentence,
progressively identifies the words directly associated with it (e.g., subject, object), and
so on, until every word in the sentence is fully parsed. This process relies on a set of
predefined grammatical rules and patterns that are based on a large amount of corpus data
and in-depth linguistic theory.

2.2.3. Graph Convolutional Network

After obtaining the vector representations of BERT, we further input these vectors as
node features into the graph neural network. The graph neural network can efficiently
process graph structure data by iteratively updating the node representations to capture the
dependencies between nodes and the global structure of the entire graph. In this process,
the features of each node not only contain the semantic information of the original text, but
also incorporate the information of other nodes connected to it, resulting in a new node
representation that synthesizes the text content and graph structure information.

We employ a typical GNN variant, the graph convolutional network (GCN), for node
feature updating. For every node within the graph, the updated feature representation is
derived through a weighted aggregation of its features combined with those of its adjacent
nodes. This process is mathematically depicted as:

H(l+1) = σ

(
∼
D

− 1
2 ∼

A
∼
D

− 1
2

H(l)W(l)

)
(5)

where H(l) is the node identity matrix of layer l,
∼
A = A + IN is the adjacency matrix A of

the graph plus the unit matrix IN ,
∼
D is the diagonal node degree matrix, W(l) is the weight

matrix of the layer, and σ is the activation function.

2.2.4. Answer Scoring Module

In this study, we employ a scoring mechanism that aims to rank each potential answer,
t, based on a combined score of all possible knowledge graph (KG) entity pairs (i.e., topic
entities and relationships). The formula is as follows:

Rank(O) =

{
max(∅(T, Q, O)), ∀O ∈ A
min(∅(T, Q, O)), ∀O /∈ A

(6)

This process utilizes the complex scoring function proposed by Trouillon et al. [33],
which seeks to optimize the model such that the likelihood of a positive sample t being
included in set A is increased, while simultaneously reducing the score for any negative
sample t′ (not included in A). Here, A denotes the set comprising all real-world knowledge
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triples. It is crucial to note that to preserve the stability of the pre-trained knowledge graph
entity embeddings, these embeddings are not altered during the model training phase.

Our approach doesn’t just seek a balance between accuracy and recall; it implements
a strategy that initially filters answers by setting a threshold of n (options are 5, 10, and
15). This is aimed at identifying candidate answers with high recall but moderate scores.
In the inference phase, we assign a likelihood score to each candidate answer to reflect its
credibility as the correct answer and screen out those top-ranked n but centered scoring
candidates for further relational chain inference analysis.

The design of this method takes into account the adaptability of the actual relational
properties and ensures that the model can efficiently process and analyze complex knowl-
edge while progressively optimizing the model.

3. Results

This section presents the outcomes of comparative experiments, highlighting the
efficacy of the DSSAGN framework. Additionally, an ablation study is conducted to assess
the performance of each newly introduced architecture detailed within this document.

To enhance clarity and comprehension for our readers, we introduce a comprehensive
overview of the evaluation metrics employed in our study. The metrics are as follows:

Accuracy (Acc.): This metric calculates the percentage of questions for which the
model identified the correct answer out of the total questions posed. Given the task’s
emphasis on precise answer retrieval, accuracy serves as a primary indicator of the model’s
performance in correctly leveraging the knowledge graph for question answering.

Interpretability Index (II): A novel metric introduced in this study, measuring the ease
with which the reasoning process of the model can be understood by human observers.
The II is crucial for evaluating how well the model’s decision-making process can be traced
and comprehended, reflecting our research’s objective to not only improve answer accuracy
but also enhance transparency in reasoning.

3.1. Comparative Experiments

For a rigorous assessment of performance, various baseline models were chosen for
benchmarking in comparative experiments against our proposed model. The selected
baseline models are outlined as follows:

The R-GCN framework [35] is proposed for link prediction and entity classification
tasks. It introduces parameter sharing and enforces sparsity constraint techniques to apply
R-GCN to multi-graphs with a large number of relations.

The GconAttn framework [36] utilizes a combination of techniques for external
knowledge to improve the performance of leaderless intelligence problems in scientific
problem domains.

KagNet [37] is a textual reasoning framework designed to handle common sense-
based queries that enables an interpretable reasoning process by integrating an external
structured commonsense knowledge graph.

