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Abstract: Wideband direction-of-arrival (DOA) estimation is an important task for passive sonar
signal processing. Nowadays, sparse Bayesian learning (SBL) attracts much attention due to its good
performance. However, performance degrades in the existence of strong interference. This problem
can be solved by combining the beamformer and the SBL. The beamformer is a useful tool to suppress
interference. Then, the SBL can easily estimate the DOA of the targets from the beamformer power
outputs (BPO). Unfortunately, the latter step needs to compute the matrix inversion frequently, which
brings some computational burden to the sonar system. In this paper, the BPO-based SBL is modified.
A sequential solution is provided for the parameters in the BPO probabilistic model. In this manner,
only one signal precision parameter involved in the probabilistic model is updated in each iteration
and the matrix inversion is avoided during the iteration, thus reducing the computational burden.
Simulation and experimental results show that the proposed method maintains high estimation
precision in the interference environment. At the same time, its computational efficiency is almost
three times higher in comparison with state-of-the-art methods.

Keywords: fast sparse Bayesian learning; wideband direction-of-arrival estimation; beamspace;
strong interference

1. Introduction

Passive sonar is an important system for underwater detection. It mainly receives
underwater radiated noise to detect its target. Direction-of-arrival (DOA) estimation is a
major task in underwater signal processing [1], through which the sonar system can obtain
the target position. In recent years, sparsity-based DOA estimation [1–5] has attracted
much attention since it can be applied under a low signal-to-noise ratio (SNR) condition
in comparison with traditional DOA estimation methods [1]. This characteristic helps the
system work well even in a noisy environment [6]. The sparsity-based method can be
classified into the lp-norm minimization method [7–9] and the sparse Bayesian learning
(SBL) method [10–13]. The lp-norm-based method uses the lp-norm to enforce sparsity with
a well-tuned regularization parameter. On the contrary, SBL assigns a suitable prior for the
signal and enforces sparsity by automatically estimating the model parameters, avoiding
the choice of regularization parameter.

Wideband processing plays a fundamental role in underwater source localization.
Most of the wideband SBL methods [14–17] make full use of the common sparsity profile
across frequency bins by assigning Gaussian priors to signals with the same precision in all
frequency bins. These methods are often implemented by expectation maximization [18]
or variational Bayesian inference (VBI) [19,20]. The matrix inverse is involved in each
iteration, which increases the computational workload. To avoid this problem, Jiang
et al. [21] extend the fast relevance vector machine (Fast-RVM) [22] to wideband conditions.
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As such, the method only updates one signal precision parameter in each iteration and
avoids matrix inversion.

However, when strong interference (such as tow-vessel noise) is nearby the target
with weak power, this strong interference will mask the target-of-interest. Under such a
condition, the DOAs of the targets can hardly be obtained, leading to a significant challenge
to weak target detection. Hence, DOA estimation in a strong interference environment is a
tough problem.

To solve this problem, Refs. [23,24] reconstruct the interference subspace through eigen
decomposition and remove it from the received data, thus decreasing the influence of the
interference. Then, a traditional DOA estimation method, i.e., conventional beamforming
(CBF) [25], is applied to estimate DOAs. This is also regarded as a subspace-separation-
based method. However, it is known that the main lobe of the CBF is wide. Hence, though
the influence of interference is decreased, this method still suffers from low resolution.

Spatial filter is another useful tool to suppress interference. References [26,27] adopt
the matrix filter (MF) [28,29] as preprocessor, and then a lp-norm-based method is applied
to estimate the DOAs from MF outputs, thus achieving high resolution. However, this
kind of method suffers from a large computational workload and can hardly provide
DOA estimates in real time. This high cost increases the computational pressure on
the system, which prohibits its applications in practical signal processing. In contrast,
References [30,31] use the CBF instead of MF to improve the computational efficiency,
and the lp-norm-based method is applied to estimate DOAs from beamformer power
outputs (BPO). The performance degrades seriously when the interference is not sufficiently
suppressed. Moreover, it also needs to tune the regularization parameter well.

