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Abstract: To accurately assess students’ cognitive state of knowledge points in the learning process
within the smart classroom, a knowledge tracing (KT) model based on classroom network charac-
teristic learning engagement and temporal-spatial feature fusion (CL-TSKT) is proposed. First, a
classroom network is constructed based on the information of the student ID, seating relationship,
student–student interaction, head-up or head-down state, and classroom network characteristics
obtained from a smart classroom video. Second, a learning engagement model is established by
utilizing the student–student interactions, head-up or head-down state, and classroom network
characteristics. Finally, according to the learning engagement model and the knowledge point test
data, a parallel temporal attention GRU network is proposed. It is utilized to extract the temporal
features of the knowledge points and learning engagement. They are fused to obtain the knowledge
point-learning engagement temporal characteristics and their associated attributes. Meanwhile, a
CNN is used to extract the knowledge point-knowledge point spatial features. We consider the
associative properties of knowledge point-knowledge points from a spatial perspective and fuse the
knowledge point-knowledge point spatial features with the knowledge point-learning engagement
temporal features. To accurately characterize the cognitive state of the knowledge points and provide
effective support for teachers’ accurate and sustainable interventions for learners in the teaching
and learning process, this paper conducts extensive experiments on four real datasets. The CL-TSKT
model in this paper shows superior performance in all four evaluation metrics, compared with the
state-of-the-art KT models.

Keywords: knowledge tracing; classroom network characteristics; learning engagement; temporal-spatial
feature fusion; sustainable interventions

1. Introduction

In today’s competitive educational environment, it is critical to improve students’
learning outcomes. The cognitive state, on the other hand, is one of the most important
indicators of a student’s learning effectiveness. Teachers analyze students’ cognitive states.
This helps to understand how students respond to the content and format of the class-
room and optimize the classroom format for improved student learning outcomes. It also
provides individualized intervention approaches for different students. Meanwhile, a
large number of researchers have analyzed students’ cognitive states in terms of the KT
models. Janssen et al. [1] proposed an item response theory (IRT) that describes a student’s
cognitive state as a one-dimensional competence value. The cognitive states of students
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were also modeled in combination with the difficulty and differentiation of the test ques-
tions. Li et al. [2] proposed a knowledge relation rank enhanced heterogeneous learning
interaction model. Graph convolutional networks (GCNs) are used to capture the complex
interactions between exercises and knowledge points.

However, existing knowledge tracing (KT) models were limited to tracking and pre-
dicting student performance based on test data from students on online education platforms.
At the same time, offline teaching methods are still the mainstay of current education meth-
ods, and there is a correlation between students’ cognitive states and multiple factors in
smart classrooms. These factors include learning engagement, interactions between stu-
dents, and the environment in which they are located [3,4]. Therefore, existing knowledge
tracing models, when applied to complex smart classroom environments, will expose the
limitations of single-dimensional data analysis. Characterizing students’ cognitive states by
comprehensively considering their learning engagement characteristics in smart classroom
environments can lead to better understanding and facilitate their learning process.

Learning engagement reflects the degree of students’ attention and participation in
a learning task. To some extent, it reflects the state of student learning [5]. Hu et al. [6]
constructed a classroom video database based on noninvasive classroom video. They used
YOLOV5 to analyze and assess student behavior and gauge students’ learning engagement
in the classroom. At the same time, students are easily influenced by the students around
them in the classroom learning process, and this implicit impact is often reflected in students’
classroom learning statuses and academic performance. Lu et al. [7] found that there was
a significant effect from students’ seating choices on classroom learning engagement.
Putnik et al. [8] found that there was also a significant correlation between student learning
outcomes and social network structure characteristics. Xiang et al. [9] proposed a method
for evaluating students’ attention based on emotional evolution and viral transmission.
It showed that students’ attention in the spatial dimension of the classroom was affected
by a different area of negative and positive emotions. Rijsewijk et al. [10] analyzed the
helping relationships among students. It was found that there was an association between
academic achievement and the unbalanced distribution of classroom helping relationships.
Gutierrez et al. [11] found that effective seating arrangements promoted social interaction
and classroom participation. Li et al. [12] proposed a one-of-a-kind model of emotion
transmission determined by students’ facial expressions. It showed that there was student-
to-student propagation of learning emotions in the classroom network, thereby affecting
individual learning.

In summary, students’ cognitive states in smart classrooms are influenced by mul-
tiple factors and difficult to accurately characterize. This paper is based on classroom
network characteristic learning engagement and knowledge point test data. A knowl-
edge tracing model based on classroom network characteristic learning engagement and
temporal-spatial feature fusion (CL-TSKT) is proposed. a parallel temporal attention GRU
network is proposed. It is utilized to extract the temporal features of knowledge points and
learning engagement. They are fused to obtain the knowledge point-learning engagement
temporal characteristics and their associated attributes. Meanwhile, a CNN is used to
extract the knowledge point-knowledge point spatial features. We consider the associative
properties of knowledge point-knowledge points from a spatial perspective and fuse the
knowledge point-knowledge point spatial feature with the knowledge point-learning en-
gagement temporal feature, achieving accurate characterization of learners’ cognitive states
in smart classrooms.

This paper consists of the following main contributions:

1. For accurately assessing student learning engagement in smart classrooms, a learning
engagement model utilizing student–student interactions, student head-up states,
and classroom network characteristics is proposed.

2. A temporal-spatial feature fusion algorithm is proposed. A parallel temporal atten-
tion GRU network is designed which is utilized to extract the temporal features of
knowledge points and learning engagement. They are fused to obtain the knowledge
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point-learning engagement temporal characteristics and their associated attributes.
Meanwhile, a CNN is used to extract the knowledge point-knowledge point spatial
features. We consider the associative properties of knowledge point-knowledge points
from a spatial perspective and fuse the knowledge point-knowledge point spatial fea-
tures with the knowledge point-learning engagement temporal features. To maintain
the integrity of the characterization information, the model incorporates classroom
network characteristic learning engagement and knowledge point test data to analyze
the cognitive states. It avoids the limitations of single-dimensional data analysis and
can more accurately characterize learners’ cognitive states.

3. Extensive experiments are conducted on four real datasets. They show that the
CL-TSKT model proposed in this paper has advantages over the state-of-the-art
knowledge tracing algorithms.

The remainder of the paper is organized as follows. Section 2, “Related Works”,
describes the research on knowledge tracing. Section 3, “Problem Definitions”, describes
the algorithm-related definitions and calculations. Section 4, “CL-TSKT Model”, describes
the CL-TSKT model’s architecture in detail. Section 5, “Analysis of Experiments and
Experimental Results”, provides a comparative analysis of the experimental results to
evaluate the performance of the algorithm. Finally, Section 6, “Conclusions and Future
Work” is a summary and outlook of the work.

2. Related Work

The KT model is designed to measure a student’s level of knowledge based on the
student’s historical interactions. Existing KT models are mainly categorized into statistics-
based and deep learning-based models. De et al. [13–16] proposed different DINA models
based on students’ test situations and knowledge point correlation matrices, and they mod-
eled the students’ cognitive states as state vectors of multidimensional knowledge points.
Statistics-based KT models could make predictions interpretable. However, students’ cog-
nitive abilities could not be assessed dynamically, and the accuracy of the predictions
was low. With the rapid development of deep learning, and to address the low predictive
accuracy of traditional KT models and the inability to adaptively predict students’ cognitive
states, a seminal model, the KT model (DKT), was proposed by Piech et al. [17], based
on recurrent neural networks (RNNs). As the first demonstration of the effectiveness and
potential of deep learning for KT tasks, it solved the problem that traditional models could
not learn the characteristics of knowledge relationships autonomously. Ghosh et al. [18]
used exponential decay and the context-aware relative distance to compute the attention
weights and enhance model feature extraction. Better prediction performance than that
of the DKT model was obtained. To address the problem of weak modeling of knowl-
edge point relationships, Yang et al. [19] proposed a novel quantitative relationship neural
network for the explainable cognitive diagnosis model (QRCDM). It used explicit and
implicit correlations between exercises and corresponding knowledge concepts to calculate
student errors and guesses. Sequence modeling KT models took the lead in analyzing
students’ knowledge states from test data and have achieved some success in the KT field.
However, the limitations of single-dimensional data analysis have led a large number of
researchers to consider adding data features outside of the test data so as to improve the
model prediction performance.