MHGRN [38] provides a new knowledge-aware approach that performs multi-hop
multi-relational reasoning on subgraphs extracted from external knowledge graphs.

Rce-KGQA [26] has been introduced to discern inferential connections between topical
entities and their answers within a knowledge graph (KG), leveraging both the explicit
relation chains presented in user-posed questions and the implicit relation chains embedded
within the structured KGs.

The results of the comparison experiments between the proposed model and other
models are shown in Table 3.

In summary, the DA model framework demonstrated superior performance over
the standard benchmark model. Specifically, within the CommonsenseQA dataset, the
DA model enhanced the accuracy of answering knowledge graph-based questions by
approximately 2% more than competing models, with validation set accuracy increasing by
around 1.7% and test set accuracy by roughly 2.1%. When applied to the OpenbookQA
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dataset, the DA model framework showed an improvement in Q&A accuracy related to
knowledge graphs by about 1% over alternative models. These outcomes underscore the
DSSAGN framework’s effectiveness in elevating performance across knowledge graph
Q&A challenges. Most importantly, the BERT model is able to capture rich contextual
information, and the design and combination with the dependent syntax approach and
the GCN allow the model to more thoroughly understand the semantic information in the
problem text. In this way, our framework not only utilizes the powerful representational
capabilities of BERT, but also obtains a deeper understanding of the semantics through
dependent syntax and GCN, making full use of the representational capabilities of the entire
model. The KG Embedding Generator utilizes an external KG to embed related entities
into a continuous low-dimensional space method, facilitating the inference of implicit
relationships that may not be directly observed in the data. Additionally, the embedding
process simplifies the identification and processing of relevant subgraphs in the KG. This
is important for focusing on specific parts of the knowledge graph that are relevant to
the query, thus improving the efficiency and accuracy of the response. In addition, the
answer scoring module keeps the knowledge graph entity embeddings unchanged during
the model training process, which helps to maintain the stability of the model and the
validity of the pre-trained embeddings and improves the accuracy of question answering
by more precisely identifying the most likely correct answer with comprehensive scoring
and ranking of all potential answers.

Table 3. Performance of comparative experiments.

Model
CommonsenseQA OpenbookQA

IHdev-Acc. (%) IHtest-Acc. (%) Dev-Acc. (%) Test-Acc. (%)

R-GCN * [35] 56.72 (±0.42) 53.90 (±0.62) 63.51 (±1.81) 61.83 (±1.60)
GconAttn * [36] 56.37 (±0.72) 53.64 (±0.78) 62.62 (±1.07) 61.21 (±2.14)
KagNet * [37] 55.77 (±0.50) 56.39 (±0.53) 64.77 (±1.17) 61.83 (±2.05)

MHGRN * [38] 60.12 (±0.33) 56.93 (±0.72) 67.40 (±1.33) 66.15 (±1.45)
Rce-KGQA * [32] 61.52 (±0.42) 59.18 (±0.63) 67.72 (±1.13) 66.45 (±1.29)

DSSAGN framework * 63.22 (±0.20) 62.35 (±0.45) 68.52 (±0.93) 67.38 (±1.05)

All asterisks (*) denote results run on the local machine. For the CommonsenseQA dataset, we used the results
of the evaluations performed on the internal development set (IHdev) and the test set (IHtest) based on the
data partitioning defined by Lin et al. [37]. This includes the average accuracy of the four runs and their
standard deviations.

Additionally, we conducted a comparative experiment on training time and testing
time, comparing our model with the current advanced models. The purpose of this
experiment was to evaluate not only the accuracy and effectiveness of each model in
processing and answering questions based on knowledge graphs, but also the efficiency in
terms of computational resources and time required for training. This is shown in Table 4.

Table 4. Efficiency of comparative experiments.

Model
CommonsenseQA OpenbookQA

Training Time (min) Testing Time (min) Training Time (min) Testing Time (min)

R-GCN * [35] 25.90 6.23 24.85 4.66
GconAttn * [36] 24.66 5.68 23.60 4.08
KagNet * [37] 22.05 4.88 19.55 3.26

MHGRN * [38] 21.25 4.45 19.03 3.05
Rce-KGQA * [32] 19.30 3.85 17.26 2.43

DSSAGN framework * 21.21 4.33 17.21 2.12

All asterisks (*) denote results run on the local machine.