To achieve high estimation precision in a strong interference environment, we have
proposed a method named BPO-based SBL (SBL-BPO) in [32]. Minimum variance distor-
tionless response with diagonal loading (MVDR-DL) [33] is applied to suppress interference,
since it adaptively produces a deep nulling to the direction of the interference and can
suppress this interference sufficiently. Then, a probabilistic model suitable for the BPO is
established. On the basis of this, the VBI is applied to estimate DOAs from the BPO, avoid-
ing tuning the regularization parameter. The simulation and experimental results have
proven that the SBL-BPO achieves better performance than the existing methods in a strong
interference environment. However, this method involves matrix inversion to update the
signal covariance matrix in each iteration, which still brings some computational burden.

In this paper, the SBL-BPO is further modified to reduce the computational burden.
The Fast-RVM [22] is extended to the beam domain, and a sequence solution for the
parameters in the BPO probabilistic model is provided. Unlike the SBL-BPO that updates
all signal precision parameters in each iteration, the modified SBL-BPO (MSBL-BPO) only
updates the single signal precision parameter that maximizes the increment of marginal
distribution. In this manner, matrix inversion is avoided in each iteration, thus improving
computational efficiency. Simulation and experimental results show that the MSBL-BPO
maintains high estimation precision in a strong interference environment. At the same time,
its computational workload is lower than other sparsity-based methods.

The following notations are used throughout this paper. (•)T , (•)H and (•)∗ denote
the transpose, conjugate transpose and conjugate, respectively. diag(X) and diag(x) are
vectors with diagonal elements of X as its elements and a diagonal matrix with x as its
diagonal element, respectively. N(•) represents the real Gaussian distribution. IM is an
M × M identify matrix, and ◦ denotes the Hadamard product.

The rest of this paper is organized as follows. Section 2 establishes the BPO model and
BPO probabilistic model. Section 3 presents the proposed MSBL-BPO method. Sections 4 and 5
present the numerical simulations and experimental results, respectively. Section 6 con-
cludes this paper.
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2. Model Establishment
2.1. BPO Model

Consider an array with M elements. Once the data is received, the array’s received data
are divided into N blocks. Subsequently, a discrete Fourier transformation (DFT) is applied
to each block and the data are divided into L frequency bins. Suppose that KS targets

and KD interferences arrive at the array from
⌢
θ S = [

⌢
θ 1, . . . ,

⌢
θ KS ] and

⌣
θ D = [

⌣
θ 1, . . . ,

⌣
θ KD ],

respectively. Then, the array output xl(n) ∈ CM×1 at the lth frequency bin can be modeled as

xl(n) = Al(
⌢
θ S)sl(n) + Al(

⌣
θ D)dl(n) + el(n), n = 1, . . . , N (1)

In this equation, sl(n) ∈ CKS×1, dl(n) ∈ CKD×1, and el(n) ∈ CM×1 represent the DFT coeffi-
cients of desired signals, interfering signals, and additive noise at the nth block, respectively.

The desired and the interfering signals are uncorrelated. Al(
⌢
θ S) = [al(

⌢
θ 1), . . . , al(

⌢
θ KS)]

and Al(
⌣
θ D) = [al(

⌣
θ 1), . . . , al(

⌣
θ KD )], where al(θ) is the steering vector at θ.

Assuming that the noise is uniform white Gaussian noise of power σl and uncorrelated
with signals, the covariance matrix Rl ∈ CM×M is given by

Rl = Al(
⌢
θ S)PS

l AH
l (

⌢
θ S) + Al(

⌣
θ D)PD

l AH
l (

⌣
θ D) + σlIM (2)

where PS
l = diag

(
pS

l
)

and PD
l = diag

(
pD

l
)

are the covariance matrices of the desired and
the interfering signals, respectively. pS

l and pD
l contain the powers of the desired and the

interfering signals, respectively. The sample covariance matrix
ˆ
Rl = ∑N

n=1 xl(n)xH
l (n)/N is

always used to approximate the true covariance matrix. The relation between the sample
and true covariance matrices is expressed as