Therefore, Xiao et al. [20] proposed a knowledge tracing model based on multi-feature
fusion (KTMFF). It combined features such as the practice texts and test consumption time,
and it fused multiple features using a multi-head self-attention mechanism. Liu et al. [21],
by incorporating the relationship between students’ knowledge states, knowledge con-
cepts, and exercises, modeled students’ cognitive responses using a log-linear model.
Huang et al. [22] proposed a knowledge tracing model based on temporal and causal
enhancement. Meanwhile, a causal self-attention mechanism based on the theory of front-
door adjustment was introduced to enhance the interaction representation. It effectively
incorporated interval and response features into the model. Text-aware KT models took
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into account textual content and analyzed the tiers of difficulty, which was effective in
increasing the accuracy of predicting student performance. However, because of the lack
of uniformity between datasets and the difficulty of marking up text, it was not widely
available for use.

To address the interpretability of KT models and the presence of student forgetfulness,
Jiang et al. [23] applied Markov blankets to the KT model. The method used Markov blan-
kets of the target variable as a subset of the features, and interpretable machine learning
techniques were applied to the KT model to improve the interpretability of the models.
Lee et al. [24] proposed a KT model where contrastive learning reveals semantic similarity.
To address the issue of their under-consideration, Im et al. [25] proposed the Forgetting-
Aware Linear Bias (FoLiBi) and applied it to the KT model based on a contrastive learning
framework (CL4KT). For the heterogeneity of course knowledge structures and the sparse-
ness of interaction records, Ni et al. [26] proposed the learner–question interaction-based
heterogeneous graph neural network (HHSKT) model and enhanced modeling by using
hierarchical heterogeneous knowledge structures and short-term memory. It obtained
the effects of different sequences of practice interactions on learners’ knowledge states.
Forgetting-aware KT models took into account the presence of learning forgetting behav-
iors in students. However, it made inferences based primarily on students’ practiced
responses to the questions, and the reality of the knowledge state is often complex and
ambiguous. Therefore, considering forgetting behavior in a single-answer situation would
lack reliability.

With the rapid development of graph neural networks and their progress in spatial
information feature extraction, Wu et al. [27] proposed a KT model based on session graphs,
and the gated graph neural network was utilized to obtain the students’ knowledge state
from the session graphs. To address the problem that existing KT models ignore the corre-
lation between multiple knowledge concepts in exercise, Huang et al. [28] proposed neural
Turing machine-based skill-aware knowledge tracing (NSKT). It modeled students’ states
of knowledge more accurately by capturing potential correlations between knowledge
concepts in the exercises. For the inability of most knowledge tracing methods to cap-
ture coarse-grained inter-type associations, Zhao et al. [29] proposed a graph-enhanced
multi-activity KT (GMKT) model. It modeled student cognition by jointly learning a fine-
grained recurrent memory-enhanced model of student knowledge and a coarse-grained
graph neural network. Graph-based KT models could be effective in learning knowledge
point-knowledge points and knowledge point-exercise representations, and it has achieved
some success in the extraction of spatial feature information. However, graph networks are
constructed on the premise that connections between data need to be made in advance and
preconstructed at the time of input. Thus, the scope of use was limited.

Based on the above analysis of KT models, this paper provides an overview of the
relevant research models, as shown in Table 1.

In summary, to address the difficulty of existing KT models in characterizing the
cognitive states of students in smart classrooms, this paper is based on classroom network
characteristic learning engagement and knowledge point test data. For comprehensive
consideration of students’ learning engagement as influenced by the students around
them while learning in the smart classroom, a parallel temporal attention GRU network is
proposed. It is utilized to extract the temporal features of knowledge points and learning
engagement. They are fused to obtain the knowledge point-learning engagement temporal
characteristics and their associated attributes. Meanwhile, a CNN is used to extract the
knowledge point-knowledge point spatial features. We consider the associative properties
of knowledge point-knowledge points from a spatial perspective and fuse the knowledge
point-knowledge point spatial features with the knowledge point-learning engagement
temporal features, achieving accurate knowledge tracing.
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Table 1. Summary of relevant research models.

Models Paper Numbers Advantages Limitations

Traditional
KT models [1,13–16] Highly interpretable Static diagnostics, multiple knowledge

points difficult to interpret

Sequence modeling
KT models [17–19] Improved prediction accuracy by fully

utilizing test data

Single-dimensional data analysis, lack
of consideration of other factors

affecting students’ cognitive states

Text-aware
KT models [20–22]

Full consideration of exercise data, with
different levels of difficulty associated

with text content

Poor harmonization of datasets and
difficulties in text tagging

Forgetting-aware
KT models [23–26]

Considering students’ presence of
learning forgetting behaviors based on

practice answer situations

Knowledge states in reality are often
complex and ambiguous, and

single-answer situation analysis of
forgetting lacks reliability

Graph-based
KT models [2,27–29]

Considering the spatial relationship
between knowledge point-knowledge
points, automatically acquiring side

rights, and updating cognitive abilities

The existence of data correlation
needs to be pre-assumed, and limited

scope of use

3. Problem Definitions
3.1. Symbol Definition

Based on the course data, the set of learners of a course is represents by
U = {u1, u2, . . . , un}. Here, n is the number of learners. The set of knowledge points
of the course is represents by KP = {kp1, kp2, . . . kpi, · · · kpk}, where kpi represents the
ith knowledge points (KPs), with a total of k knowledge points. The test set for the
course is represents by E = {e1, e2, . . . , em}, with a total of m test questions. The inclu-
sion relationship between the test questions and the knowledge points is represented
by the matrix Q =

(
qjk

)
∈ Rm×κ , in which qjk ∈ {0, 1} indicates whether test question

ej contains the knowledge point kpk. The test record for the learner ui is recorded as
Xi =

{
x1, x2, . . . , xm} ∈ Rm.

3.2. Modeling Learning Engagement Based on Classroom Network Characteristics
3.2.1. Learning Engagement

In smart classrooms, students’ head-up learning attention states usually correspond
to their engagement while learning. A higher head-up rate would be more reflective of
students being attentive and engaged in the classroom. Therefore, in a smart classroom, the
students’ heads-up learning states are monitored through the video surveillance system,
and through correlation analysis with learning engagement, teachers can better observe and
assess students’ learning states. Based on the analytical model proposed by Shou et al. [30]
for assessing learners’ head posture in smart classroom videos, the head-up rate of learner
ui during the duration of learning k knowledge points is obtained by

Luik =
t
m

(1)

Here, m represents the number of image frames extracted within the knowledge point,
and t represents the number of head-up frames. In this paper, the learner head-up rate
obtained from the head posture assessment model is used as the learning engagement in
smart classrooms.

3.2.2. Learning Engagement Based on Classroom Network Characteristics

In a smart classroom, it is easier for students with seats near each other to interact
socially and influence each other’s learning [31]. Therefore, the first step is to construct an
empowered and undirected network GUR = (U, EUR) of seating relationships in a single
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classroom based on the students’ classroom seating relationships. Here, U represents the
set of student nodes, EUR represents the set of edges, the purple circle represents a student,
and the black circles represent the empty positions in the class. This is shown in Figure 1.

Figure 1. Single classroom seating relationship network.