In terms of efficiency, the DSSAGN framework performs slightly differently in terms of
training and testing time on the two datasets. On the OpenbookQA dataset, which has the
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shortest testing time, DSSAGN is the most efficient, while on the CommonsenseQA dataset,
DSSAGN has the second highest efficiency and has a similar training time as the fastest
model, Rce-KGQA. This small difference highlights the robustness and adaptability of the
DSSAGN framework across different datasets and tasks. It emphasizes the framework’s
ability to maintain a balance between computational efficiency and accuracy, not only
ensuring fast processing times but also maintaining a high level of accuracy. This balance is
crucial for real-world applications where both accuracy and computational efficiency in
answering knowledge graph-based questions are critical.

3.2. Ablation Study

This section outlines a set of ablation studies designed to ascertain the discrete impact
of each component on the overall efficacy of the proposed model. The objective of these
experiments is to assess the utility of different modules when configured as follows:

Model 1: Excludes the dependent syntax module, relying solely on the features
generated by BiLSTM combined with the outputs from GCN. This setup allows for a direct
comparison with variants incorporating the dependency syntax approach.

Model 2: The answer scoring module is replaced with a fully connected layer as a
predictor. In this configuration, we can compare it with the version that employs the answer
scoring module strategy.

Model 3: Omits the GCN module, utilizing only the outputs from the dependent
syntax module in tandem with the representations produced by EERT. This allows for
evaluation against configurations that include the GCN component.

Based on the data presented in Table 5 for both the CommonsenseQA and Open-
bookQA datasets, several key observations can be made:

Table 5. Ablation experiments for the proposed model.

Model
CommonsenseQA OpenbookQA

IHdev-Acc. (%) IHtest-Acc. (%) Dev-Acc. (%) Test-Acc. (%)

Model 1 61.35 (±0.38) 60.52 (±0.73) 66.40 (±1.64) 65.65 (±1.88)
Model 2 61.58 (±0.42) 61.88 (±0.67) 66.90 (±1.35) 65.91 (±1.47)
Model 3 62.67 (±0.25) 61.93 (±0.36) 67.89 (±1.03) 66.31 (±1.21)

DSSAGN framework 63.22 (±0.20) 62.35 (±0.45) 68.52 (±0.93) 67.38 (±1.05)

Firstly, eliminating the dependent syntax module significantly impacts the accuracy of
the KGQA task, leading to a reduction in the overall accuracy for the CommonsenseQA
dataset by approximately 2% and a similar decrease of about 2% for the OpenbookQA
dataset. Furthermore, substituting the answer scoring module with a fully connected
prediction layer results in a decline of roughly 1.5% in the overall accuracy for Common-
senseQA and about a 1.6% decrease for OpenbookQA. Lastly, the removal of the GCN
module causes a decrease in overall accuracy by around 0.5% for CommonsenseQA and
about 0.8% for OpenbookQA. Dependency syntax plays a more crucial role in the model’s
understanding of semantic information. The model interprets the intention of the sen-
tence more accurately by revealing the dependency relationship between words, and the
constructed dependency tree provides a structured representation of the sentence, which
enables the model to better understand the deeper meanings and complex structures of
the sentence. The answer scoring module also has a significant effect on the model’s
performance. It reduces the interference of low-quality answers by setting the screening
threshold and preliminary filtering of candidate answers and keeps the knowledge graph
entity embeddings unchanged during the model training process, which helps to maintain
the stability of the model and the effectiveness of the pre-trained embeddings. In addition,
the removal results of the GCN module show that graph convolutional networks play an
important role in combining textual semantic information and graph structural information,
further enhancing the accuracy and robustness of the Q&A system.
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In summary, these experiments not only validate the importance of individual modules
in enhancing the model’s ability to handle complex Q&A tasks, but also emphasize the
synergies of these components with each other, which together form an efficient and
accurate Q&A framework.

4. Discussion

This study provides insights into the performance of our proposed DSSAGN frame-
work and the contribution of its individual modules to the performance of the knowledge
graph quizzing (KGQA) task through a series of comparative and ablation experiments.
The experimental results clearly show that the DSSAGN framework outperforms the cur-
rent baseline model. Furthermore, the removal of the dependent syntactic analysis module,
the answer scoring module, and the graph convolutional network (GCN) module all lead
to significant degradation of the model’s performance, which attests to their importance in
improving the model’s understanding of complex Q&A tasks.