ˆ
Rl = Rl + El (3)

where El is the error matrix.
Recording the sector-of-interest as ΘS = [ΘSL, ΘSR] where ΘSL and ΘSR are, respec-

tively, the left and the right limitations of ΘS, the BPO model is established as [32]

˜
r

B

l =

(
WH

l Al

(
⌢
θ S

))∗
◦
(

WH
l Al

(
⌢
θ S

))
︸ ︷︷ ︸

˜
Al(

⌢
θ S)

pS
l +

(
WH

l Al

(
⌣
θ D

))∗
◦
(

WH
l Al

(
⌣
θ D

))
︸ ︷︷ ︸

˜
Al(

⌣
θ D)

pD
l + σl

˜
i
B

l +
˜
ε

B

l (4)

In the above equation, Wl =
[
wl(ϕ1), . . . , wl

(
ϕKB

)]
is the beamforming matrix where wl(ϕ)

represents the weight vector at ϕ, ϕ = [ϕ1, . . . , ϕKB ], where ΘSL ≤ ϕ1 < ϕ2 < . . . < ϕKB ≤ ΘSR,
˜
i
B

l = diag
(
WH

l Wl
)
, and

˜
ε

B

l = diag
(
WH

l ElWl
)
. The MVDR-DL is used as preprocessor,

whose weight vector is [33]

wl(ϕ) =
(

ˆ
Rl + ηlIM)−1al(ϕ)

aH
l (ϕ)(

ˆ
Rl + ηlIM)−1al(ϕ)

(5)

where ϕ is a pointing angle, and ηl is the DL level. The value is chosen as ηl = 10
ˆ
σl [33],

where
ˆ
σl is the noise power estimate obtained by the mean of small eigenvalues. Given

that the interference powers are largely reduced in the BPO and can be omitted, since
the MVDR-DL adaptively produces the deep nulling at the directions of interferences,
Equation (4) is approximated as

˜
r

B

l ≈
˜
Al

(
⌢
θ S

)
pS

l + σl
˜
i
B

l +
˜
ε

B

l (6)
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With the sector ΘS divided into the discretized grid φ =
[
φ1, . . . , φKG

]
, the sparse

vision of model (6) can be rewritten as

˜
r

B

l ≈
˜
Alpl + σl

˜
i
B

l +
˜
ε

B

l (7)

where
˜
Al =

(
WH

l Al(φ)
)∗ ◦ (WH

l Al(φ)
)
=
[ ˜
al,1, . . . ,

˜
al,KG

]
. The vector pl is a zero-padded

version of pS
l . For any n = 1, . . . , KS, (pl)m =

(
pS

l
)

n holds if φm =
⌢
θ n, where (pl)m and(

pS
l
)

n are the mth and the nth entries of pl and pS
l , respectively. Otherwise, (pl)m = 0.

2.2. Bayesian Probabilistic Model

(1) Likelihood: According to Reference [32],
˜
ε

W

l obeys the following Gaussian distribution:

˜
ε

W

l ∼ N(0,
¯
Q

B

l ), l = 1, . . . , L (8)

where
¯
Q

B

l =
(
WH

l RlWl
)∗ ◦ (WH

l RlWl
)
/(2N). As such, the likelihood function is expressed as

p(
˜
r

B

l |pl , σl ) = N(
˜
Alpl + σl

˜
i
B

l ,
¯
Q

B

l ), l = 1, . . . , L (9)

(2) Prior: A real Gaussian prior is assigned to pl , l = 1, . . . , L:

p(pl ; γ) = N
(

0, Γ−1
)

, l = 1, . . . , L (10)

where Γ = diag(γ), and γ = [γ1, . . . , γKG ]
T is the precision vector that controls the sparsity

of pl , l = 1, . . . , L. The same prior is assigned to the signals in all frequency bins, thus
making full use of the common sparsity profile across the frequency bins.

Moreover, a real Gaussian prior is employed on σl , as given by

p
(

σl ; γN
l

)
= N

(
0, γN

l

)
, l = 1, . . . , L (11)

where γN
l is the variance of σl .