Second, in social networks, degree refers to the sum of the connected edges of the
nodes in the network. The greater the degree of a node, the higher the degree centrality of
the node, the more important the node is in the network, and at the same time, the greater
the influence on the nodes with which the node has existing connections [32]. The degree of
centrality DCui of nodes based on the constructed single-classroom empowered undirected
network of seating relationships is obtained as shown in the following equation:

DCui =
kui

N − 1
(2)

Meanwhile, in social networks, the frequency of interaction between nodes is also
an important factor which reflects the mutual influence between their nodes. The higher
the frequency of interaction, the higher the similarity between nodes [33]. Therefore, the
frequency of inter-node interactions is high. Their learning engagement during classroom
learning will be similar and more influenced by it. This paper obtains the frequency of
inter-node interactions Insui ,uj based on classroom video monitoring, and the interaction
frequency is normalized as shown in Equation (3):

Interui ,uj =
1
m

Insui ,uj (3)

Then, the nearest neighbor nodes around a node are selected as learning influence
factors based on the Nearest Neighbor Effective Distance Criterion (NEDC) [12]. The solid
box nodes in Figure 2 indicate the NEDC range’s nearest neighbor nodes that have a
learning influence on the node. Here, the arrow in Figure 2 represents the direction of the
student facing the blackboard.

Finally, considering the degree of centrality of students in the classroom network, the
Euclidean distance between students, and the frequency of interactions between students,
we calculate the side weights between students in a single classroom network. Thus, the
specific formulation of the network GUR = (U, EUR) of empowered and undirected seating
relationships for a single classroom is given in the following equation:

Edgeui ,uj = DCui + Interui ,uj + dui ,uj

U = {u0, u1, . . . , unt}, nt = student on attendance
EUR =

{ (
ui, uj

)
, Edgeui ,uj

∣∣ui, uj ∈ NEDC range
} (4)
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Figure 2. Effective distance of nearest neighbor relationship.

Here, dui ,uj is the weight corresponding to the edge
(
ui, uj

)
. This is specified as the

inverse 1√
(xi−xj)

2
+(yi−yj)

2 of the Euclidean distance between the ui and uj seat coordinates

(xi, yi),
(

xj, yj
)
. The Euclidean distance directly calculates the straight-line distance be-

tween two points in a two-dimensional space. This straight-line distance is in line with the
public’s most intuitive understanding of distance, and this calculation is quite intuitive and
easy to understand.

Based on a single-classroom network GUR = (U, EUR), the learner ui combines the
knowledge points k, learning engagement Lujk of the nearest neighbor influence nodes,
and the inter-node edge weights Edgeui ,uj within the lecture time. For the learners ui, the
learning engagement Netk

ui
, based on the classroom network characteristics, is calculated

as shown in the following equation:

Netk
ui
= 1

nt+1


nt
∑

j = 1
uj ∈ Eui R

(
Lujk•Edgeui ,uj

)
+ Luik


where Eui R =

{(
ui, uj

)
, Eui ,uj

∣∣∣uj ∈ u0−NEDC, nt = number o f NEDC ranges, j ∈ nt
}

(5)

Here, Eui R represents the set of nodes and edge weights within the nearest neighbor
influence of the learner ui, nt represents the number of nearest neighbor influencing nodes,
and Luik represents its own learning involvement.

4. CL-TSKT Model

The CL-TSKT model architecture is shown in Figure 3. There are two main sections: a
knowledge point and learning engagement temporal feature extraction module based on
parallel temporal attention GRU networks and a CNN-based knowledge point-knowledge
point spatial feature extraction module.

The knowledge point test sequences and the corresponding classroom network charac-
teristics of learning engagement are feature coded and fed into a parallel temporal attention
GRU network. This is utilized to extract the temporal features of knowledge points and
learning engagement. They are fused to obtain the knowledge point-learning engagement
temporal characteristics and their associated attributes. Meanwhile, the CNN is used to
extract the knowledge point-knowledge point spatial features. Considering the associative
properties of knowledge point-knowledge points from a spatial perspective, the knowl-
edge point-knowledge point spatial feature is fused with the knowledge point-learning
engagement temporal feature. Finally, the fused temporal-spatial feature tensor is input
into the fully connected layer for nonlinear mapping, and the knowledge tracing results
(KTRs) of students’ temporal knowledge points are obtained.
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Figure 3. CL-TSKT model framework diagram.

4.1. Temporal Attention-Based GRU Feature Tracking
4.1.1. GRU Feature Tracking

Gated recurrent unit structures (GRUs) are variants of RNNs. They are mainly used
for modeling time series data. They can effectively mitigate gradient disappearance and
explosion during the training process compared with RNNs, and the effect is better than
that of an RNN [34]. The GRU structure is shown in Figure 4.

Figure 4. Structure of GRU.

In this paper, the student’s record of questions is divided into sequences at intervals of
a fixed length. If the student’s record of questions is less than the length l, then the made
up value is zero. At the same time, the student test sequences are one-hot coded before
being entered into the GRUs. For example, the one-hot coding of the data for a particular
sequence of knowledge test questions is x. The specific expression is shown in Equation (6):
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x =



e1

e2

...
ei

...
el


=



0 1 · · · 0 0
1 0 · · · 0 0
...

... · · ·
...

...

1 1
. . . 1 0

...
... · · ·

...
...

0 1 · · · 1 0


l×(k×2)

(6)

Here, ei represents the vector of test questions with a serial number i taken by the
learner in relation to the knowledge point, 0 represents that the test question does not relate
to the knowledge point corresponding to this subscript, and 1 represents that it relates to
the knowledge point corresponding to this subscript.

Meanwhile, the classroom network characteristic learning engagement input code Net
corresponding to the sequence of knowledge point test questions is

Net =



net1

net2

...
neti

...
netl


=



0.6
0.7
...
0.5
...
0.8


l×1

(7)

Here, neti represents the classroom network characteristic learning engagement within
the learning duration of the learner engaging with the test question with the serial number
i for the knowledge point involved.

According to the characteristic coding of the above data. the input data are subjected to
temporal feature extraction using a GRU. Here, the reset gate ri

u and update gate zi
u realize

the selective forgetting of the previous moment information and selectively memorize
the current moment information as the current moment output. The calculation is shown
in Equation (8):

ri
u = Sigmoid

(
Wr ×

[
hi−1

u , xi
u
])

zi
u = Sigmoid

(
Wz ×

[
hi−1

u , xi
u
]) (8)

The information ri
u after the reset gate, the input information xi

u, and the information
hi−1

u from the previous moment are concatenated, and the output is updated to obtain the
updated feature vector h̃i

u as shown in Equation (9):

h̃i
u = Tanh(

∼
W ×

[
ri

u × hi−1
u , xi

u

]
) (9)

Finally, the feature information after passing through forgetting and memorizing is se-
lectively summed and fused to obtain the output state vector hi

u as shown in Equation (10):

hi
u =

(
1− zi

u

)
× hi−1

u + zi
u × h̃i

u (10)

The feature tensor hQ
u and hNet

u are obtained by tracking both the knowledge point
test data features and the classroom network characteristics of the learning engagement
features using the parallel temporal attention GRU network.

4.1.2. Temporal Attention Mechanism

In time series data prediction tasks, adding an attention mechanism helps the neural
network model to focus on the information in the input that is more critical to the task
at hand. It can effectively alleviate the problem of the GRU’s loss of capture of long
sequence information and insufficient extraction of short sequence feature information, and
it improves the model’s performance and robustness [35]. Therefore, a temporal attention
mechanism is proposed in this paper to reassign weights to the temporal knowledge
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points and learning engagement features output from the GRUs. This can better extract
the feature information related to the current knowledge point and improve the model
prediction accuracy.