The enhanced interpretability of the DSSAGN framework is a pivotal advancement
over existing approaches, primarily attributed to its unique integration of syntactic and
semantic analysis within the knowledge graph domain. The core of this advancement
lies in the dependency syntactic analysis module, which provides a systematic extraction
and representation of syntactic dependencies between words. This explicit representation
facilitates a deeper comprehension of the query structure, enabling the model to map textual
queries to their semantic equivalents within the knowledge graph with high precision
and transparency.

In particular, the dependency syntax analysis module enhances the model’s under-
standing of deeper meanings and complex structures of sentences by revealing dependen-
cies between words. The answer scoring module effectively improves answer accuracy
and system robustness by comprehensively scoring and ranking candidate answers, while
the GCN module further enhances the performance of the Q&A system by combining the
semantic information of the text and the structural information of the knowledge graph.

Moreover, the synergy between the dependency syntactic analysis and the graph
convolutional networks within DSSAGN further enriches the model’s interpretability. The
graph convolutional layers, informed by the structured syntactic representation, are adept
at capturing the intricate relationships between entities within the knowledge graph. This
dual-layered approach—combining syntactic clarity with semantic depth—provides a
clear and coherent framework for understanding how the model navigates through the
knowledge graph to arrive at an answer. DSSAGN enriches its model by integrating
external knowledge graphs, a design that allows the model to adapt to and utilize larger
or more comprehensive external knowledge graphs to enhance its performance. As the
external knowledge graph expands, DSSAGN is able to access richer information and
relationships to more accurately understand and answer complex queries. As a result,
DSSAGN has the potential to demonstrate superior performance on both existing datasets
and larger datasets that may emerge in the future. This approach based on the integration
of external knowledge graphs ensures the scalability and flexibility of the model in dealing
with diverse and complex problems and is a key factor in its ability to maintain high
performance on different datasets.

In addition, DSSAGN demonstrates its uniqueness in dealing with knowledge graph
problems compared to larger language models, such as LLaMA. DSSAGN achieves efficient
computation through a smaller number of model parameters, which reduces the demand for
computational resources to a certain extent and makes it more suitable for resource-limited
environments. In addition, DSSAGN directly integrates with an external knowledge base, a
design that allows the model to utilize the rich knowledge graph information to enhance the
accuracy and depth of question answering, especially in scenarios that require multi-hop
reasoning and complex relationship understanding. A clear advantage of DSSAGN over
approaches such as LLaMA, which rely on massive amounts of data and complex network
structures to improve model performance, is the time-efficiency of its training and inference
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processes. With a smaller number of parameters, DSSAGN is more flexible and faster in
updating and optimizing.

In summary, through the in-depth analysis and validation of the key components in
the DSSAGN framework, this study clearly demonstrates the importance and effectiveness
of these components for enhancing the performance of knowledge graph Q&A, providing
valuable insights and methodologies for further optimizing the Q&A system.

5. Conclusions

In summary, our proposed DSSAGN framework demonstrates significant effective-
ness and innovation in handling knowledge graph question-answering tasks. Through
a well-designed combination of modules, such as dependent syntactic analysis, answer
scoring, and graph convolutional networks, the framework not only improves the depth
and breadth of question comprehension, but also significantly enhances the accuracy of
the quiz and the robustness of the system. The results of the ablation experiment further
validate the importance of each module and the synergistic effect between them, providing
valuable insights for future research and development in complex Q&A systems.

This study also demonstrates the importance of combining textual semantic infor-
mation and knowledge graph structural information, proving the effectiveness of this
combination in improving the performance of Q&A systems. Moreover, with the contin-
uous expansion and enrichment of external knowledge graphs, DSSAGN is expected to
further improve its performance and realize deeper semantic understanding and more
accurate information retrieval. In addition, as technology advances and knowledge do-
mains expand, larger and more comprehensive knowledge graphs are expected to emerge,
providing DSSAGN with richer information sources. This will enable DSSAGN to not
only provide more accurate answers, but also to understand and answer more complex
multi-hop quizzing tasks. With the rapid development of knowledge graphs in various
domains, we believe that the methodology and findings presented in this study will provide
important references and insights for future research and applications of knowledge graph
Q&A tasks.
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