As such, the probabilistic model is established as

∏L
l=1 p

(
pl , σl

∣∣∣∣ ˜rB

l ; γ, γN
l

)
= ∏L

l=1

p
(

pl ,σl ,
˜
r

B
l ;γ,γN

l

)
p
(

˜
r

B
l

)

= ∏L
l=1

p
(

˜
r

B
l |pl ,σl

)
p(pl ;γ)p(σl ;γN

l )

p
(

˜
r

B
l

)
(12)

where ∏L
l=1 p

(
pl , σl ,

˜
r

B

l ; γ, γN
l

)
= ∏L

l=1 p
(

˜
r

B

l |pl , σl

)
p(pl ; γ)p

(
σl ; γN

l
)

is the joint distribu-

tion of all unknown and observed quantities.

3. Proposed Method

The SBL-BPO method [32] uses VBI for Equation (12). In this method, given γ and σl ,
the posterior distribution of pl is as follows:

p
(

pl

∣∣∣∣ ˜rB

l ; σl , γ

)
= N(p|µl , Σl ) (13)

In this equation,
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
µl = Σl

˜
A

T

l (
˜

Q
B

l )
−1 ˜

r
B

l︸ ︷︷ ︸
⌢
µ l

− σlΣl
˜
A

T

l (
˜

Q
B

l )
−1

˜
i
B

l︸ ︷︷ ︸
⌣
µ l

Σl = (
˜
A

T

l (
˜

Q
B

l )
−1

˜
Al + Γ)−1

(14)

The estimate of γp is expressed as

ˆ
γp =

L∣∣∣µl,p

∣∣∣2 + Σl,pp

, p = 1, . . . , KG (15)

where µl,p and Σl,pp represent the pth elements in µl and the (p, p)th element in Σl , re-
spectively. All signal precision parameters are updated as shown in Equation (15) at each
iteration, and the method needs to compute the matrix inversion of Σl at each iteration,
which increases the computational burden.

In this paper, we further modify the SBL-BPO to reduce the computational burden.
The Fast-RVM [22] is extended to beam domain, and a sequential solution for model (12) is
provided to obtain DOA estimates. Instead of updating whole signal precision parameters
in an iteration, the proposed method only adds, deletes or updates one entry in each
iteration. The key problem is to estimate the entry in γ, which can be performed through
maximizing the following marginal distribution:

J(γ) = ∑L
l=1 log p

(
˜
r

B

l |γ, σl

)
= ∑L

l=1 log
∫

p
(

˜
r

B

l |pl , σl

)
p(pl ; γ)dpl

= − 1
2 ∑L

l=1

KB log 2π + log|Cl |+
(

˜
r

B

l − σl
˜
i
B

l

)T

C−1
l

(
˜
r

B

l − σl
˜
i
B

l

)
(16)

where Cl =
¯
Q

B

l +
˜
Al Γ

−1
˜
A

T

l .
Equation (16) can be decomposed as [21]:

J(γ) = F
(
γ−p

)
+ 1

2 ∑L
l=1

[
log
∣∣∣ γp

γp+sl,p

∣∣∣+ g2
l,p

γp+sl,p

]
= F

(
γ−p

)
+ f

(
γp
) (17)

In this equation, sl,p = γpSl,g/
(

γp − Sl,g

)
and gl,p = γp

(
⌢
Gl,p − σl

⌣
Gl,p

)
/
(

γp − Sl,p

)
,

where Sl,p =
˜
a

T

l,pC−1
l

˜
al,p,

⌢
Gl,p =

˜
a

T

l,pC−1
l

˜
r

B

l , and
⌣
Gl,p =

˜
a

T

l,pC−1
l

˜
i
B

l , γ−p is a vector composed
by the entries in γ expect γp. To maximize J(γ) with respect to γp, we differentiate f

(
γp
)

with respect to γp and set it to zero. The result is as follows [21]:

γp =


L

∑L
l=1

(
g2

l,p−sl,p

)
/s2

l,p
∑L

l=1

(
g2

l,p − sl,p

)
/s2

l,p > 0

∞ otherwise
(18)

The increment of f
(
γp
)

caused by γp in the ith iteration is computed as follows:

∆p = f (γp)− f (
ˆ
γ
(i−1)

p ) (19)

where
ˆ
γ
(i−1)

p is the estimate of γp in the (i−1)th iteration. A large ∆p shows that a signal
exists in the corresponding basis with a high probability, and this basis should be activated.
Then, the entry of γ corresponding to the largest ∆p is updated:
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ˆ
γ
(i)

p =

 γp p = p(i)

ˆ
γ
(i−1)

p otherwise
(20)

where p(i) is the index corresponding to the largest ∆p. Assuming that Φ is the active basis
set, then

(1) if
(

p(i) /∈ Φ(i−1)
)
∩ (

ˆ
γ
(i)

p(i) ̸= ∞), add p(i) to the active basis set,

(2) if
(

p(i) ∈ Φ(i−1)
)
∩ (

ˆ
γ
(i)

p(i) ̸= ∞), maintain the active basis set,

(3) if
(

p(i) ∈ Φ(i−1)
)
∩ (

ˆ
γ
(i)

p(i) = ∞), delete p(i) from the active basis set.

The DOA estimation process is similar to that in [21]. The main difference is that the
model in the proposed method contains the noise power parameter. Hence, µl and gl,p are
divided into two parts, as shown in Equations (14) and (17), respectively. Furthermore, the
noise parameters are also updated during iteration. The modified update processing is
shown as follows:

(1) Initialization: Before estimation, all of the bases are assumed to be inactive. At this

time, Cl =
¯
Q

B

l , Sl,p =
˜
a

T

l,p(
¯
Q

B

l )
−1 ˜

al,p,
⌢
Gl,p =

˜
a

T

l,p(
¯
Q

B

l )
−1 ˜

r
B

l ,
⌣
Gl,p =

˜
a

T

l,p(
¯
Q

B

l )
−1

˜
i
B

l , sl,p = Sl,g,

and gl,p =
⌢
Gl,p −

ˆ
σl

⌣
Gl,p. By substituting these values into Equation (18), γp can be obtained.

The initialization of γ is set to

ˆ
γ
(0)

p =



L

∑L
l=1

 ˜
a

T
l,p

¯
Q

B

l

−1
˜
r
B
l − ˆ

σl
˜
a

T
l,p

¯
Q

B

l

−1
˜
i
B
l


2

− ˜
a

T
l,p

¯
Q

B

l

−1
˜
al,p

 ˜
a

T
l,p

¯
Q

B

l

−1
˜
al,p


2

p = p(0)

∞ otherwise

(21)

where p(0) is the index corresponding to the largest increment of f
(
γp
)
, computed by

∆p = f
(

γp

)
− f (∞). The active basis is set to Φ(0) =

{
p(0)

}
.

The covariance matrix and the mean of the signal are set to the following values:

Σ
(0)
l =

1

˜
a

T

l,p(0)(
¯
Q

B

l )
−1 ˜

al,p(0) +
ˆ
γ
(0)

p(0)

(22)

µ
(0)
l =

⌢
µ
(0)
l − ˆ

σl
⌣
µ
(0)
l (23)

where
⌢
µ
(0)
l = Σ

(0)
l

˜
a

T

l,p(0)(
¯
Q

B

l )
−1 ˜

r
B

l and
⌣
µ
(0)
l = Σ

(0)
l

˜
a

T

l,p(0)(
¯
Q

B

l )
−1

˜
i
B

l .
Then, the initial noise parameter is given as follows. The posterior of the noise power

is expressed as [32]

p
(

σl

∣∣∣∣ ˜rB

l ; γN
l

)
= N

(
σl

∣∣∣⟨σl⟩, ΣN
l

)
(24)

In this equation,

ΣN
l = [(

˜
i
B

l )
T(

¯
Q

B

l )
−1

˜
i
B

l + (
ˆ
γ

N

l )−1]−1 (25)

⟨σl⟩ = ΣN
l (

˜
i
B

l )
T(

¯
Q

B

l )
−1(

˜
r

B

l −
˜
Alµl) (26)