The temporal knowledge point feature vector hQ
u output from the GRU is calculated

by the temporal attention mechanism as shown in Equation (11):

HQ = relu
(

hQ
u •Softmax

(
elu

(
hQ

u ×WQ

)
, dim = 1

))
(11)

In this case, the visualization of the temporal attention mechanism to reassign weights
to the temporal knowledge point test data feature information is shown in Figure 5.

Figure 5. Visualization of the temporal attention mechanism for the weight reassignment of the
knowledge point test feature information.

The learning engagement feature vector hNet
u output from the GRU is calculated by

the temporal attention mechanism as shown in Equation (12):

HNet = relu
(

hNet
u •Softmax

(
elu

(
hNet

u ×WNet

)
, dim = 1

))
(12)

Similarly, the visualization of the temporal attention mechanism to reassign weights
to the temporal classroom network characteristic learning engagement feature information
is shown in Figure 6.

Figure 6. Visualization of temporal attention mechanism for weight reassignment of classroom
network characteristic learning engagement feature information.

Finally, the temporal feature HQ of the knowledge points is fused with the temporal
feature HNet of learning engagement to improve the information richness of the temporal
characteristics. Thus, the knowledge point-learning engagement time feature tensor T is
obtained. The calculation is shown in Equation (13):

T = HQ + HNet (13)
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4.2. CNN-Based Spatial Feature Extraction

Temporal attention-based GRU networks have been effective at extracting features
from temporal data. However, when facing large datasets and time series data that are too
long, the ability of the model to extract features decreases. This results in poor prediction
performance. This paper is based on one-hot encoded student knowledge point test
sequences x, using a CNN for spatial feature extraction of knowledge point time series test
data. The connections and variations between successive knowledge points can be accessed
through the CNN. To further enhance the model feature extraction capability and improve
the prediction accuracy, the operation is expressed in the following equation:

S1 = Convld(x, kernel_size = 3)
S2 = MaxPoolld(S1, stride = 2)
S3 = Upsample(S2, scale_factor = 2)
S = Linear(transpose(S3, (1, 2)))

(14)

In this paper, based on the one-hot coding matrix x of the knowledge point test data,
spatial feature extraction of the knowledge point-knowledge points is performed using a
CNN. The CNN-based spatial feature extraction visualization process is shown in Figure 7.

Figure 7. Visualization of CNN-based spatial feature extraction process.

Finally, this paper fully considers the attributes that link knowledge points to learn-
ing engagement, fusing the knowledge point-learning engagement temporal feature and
knowledge point-knowledge point spatial feature S to enhance the correlation feature infor-
mation between neighboring knowledge points, and thereby obtaining the final temporal-
spatial feature vector TS:

TS = T + S (15)

4.3. Nonlinear Mapping Based on Fully Connected Layers

The fully connected layer mainly takes the input data for feature extraction by linear
transformation of the weight matrix. It converts the raw data into a higher-level repre-
sentation, leading to better fitting of the training data by learning the complex nonlinear
relationships between the input data. This enables the network to accurately classify and
regress predictions for the input data [36]. This paper uses a single fully connected layer
for nonlinear mapping, which is formulated as follows:

p = Sigmoid(W1 × TS + b1) (16)

Here, p represents the model prediction, W1 represents the trainable weight matrix of
the fully connected layer, b1 represents the trainable bias of the fully connected layer, and
TS represents the temporal-spatial eigenvectors.
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The output layer targets the real answer situation of the learner. The model pa-
rameters are iteratively updated using the cross-entropy loss function, which is shown
in Equation (17):

Loss = − ∑
xl j ∈ X
pl j ∈ P

[
xl j log

(
pl j

)
+

(
1− xl j

)
log

(
1− pl j

)]
(17)

Here, xij represents the actual answers to the j knowledge points involved in the
exercise l, and pij represents the model’s predicted value of the j knowledge points involved
in the exercise question l.

Meanwhile, this paper takes the answer time as an interval. We synthesize the mastery
of knowledge points in each answering moment and calculate the cognitive ability of the
students as shown in Equation (18):

y =
1
k

k

∑
i=1

pli (18)

Here, y represents the student’s overall cognitive ability at the time of the test l, k
represents the number of knowledge points included in the course, and pij represents the
diagnostic result for the knowledge point i at the exercise l in the model’s prediction of the
value p.

Algorithm 1 illustrates the basic steps of CL-TSKT:

Algorithm 1 CL-TSKT algorithm

Input: GUR = (U, EUR) = seat relationship network in smart classroom; U = set of students;
EUR = the set of edges with influential nodes; x = a matrix of student answer records with
fixed length per row, which has the shape l × (k× 2); Luk = student learning engagement
during knowledge point k learning time; T = max epoch.

Output: p = the set of predicted answer records; y = the cognitive diagnosis results.

1: Initialize learning rate and hyperparameter randomly;
2: For u← 1 to U do;
3: According to the student’s learning engagement Luk and weights obtained by calculating

the Euclidean distance, student–student interaction, and degree centrality to the nearest
neighboring influence nodes EuR is defined in Equations (2)–(4);

4: Combine the network structure EuR to obtain the classroom network characteristic
learning engagement, which is defined in Equation (5);

5: According to the matrix of test questions x, obtain the corresponding sequence of the
classroom network characteristic learning engagement Net, which has the shape l × 1;

6: end;
7: for epoch← 1 to T do // The dataset contains the number of students;

8: hQ
u ← GRU(x[n]) // Track sequence state using GRU;

9: hNet
u ← GRU(Net[n]) ;

10: // Reassign weights to feature information using temporal attention;

11: HQ ← relu
(

hQ
u •Softmax

(
elu

(
hQ

u ×WQ

)
, dim = 1

))
;

12: HNet ← relu
(
hNet

u •Softmax
(
elu

(
hNet

u ×WNet
)
, dim = 1

))
;

13: T ← HQ + HN ; // Sum the feature tensor;
14: S← CNN(x[n]) ;
15: TS← T + S ;
16: p← Sigmoid(W1 × TS + b1) ; // Nonlinear mapping output uses fully connected layer;

17: y← 1
k

k
∑

i=1
pli ;
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Algorithm 1 Cont.

18: // Update hyperparameters using cross-entropy loss function;

19: Lossi ← Lossi −∑ xij ∈ X
pij ∈ P

[
xij log

(
pij

)
+

(
1− xij

)
log

(
1− pij

)]
;

20: end;
21: Return p,y.

5. Analysis of Experiments and Experimental Results
5.1. Datasets

To validate the performance of the proposed CL-TSKT model, four sets of experi-
ments on real datasets were conducted, namely the Assistment0910, ASSISTChall [37],
and Eedi [38] datasets and the Smart Classroom Dataset (SCD). The Assistment0910 and
ASSISTTChall datasets were collected by the ASSISTments online tutoring system. The Eedi
dataset was released by the NeuralPS2020 Education Challenge and contains a total of four
sections. The SCD is an offline smart classroom dataset consisting of historical behavioral
data of students who took the C programming course in 2022.

The Assistment0910, ASSISTChall, and Eedi datasets do not contain information about
learners’ classroom networks. In order to ensure the wholeness of the model, the dataset
was preprocessed in this paper. To minimize the impact on the datasets, the learning
engagement information component was supplemented with a value of zero in all three
datasets. The statistics for the four datasets are shown in Table 2.

Table 2. Dataset statistics.

Dataset Assistment0910 ASSISTChall Eedi SCD

Number of learners 4049 1709 4918 58
Number of concepts 110 102 948 37
Number of exercises 16,000 3000 948 45

Number of interactions 325,000 942,000 104,000 11,000
Average length 80 551 212 195

Engage data No No No Yes

5.2. Evaluation Metrics and Baseline Modeling

To evaluate the performance of the CL-TSKT model proposed in this paper, the AUC,
ACC, MAE, and RMSE were used as evaluation metrics. Among them, the MAE and RMSE
are a measure of the difference between the predicted probabilities and the actual labels, and
they can reveal more subtle differences in the performance of the model, especially under
different thresholds, which can effectively assess the model’s ability to handle uncertainty.