ˆ
γ

N

l is the estimate of γN
l .
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The parameter γN
l is updated via maximizing the expected log-likelihood function,

expressed as
argmax

γN
l

〈
ln ∏L

l=1 p
(
σl ; γN

l
)〉

p(σl |
˜
r

B
l ;γN

l )

= argmin
γN

l

∑L
l=1
(
ln γN

l +
〈
σ2

l
〉
/γN

l
) (27)

where ⟨•⟩q(•) represents the expectation with respect to q(•). After differentiating
Equation (27) with respect to γN

l and setting it to zero, the estimate of γN
l is expressed as

ˆ
γ

N

l =
〈

σ2
l

〉
= ⟨σl⟩2 + ΣN

l (28)

In this manner, the noise parameters
(
ΣN

l
)(0), ⟨σl⟩(0), and

(
ˆ
γ

N

l

)(0)

are set to the

following values, respectively:(
ΣN

l

)(0)
= [(

˜
i
W

l )T(
¯
Q

B

l )
−1

˜
i
B

l + (
ˆ
σ

2

l )
−1]−1 (29)

⟨σl⟩(0) =
(

ΣN
l

)(0)
(

˜
i
B

l )
T(

¯
Q

B

l )
−1(

˜
r

B

l −
˜
A
(0)

l µ
(0)
l ) (30)

(
ˆ
γ

N

l )(0) =
(
⟨σl⟩(0)

)2
+
(

ΣN
l

)(0)
(31)

where
˜
A
(i)

l only contains the bases corresponding to the indexes in Φ(i).

S(0)
l,p ,

⌢
G
(0)

l,p , and
⌣
G
(0)

l,p are set to
S(0)

l,p =
˜
a

T

l,p(0)(
¯
Q

B

l )
−1 ˜

al,p(0) − Σ
(0)
l (

˜
a

T

l,p(
¯
Q

B

l )
−1 ˜

al,p(0))
2

⌢
G
(0)

l,p =
˜
a

T

l,p(
¯
Q

B

l )
−1 ˜

r
B

l − Σ
(0)
l

˜
a

T

l,p(
¯
Q

B

l )
−1 ˜

al,p(0)
˜
a

T

l,p(0)(
¯
Q

B

l )
−1 ˜

r
B

l

⌣
G
(0)

l,p =
˜
a

T

l,p(
¯
Q

B

l )
−1

˜
i
B

l − Σ
(0)
l

˜
a

T

l,p(
¯
Q

B

l )
−1 ˜

al,p(0)
˜
a

T

l,p(0)(
¯
Q

B

l )
−1

˜
i
B

l

(32)

(2) Adding a basis: If
(

p(i) /∈ Φ(i−1)
)
∩ (

ˆ
γ
(i)

p(i) ̸= ∞), then Φ(i) = Φ(i−1) ∪
{

p(i)
}

. The
covariance matrix Σl is updated as follows:

Σ
(i)
l =

Σ
(i−1)
l + αl,iΣ

(i−1)
l (

˜
A
(i−1)

l )T(
¯
Q

B

l )
−1 ˜

al,p(i)
˜
a

T
l,p(i) (

¯
Q

B

l )
−1

˜
A
(i−1)

l Σ
(i−1)
l −αl,iΣ

(i−1)
l (

˜
A
(i−1)

l )T(
¯
Q

B

l )
−1 ˜

al,p(i)

−αl,i
˜
a

T
l,p(i) (

¯
Q

B

l )
−1

˜
A
(i−1)

l Σ
(i−1)
l αl,i

 (33)

where αl,i =

[
ˆ
γ
(i)

p(i) + S(i−1)
l,p(i)

]−1

. The values of
⌢
µ l and

⌣
µ l are updated by



⌢
µ
(i)
l =

 ⌢
µ
(i−1)
l − αl,i

⌢
G
(i−1)

l,p(i) Σ
(i−1)
l (

˜
A
(i−1)

l )T(
¯
Q

B

l )
−1 ˜

al,p(i)

αl,i
⌢
G
(i−1)

l,p(i)


⌣
µ
(i)
l =

 ⌣
µ
(i−1)
l − αl,i

⌣
G
(i−1)

l,p(i) Σ
(i−1)
l (

˜
A
(i−1)

l )T(
¯
Q

B

l )
−1 ˜

al,p(i)