The five baseline models for the comparison are shown in Table 3.

Table 3. Baseline models.

Baseline Description

DKT+ [17]
A recurrent neural network (RNN) is used to track the state of students’
knowledge, and two regularization terms are added to solve the DKT

model of the reconstruction and the consistency problem.

AKT + Forgetting [18]
Uses attention mechanisms with exponential decay and

context-aware relative distance metrics and embeds forgetting
linear deviations.

QRCDM [19]

A quantitatively interpretable cognitive diagnostic model based on
explicit correlations between test questions and knowledge concepts,

with implicit correlations between test questions and irrelevant
knowledge concepts.
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Table 3. Cont.

Baseline Description

CL4KT [24] A KT model for a contrastive learning framework that reveals
semantically similar or dissimilar variables.

CL4KT-FoLiBi [25] A KT model incorporating forgotten linear bias (FoLiBi) into CL4KT.

5.3. Experimental Environment and Model Parameters

The experimental environment of this paper is shown in Table 4.

Table 4. Experimental environments.

Experimental Environment Environment Configuration

Operating Systems Linux
CPU Intel(R) Xeon(R) Gold 6330H

Video Cards GeForce RTX 3090
RAM 32 GB
ROM 1T SSD

Programming Languages Python 3.7
Framework Pytorch

In the CL-TSKT cognitive diagnostic model, the learning rate was set to 0.001, the
input feature sequence length l was set to 100, the number of one-sided GRU layers was set
to 1, the hidden layer embedding dimensionality was set to 200, the CNN convolutional
kernel size was set to 3, and the batch size of the model was set to 64. The gradient descent
optimization was carried out using the Adam optimizer.

5.4. Results

The ROC curves for each model on the Assistment0910, ASSISTChall, Eedi, and SCD
datasets are shown in Figure 8. The ROC curves for each model facing the online dataset
using only the knowledge test question features are shown in Figure 8a–c. The analysis
yielded that the AUC values of the CL-TSKT model using the knowledge point test features
in the public dataset were all better than those of the baseline model. Figure 8d represents
the diagnostic performance of the model on the SCD. The experimental results show that
the CL-TSKT model incorporating learners’ classroom network characteristic learning
engagement demonstrated better performance.

Figure 8. Cont.
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Figure 8. ROC curves for the CL-TSKT model and the baseline model on the dataset. (a–d) The
Assistment0910, ASSISTChall, Eedi, and SCD datasets, respectively.

The performance metrics of the CL-TSKT model on the Assistment0910, ASSISTChall,
Eedi, and SCD datasets versus the other baseline models are shown in Table 5 and
analyzed below.

Table 5. Performance metrics of all models on the dataset.

Dataset Model AUC ACC MAE RMSE

Assistment0910

DKT+ 0.803 0.772 0.227 0.477
AKT + Forgetting 0.825 0.773 0.226 0.476

QRCDM 0.793 0.748 0.252 0.502
CL4KT 0.750 0.715 0.285 0.441

CL4KT-FoLiBi 0.751 0.712 0.287 0.437
CL-TSKT 0.890 0.805 0.194 0.437

ASSISTChall

DKT+ 0.675 0.665 0.334 0.578
AKT + Forgetting 0.671 0.673 0.326 0.571

QRCDM 0.653 0.619 0.381 0.617
CL4KT 0.658 0.641 0.358 0.476

CL4KT-FoLiBi 0.668 0.659 0.341 0.468
CL-TSKT 0.891 0.809 0.190 0.436

Eedi

DKT+ 0.698 0.648 0.351 0.593
AKT + Forgetting 0.750 0.688 0.312 0.450

QRCDM 0.688 0.635 0.364 0.603
CL4KT 0.734 0.673 0.326 0.457

CL4KT-FoLiBi 0.766 0.698 0.301 0.443
CL-TSKT 0.870 0.799 0.200 0.447

SCD

DKT+ 0.715 0.736 0.264 0.514
AKT + Forgetting 0.725 0.753 0.246 0.496

QRCDM 0.776 0.780 0.220 0.469
CL4KT 0.845 0.845 0.154 0.340

CL4KT-FoLiBi 0.825 0.834 0.165 0.354
CL-TSKT 0.901 0.896 0.103 0.321

(1) The method proposed in this paper achieved the best performance on all four datasets.
The evaluation metrics were all better than those of the baseline model on the SCD.
It is shown that integrating classroom network characteristic learning engagement in
smart classrooms can characterize students’ cognitive states more accurately.

(2) Compared with the RNN-based DKT model and AKT + Forgetting based on con-
textual attention mechanism, CL-TSKT showed significant improvement. It proved
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the superiority of computing accumulation and forgetting based on GRU dynamic
gate control.

(3) CL4KT mainly uses a contrastive learning framework for knowledge tracing, and
QRCDM mainly utilizes the α cross-validation idea for feature extraction. CL-TSKT
enhances feature extraction by using the temporal attention mechanism, and its
obtained results outperformed CL4KT and QRCDM. This proves that the temporal
attention mechanism can pay better attention to the important feature information
and enhance the model prediction accuracy.

(4) CL4KT-FoLiBi embedded with the forgetting linear deviation mechanism simulated
students’ forgetting behavior, but it ignored that students’ knowledge processes are
ambiguous and complex. In contrast, CL-TSKT started from the aspect of enhanced
feature extraction, adopted a CNN to realize spatial feature extraction, strengthened
the model feature extraction ability, and achieved better results.

(5) In Table 5, the CL-TSKT model shows superior performance on all three online
platform datasets and one smart classroom dataset. The distributions and quantities
of the four datasets are different, as a demonstration of the greater robustness of the
CL-TSKT model.

(6) The poor performance of the RMSE value for CL-TSKT on the Eedi dataset was due
to the high number of knowledge points contained in this dataset.

5.5. Ablation Experiment
5.5.1. Ablation Experiments Based on the CNN’s Spatial Features and Temporal
Attention Mechanisms

To verify that the CNN-based spatial features and temporal attention mechanism can
effectively enhance the model to capture the learner’s feature information and improve
the model’s prediction ability, in this paper, ablation experiments were performed on four
datasets, where CL-TSKT-TA represents the model without the addition of the temporal
attention mechanism and CL-TSKT-CNN represents the model without adding CNN-based
spatial features. The experimental results are shown in Figure 9.

From Figure 9 and the analysis of the experimental results, it can be seen that CL-TSKT
outperformed CL-TSKT-TA and CL-TSKT-CNN on all four datasets. This proves that
CL-TSKT has better stability and robustness.

Therefore, a temporal attention mechanism was added to the GRU. Meanwhile, adding
CNN-based spatial features can enhance the model feature extraction ability. This ensures
that the integrity of feature information can more effectively improve the stability and
prediction ability of the model.

Figure 9. Cont.
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Figure 9. Performance metrics of CL-TSKT, CL-TSKT-TA, and CL-TSKT-CNN models on four datasets.
(a–d) The AUC, ACC, MAE, and RMSE values of the models with or without the temporal attention
mechanism, respectively.

5.5.2. Ablation Experiments of Classroom Network Characteristic Learning Engagement

To illustrate that incorporating learners’ classroom network characteristic-based learn-
ing engagement (CL-TSKT) can lead to better prediction performance in smart classrooms
with complex environments, in this paper, ablation experiments were performed on the
SCD. The experimental results are shown in Figure 10. TSKT represents the model that
did not incorporate the learner’s learning engagement, and the Net part of the input was
zero. L-TSKT represents the model that incorporated the individual’s learning engagement
and which did not take into account the influence of the surrounding students, and the
Net part of the data was obtained directly from the calculation of Equation (1). L-TSKT-ED
represents the model that incorporated classroom network Euclidean distance-based learn-
ing engagement. This learning engagement only took into account the influence generated
by the distance between students, (Edgeui ,uj = dui ,uj ) in Equation (3) without considering
student–student interactions and degree centrality.

Figure 10. Comparison of ROC curves of ablation experiments for the CL-TSKT model on the SCD.
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The performance metrics of the models on the SCD using different learning engage-
ment are shown in Table 6.

Table 6. Comparison of model performance metrics based on different learning engagement.

Dataset Model AUC ACC MAE RMSE

SCD

TSKT 0.883 0.883 0.116 0.341
L-TSKT 0.893 0.886 0.113 0.337

L-TSKT-ED 0.898 0.878 0.121 0.348
CL-TSKT 0.901 0.896 0.103 0.321

Meanwhile, this paper provides experimental validation of the test data of some
students. The results of the comparison of the accuracy of the KT results output from the
TSKT, L-TSKT, and L-TSKT-ED models are shown in Table 7.

Table 7. Comparison of the accuracies of the TSKT, L-TSKT, and CL-TSKT-ED models.

ID TSKT L-TSKT L-TSKT-ED CL-TSKT

123 89.0% 89.1% 89.0% 89.9%
127 92.3% 92.4% 92.4% 93.9%
134 88.2% 88.3% 88.4% 92.5%
214 89.8% 89.7% 89.9% 92.3%
216 77.9% 78.3% 78.4% 84.3%
224 86.7% 86.7% 86.8% 92.0%

From the analysis of Figure 10 and Tables 6 and 7, it can be seen that the CL-TSKT
model incorporating classroom network features outperformed the performance results
of the models that did not incorporate the learning engagement features or the learner’s
learning engagement features and the model based on the classroom network structure
of Euclidean distance learning engagement. The overall results suggest that in a smart
classroom with multiple learners, a single dimension of exercise characteristics cannot
accurately predict student performance. In addition, students’ learning engagement not
only depends on themselves but is also influenced by the learning engagement of their
immediate neighbors based on the network of seating relationships, the distance between
students, and the interactions between students. These influences play a direct role in
students’ mastery of knowledge points as they learn them and are ultimately reflected in
the results of the knowledge point tests.

5.6. Analysis of Results

To validate the KT results of the knowledge points predicted by the model, this paper
used learners’ classroom test scores as the cognitive results for classification validation on
the SCD. The KT results of some students’ knowledge points predicted by the CL-TSKT
model are shown in Table 8.

Table 8. Cognitive abilities of learners within each knowledge point’s lecture time.

ID kp1 kp2 kp3 . . . kpk−1 kpk

123 0.856 0.743 0.603 . . . 0.718 0.766
127 0.801 0.801 0.519 . . . 0.631 0.931
134 0.811 0.867 0.829 . . . 0.939 0.818
214 0.856 0.816 0.596 . . . 0.681 0.749
216 0.788 0.365 0.565 . . . 0.794 0.736
224 0.855 0.850 0.832 . . . 0.754 0.773

To assess the reliability of the KT results predicted by the model, we used a pyramidal
hierarchy of cognitive states (remembering, comprehending, applying, analyzing, evaluat-
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ing, and innovating) based on Bloom’s [39] proposed method. According to the correlation
between test scores and cognitive levels proposed in [40–42], the learners were graded
according to the KT results at intervals of course learning knowledge points of memory:
F ∈ [0, 40), comprehension: E ∈ [40, 65), application: D ∈ [65, 80), analysis: C ∈ [80, 90),
evaluation: B ∈ [90, 97), and innovation: A ∈[97,100], here, ‘[ )’ represents a left-closed
right-open interval. ‘[ ]’ represents left-closed right-closed interval. The result is shown
in Table 9.

Table 9. Learners’ cognitive states within the lecture time of each knowledge point.

ID kp1 kp2 kp3 . . . kpk−1 kpk

123 C D E . . . D D
127 C C E . . . E B
134 C C C . . . B C
214 C C E . . . D D
216 D F E . . . D D
224 C C C . . . D D

Finally, the KT results for these six students were combined with the results in Table 9
and compared to each student’s final test scores for the course, as shown in Table 10.

Table 10. Students’ comprehensive cognitive states and assessment scores.

ID Cognitive Grade Test Performance Test Grade

123 D 79 D
127 D 78 D
134 C 82 C
214 D 65 D
216 E 43 E
224 D 80 D

Classroom tests are effective in assessing students’ cognitive states, which are cor-
related with student learning outcomes. While students are in an environment of active
learning engagement, they are more cognizant of their knowledge, and their assessment
scores are relatively higher. According to Table 10, the results predicted by the KT model
proposed in this paper corresponded to their test scores. The students with higher assess-
ment scores were basically at a higher level of cognition. This shows that the proposed KT
model of cognitive states has good reliability.

5.7. Discussion

Our proposed knowledge tracing model can be used as a complete teaching module
of the smart classroom teaching platform to help teachers improve the design of the
teaching process and realize personalized education. By observing the students’ knowledge
tracking results, teachers can gain a deeper understanding of the students’ current states
of knowledge and then adjust their teaching strategies. The students can understand
what they have not mastered well based on the knowledge tracking results to clarify their
learning goals and improve their learning results.

The above experimental results show that classroom network characteristic learning
engagement is of great significance for realizing knowledge tracking in the smart class-
room scenario. Similarly, in the field of online education, student learning engagement
can be obtained by collecting information such as the frequency and length of interac-
tion between students and knowledge points, which can effectively enhance the model’s
tracing of students’ knowledge statuses. Therefore, the model can also be considered
for application in online education platforms to track students’ knowledge and provide
stronger interpretability for the teaching recommendation system based on the knowledge
tracing results.
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6. Conclusions and Future Work

In this paper, a KT model based on classroom network characteristic learning engage-
ment and temporal-spatial feature fusion (CL-TSKT) was proposed. It aims to address
the existence of student–student learning engagement impacts in smart classrooms with
complex environments, as well as the existing KT models that are mainly based on knowl-
edge point test data for cognitive state analysis. The experimental results showed that
the prediction accuracy of the converged classroom network characteristic learning en-
gagement model (CL-TSKT) was better than that of the counterpart models in the ablation
experiment (TSKT, L-TSKT, and CL-TSKT-ED). It was proven that students’ classroom
learning engagement can be more accurately captured by fully considering the effects of
students’ network characteristics, inter-student distance, and inter-student interactions in
the classroom. More importantly, parallel temporal attention GRU networks were proposed
for knowledge point-learning engagement temporal feature extraction and CNN-based
knowledge point-knowledge point spatial feature extraction. The temporal-spatial feature
fusion helped to maintain the integrity of the feature information, which further improved
the accuracy of the model prediction. The experimental results in this paper on four real
datasets show that the proposed CL-TSKT model exhibited better diagnostic performance
compared with the five baseline models (DKT+, AKT + Forgetting, QRCDM, CL4KT, and
CL4KT-FoLiBi) under different conditions.

The CL-TSKT model can accurately characterize the cognitive states of students in
smart classrooms with complex environments. Meanwhile, the design of the educational
platform system can be enhanced. In this paper, students’ learning engagement was
accurately characterized by fully considering student–student interaction, inter-student
distance, and students’ degree of centrality, combining student knowledge point test data to
characterize their cognitive states. It can support teachers in making timely adjustments to
student seating during the instructional process and sustainable interventions to improve
students’ attitudes and learning engagement, thereby contributing to the effectiveness and
enhancement of student learning. This research was applied to offline smart classrooms.
Existing image processing techniques applied to a smart classroom in a large scene have
problems such as difficulty recognizing students in the back row. Therefore, the classroom
network structure data in this study cannot be fully automated, and it is necessary to add a
manual proofreading link, which increases the workload by a certain amount.

In future research, the effects of students’ different classroom social relationships on
student cognition will be considered so as to achieve a more accurate characterization of
students’ cognitive states and to improve the predictive performance of the model. In
addition, this paper plans to deploy the algorithm into embedded devices for smart class-
rooms to provide effective support for teachers’ sustainable interventions for learners in the
teaching and learning process and thus sustainably enhance student learning outcomes.

Author Contributions: Conceptualization, Z.S. and Y.L.; methodology, Y.L.; software, Y.L.; validation,
D.L., J.M. and H.Z.; formal analysis, D.L.; investigation, D.L.; resources, Z.S.; data curation, Y.L.;
writing—original draft preparation, Y.L.; writing—review and editing, Z.S.; visualization, Y.L.;
supervision, Z.S.; project administration, Z.S.; funding acquisition, Z.S. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was supported by The National Natural Science Foundation of China
(62177012, 61967005, and 62267003) and the Project of Guangxi Wireless Broadband Communication
and Signal Processing Key Laboratory (GXKL06240107).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets are available at the following links: Assistment0910
(https://edudata.readthedocs.io/en/latest/build/blitz/ASSISTments/ASSISTments2009-2010.html
(accessed on 1 March 2024)); ASSISTChall (https://edudata.readthedocs.io/en/latest/build/blitz/
ASSISTments/ASSISTments2017.html (accessed on 1 March 2024)); and Eedi (https://eedi.com/

https://edudata.readthedocs.io/en/latest/build/blitz/ASSISTments/ASSISTments2009-2010.html
https://edudata.readthedocs.io/en/latest/build/blitz/ASSISTments/ASSISTments2017.html
https://edudata.readthedocs.io/en/latest/build/blitz/ASSISTments/ASSISTments2017.html
https://eedi.com/projects/neurips-education-challenge
https://eedi.com/projects/neurips-education-challenge


Electronics 2024, 13, 1454 21 of 22

projects/neurips-education-challenge (accessed on 1 March 2024)). The SCD dataset will be made
available upon reasonable request.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Janssen, R.; Tuerlinckx, F.; Meulders, M.; De Boeck, P. A hierarchical IRT model for criterion-referenced measurement. J. Educ.

Behav. Stat. 2000, 25, 285–306. [CrossRef]
2. Li, L.; Wang, Z. Knowledge Relation Rank Enhanced Heterogeneous Learning Interaction Modeling for Neural Graph Forgetting

Knowledge Tracing. PLoS ONE 2023, 18, e0295808. [CrossRef]
3. Shi, Y.; Chen, L.; Qu, Z.; Xu, J.; Yang, H.H. Study on the Influencing Factors of Junior High School Students’ Learning Engagement

Under the Smart Classroom Environment. In Proceedings of the International Conference on Blended Learning, Hong Kong,
China, 17–20 July 2023; Springer Nature: Cham, Switzerland, 2023; pp. 47–58.

4. Jiaming, N. A Study on the Learning Engagement Status and Influencing Factors of University Students in a Smart Classroom
Environment: A Case Study of a Smart Classroom at Baise University. 2023. Available online: http://dspace.bu.ac.th/jspui/
bitstream/123456789/5178/1/nong_jiam.pdf (accessed on 29 February 2024).

5. You, W. Research on the relationship between learning engagement and learning completion of online learning students. Int. J.
Emerg. Technol. Learn. 2022, 17, 102–117. [CrossRef]

6. Hu, M.; Wei, Y.; Li, M.; Yao, H.; Deng, W.; Tong, M.; Liu, Q. Bimodal learning engagement recognition from videos in the
classroom. Sensors 2022, 22, 5932. [CrossRef] [PubMed]

7. Lu, G.; Liu, Q.; Xie, K.; Zhang, C.; He, X.; Shi, Y. Does the Seat Matter? The Influence of Seating Factors and Motivational Factors
on Situational Engagement and Satisfaction in the Smart Classroom. Sustainability 2023, 15, 16393. [CrossRef]

8. Putnik, G.; Costa, E.; Alves, C.; Castro, H.; Varela, L.; Shah, V. Analysing the correlation between social network analysis measures
and performance of students in social network-based engineering education. Int. J. Technol. Des. Educ. 2016, 26, 413–437.
[CrossRef]

9. Xiang, T.; Ji, H.; Sheng, J. Analysis of Spatiotemporal Characteristics of Student Concentration Based on Emotion Evolution. Adv.
Comput. Signals Syst. 2023, 7, 89–102.

10. Van Rijsewijk, L.G.M.; Oldenburg, B.; Snijders, T.A.B.; Dijkstra, J.K.; Veenstra, R. A description of classroom help networks,
individual network position, and their associations with academic achievement. PLoS ONE 2018, 13, e0208173. [CrossRef]
[PubMed]

11. Gutierrez, A. The Effects of Various Classroom Seating Arrangements on English Learners’ Academic Achievement. 2022.
Available online: https://neiudc.neiu.edu/uhp-projects/31 (accessed on 12 May 2022).

12. Li, J.; Shi, D.; Tumnark, P.; Xu, H. A system for real-time intervention in negative emotional contagion in a smart classroom
deployed under edge computing service infrastructure. Peer Peer Netw. Appl. 2020, 13, 1706–1719. [CrossRef]

13. De La Torre, J. DINA model and parameter estimation: A didactic. J. Educ. Behav. Stat. 2009, 34, 115–130. [CrossRef]
14. Chiu, C.Y. Statistical refinement of the Q-matrix in cognitive diagnosis. Appl. Psychol. Meas. 2013, 37, 598–618. [CrossRef]
15. Gu, Y.; Xu, G. The sufficient and necessary condition for the identifiability and estimability of the DINA model. Psychometrika

2019, 84, 468–483. [CrossRef]
16. Ma, W.; de la Torre, J. An empirical Q-matrix validation method for the sequential generalized DINA model. Br. J. Math. Stat.

Psychol. 2020, 73, 142–163. [CrossRef]
17. Piech, C.; Bassen, J.; Huang, J.; Ganguli, S.; Sahami, M.; Guibas, L.J.; Sohl-Dickstein, J. Deep knowledge tracing. In Proceedings

of the 28th International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015;
Volume 1, pp. 505–513.

18. Ghosh, A.; Heffernan, N.; Lan, A.S. Context-aware attentive knowledge tracing. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, Online, 6–10 July 2020; pp. 2330–2339.

19. Yang, H.; Qi, T.; Li, J.; Guo, L.; Ren, M.; Zhang, L.; Wang, X. A novel quantitative relationship neural network for explainable
cognitive diagnosis model. Knowl. Based Syst. 2022, 250, 109156. [CrossRef]

20. Xiao, Y.; Xiao, R.; Huang, N.; Hu, Y.; Li, H.; Sun, B. Knowledge tracing based on multi-feature fusion. Neural Comput. Appl. 2023,
35, 1819–1833. [CrossRef]

21. Liu, H.; Zhang, T.; Li, F.; Yu, M.; Yu, G. A probabilistic generative model for tracking multi-knowledge concept mastery probability.
Front. Comput. Sci. 2024, 18, 183602. [CrossRef]

22. Huang, C.; Wei, H.; Huang, Q.; Jiang, F.; Han, Z.; Huang, X. Learning consistent representations with temporal and causal
enhancement for knowledge tracing. Expert Syst. Appl. 2024, 245, 123128. [CrossRef]

23. Jiang, B.; Wei, Y.; Zhang, T.; Zhang, W. Improving the performance and explainability of knowledge tracing via Markov blanket.
Inf. Process. Manag. 2024, 61, 103620. [CrossRef]

24. Lee, W.; Chun, J.; Lee, Y.; Park, K.; Park, S. Contrastive learning for knowledge tracing. In Proceedings of the ACM Web
Conference, Online, 25–29 April 2022; pp. 2330–2338.

25. Im, Y.; Choi, E.; Kook, H.; Lee, J. Forgetting-aware Linear Bias for Attentive Knowledge Tracing. In Proceedings of the 32nd ACM
International Conference on Information and Knowledge Management, Birmingham, UK, 21–25 October 2023; pp. 3958–3962.

https://eedi.com/projects/neurips-education-challenge
https://eedi.com/projects/neurips-education-challenge
https://eedi.com/projects/neurips-education-challenge
https://doi.org/10.2307/1165207
https://doi.org/10.1371/journal.pone.0295808
http://dspace.bu.ac.th/jspui/bitstream/123456789/5178/1/nong_jiam.pdf
http://dspace.bu.ac.th/jspui/bitstream/123456789/5178/1/nong_jiam.pdf
https://doi.org/10.3991/ijet.v17i01.28545
https://doi.org/10.3390/s22165932
https://www.ncbi.nlm.nih.gov/pubmed/36015693
https://doi.org/10.3390/su152316393
https://doi.org/10.1007/s10798-015-9318-z
https://doi.org/10.1371/journal.pone.0208173
https://www.ncbi.nlm.nih.gov/pubmed/30566514
https://neiudc.neiu.edu/uhp-projects/31
https://doi.org/10.1007/s12083-019-00863-8
https://doi.org/10.3102/1076998607309474
https://doi.org/10.1177/0146621613488436
https://doi.org/10.1007/s11336-018-9619-8
https://doi.org/10.1111/bmsp.12156
https://doi.org/10.1016/j.knosys.2022.109156
https://doi.org/10.1007/s00521-022-07834-w
https://doi.org/10.1007/s11704-023-3008-x
https://doi.org/10.1016/j.eswa.2023.123128
https://doi.org/10.1016/j.ipm.2023.103620


Electronics 2024, 13, 1454 22 of 22

26. Ni, Q.; Wei, T.; Zhao, J.; He, L.; Zheng, C. HHSKT: A learner–question interactions based heterogeneous graph neural network
model for knowledge tracing. Expert Syst. Appl. 2023, 215, 119334. [CrossRef]

27. Wu, Z.; Huang, L.; Huang, Q.; Huang, C.; Tang, Y. SGKT: Session graph-based knowledge tracing for student performance
prediction. Expert Syst. Appl. 2022, 206, 117681. [CrossRef]

28. Huang, Q.; Su, W.; Sun, Y.; Huang, T.; Shi, J. NTM-based skill-aware knowledge tracing for conjunctive skills. Comput. Intell.
Neurosci. 2022, 2022, 9153697. [CrossRef] [PubMed]

29. Zhao, S.; Sahebi, S. Graph-Enhanced Multi-Activity Knowledge Tracing. In Proceedings of the Joint European Conference on
Machine Learning and Knowledge Discovery in Databases, Turin, Italy, 18–22 September; Springer Nature: Cham, Switzerland,
2023; pp. 529–546.

30. Shou, Z.; Tang, M.; Wen, H.; Liu, J.; Mo, J.; Zhang, H. Key Student Nodes Mining in the In-Class Social Network Based on
Combined Weighted GRA-TOPSIS Method. Int. J. Inf. Commun. Technol. Educ. (IJICTE) 2023, 19, 1–19. [CrossRef]

31. Rani, S.; Kumar, M. Influential Node Detection and Ranking with Fusion of Heterogeneous Social Media Information. IEEE Trans.
Comput. Soc. Syst. 2022, 10, 1852–1874. [CrossRef]

32. Bloch, F.; Jackson, M.O.; Tebaldi, P. Centrality measures in networks. Soc. Choice Welf. 2023, 61, 413–453. [CrossRef]
33. Shang, Q.; Zhang, B.; Li, H.; Deng, Y. Identifying influential nodes: A new method based on network efficiency of edge weight

updating. Chaos Interdiscip. J. Nonlinear Sci. 2021, 31, 033120. [CrossRef] [PubMed]
34. Yamak, P.T.; Yujian, L.; Gadosey, P.K. A comparison between arima, lstm, and gru for time series forecasting. In Proceedings of

the 2019 2nd International Conference on Algorithms, Computing and Artificial Intelligence, Sanya, China, 20–22 December 2019;
pp. 49–55.

35. Brauwers, G.; Frasincar, F. A general survey on attention mechanisms in deep learning. IEEE Trans. Knowl. Data Eng. 2021,
35, 3279–3298. [CrossRef]

36. Basha, S.S.; Dubey, S.R.; Pulabaigari, V.; Mukherjee, S. Impact of fully connected layers on performance of convolutional neural
networks for image classification. Neurocomputing 2020, 378, 112–119. [CrossRef]

37. Feng, M.; Heffernan, N.T. Informing teachers live about student learning: Reporting in the assistment system. Technol. Instr. Cogn.
Learn. 2006, 3, 63.

38. Wang, Z.; Lamb, A.; Saveliev, E.; Cameron, P.; Zaykov, J.; Hernandez-Lobato, J.M.; Turner, R.E.; Baraniuk, R.S.; Barton, C.;
Peyton, S.; et al. Results and insights from diagnostic questions: The NeurIPS 2020 education challenge. In Proceedings of the
NeurIPS 2020 Competition and Demonstration Track, PMLR, Online, 9–12 December 2020; pp. 191–205.

39. Rahayu, A. The analysis of students’ cognitive ability based on assesments of the revised Bloom’s Taxonomy on statistic materials.
Eur. J. Multidiscip. Stud. 2018, 3, 80–85. [CrossRef]

40. Nesayan, A.; Amani, M.; Gandomani, R.A. Cognitive profile of children and its relationship with academic performance. Basic
Clin. Neurosci. 2019, 10, 165. [CrossRef]

41. Tikhomirova, T.; Malykh, A.; Malykh, S. Predicting academic achievement with cognitive abilities: Cross-sectional study across
school education. Behav. Sci. 2020, 10, 158. [CrossRef]

42. Peng, P.; Kievit, R.A. The development of academic achievement and cognitive abilities: A bidirectional perspective. Child Dev.
Perspect. 2020, 14, 15–20. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.eswa.2022.119334
https://doi.org/10.1016/j.eswa.2022.117681
https://doi.org/10.1155/2022/9153697
https://www.ncbi.nlm.nih.gov/pubmed/35936980
https://doi.org/10.4018/IJICTE.322773
https://doi.org/10.1109/TCSS.2022.3195525
https://doi.org/10.1007/s00355-023-01456-4
https://doi.org/10.1063/5.0033197
https://www.ncbi.nlm.nih.gov/pubmed/33810754
https://doi.org/10.1109/TKDE.2021.3126456
https://doi.org/10.1016/j.neucom.2019.10.008
https://doi.org/10.26417/ejms.v7i2.p80-85
https://doi.org/10.32598/bcn.9.10.230
https://doi.org/10.3390/bs10100158
https://doi.org/10.1111/cdep.12352

	Introduction 
	Related Work 
	Problem Definitions 
	Symbol Definition 
	Modeling Learning Engagement Based on Classroom Network Characteristics 
	Learning Engagement 
	Learning Engagement Based on Classroom Network Characteristics 


	CL-TSKT Model 
	Temporal Attention-Based GRU Feature Tracking 
	GRU Feature Tracking 
	Temporal Attention Mechanism 

	CNN-Based Spatial Feature Extraction 
	Nonlinear Mapping Based on Fully Connected Layers 

	Analysis of Experiments and Experimental Results 
	Datasets 
	Evaluation Metrics and Baseline Modeling 
	Experimental Environment and Model Parameters 
	Results 
	Ablation Experiment 
	Ablation Experiments Based on the CNN’s Spatial Features and Temporal Attention Mechanisms 
	Ablation Experiments of Classroom Network Characteristic Learning Engagement 

	Analysis of Results 
	Discussion 

	Conclusions and Future Work 
	References