αl,i
⌣
G
(i−1)

l,p(i)


(34)

Thus, µl is updated by

µ
(i)
l =

⌢
µ
(i)
l − ⟨σl⟩(i−1)⌣µ

(i)
l (35)
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S(i)
l,p,

⌢
G
(i)

l,p, and
⌣
G
(i)

l,p are updated by
S(i)

l,p = S(i−1)
l,p − αl,i

∣∣∣∣ ˜
a

T

l,pς
(i)
l

∣∣∣∣2
⌢
G
(i)

l,p =
⌢
G
(i−1)

l,p − αl,i
⌢
G
(i−1)

l,p(i)
˜
a

T

l,pς
(i)
l

⌣
G
(i)

l,p =
⌣
G
(i−1)

l,p − αl,i
⌣
G
(i−1)

l,p(i)
˜
a

T

l,pς
(i)
l

(36)

where ς
(i)
l = [(

¯
Q

B

l )
−1 − (

¯
Q

B

l )
−1

˜
A
(i−1)

l Σ
(i−1)
l (

˜
A
(i−1)

l )T(
¯
Q

B

l )
−1]

˜
al,p(i) .

(3) Updating a basis: If
(

p(i) ∈ Φ(i−1)
)
∩ (

ˆ
γ
(i)

p(i) ̸= ∞), then Φ(i) = Φ(i−1). The covari-
ance matrix Σl is updated as follows:

Σ
(i)
l =

[(
Σ
(i−1)
l

)−1
+ (

ˆ
γ
(i)

p(i) −
ˆ
γ
(i−1)

p(i) )ep(i)e
T
p(i)

]−1

= Σ
(i−1)
l − ρΣ

(i−1)
l,p(i)

[
Σ
(i−1)
l,p(i)

]T
(37)

where Σ
(i−1)
l,p represents the pth column of Σ

(i−1)
l , ρ = [Σ

(i−1)
l,p(i)p(i)

+ (
ˆ
γ
(i)

p(i) −
ˆ
γ
(i−1)

p(i) )−1]−1,

Σ
(i−1)
l,pp represents the (p, p)th element in Σ

(i−1)
l , and ep denotes a vector whose entries are

all zero except that the pth entry is 1. The
⌢
µ l and

⌣
µ l are updated by

⌢
µ
(i)
l =

⌢
µ
(i−1)
l − ρ

⌢
µ
(i−1)
l,p(i) Σ

(i−1)
l,p(i)

⌣
µ
(i)
l =

⌣
µ
(i−1)
l − ρ

⌣
µ
(i−1)
l,p(i) Σ

(i−1)
l,p(i)

(38)

where
⌢
µ
(i−1)
l,p and

⌣
µ
(i−1)
l,p represent the pth elements in

⌢
µ
(i)
l and

⌣
µ
(i)
l , respectively. Based on

this, µ
(i)
l is estimated using Equation (35). S(i)

l,p,
⌢
G
(i)

l,p, and
⌣
G
(i)

l,p are updated by

S(i)
l,p = S(i−1)

l,p + ρ[
˜
a

T

l,p(
¯
Q

B

l )
−1

˜
A
(i)

l Σ
(i−1)
l,p(i)

]2

⌢
G
(i)

l,p =
⌢
G
(i−1)

l,p + ρ
⌢
µ
(i−1)
l,p(i)

˜
a

T

l,p(
¯
Q

B

l )
−1

˜
A
(i)

l Σ
(i−1)
l,p(i)

⌣
G
(i)

l,p =
⌣
G
(i−1)

l,p + ρ
⌣
µ
(i−1)
l,p(i)

˜
a

T

l,p(
¯
Q

B

l )
−1

˜
A
(i)

l Σ
(i−1)
l,p(i)

(39)

(4) Deleting a basis: If
(

p(i) ∈ Φ(i−1)
)
∩ (

ˆ
γ
(i)

p(i) = ∞), then Φ(i) is the set removing p(i)

from Φ(i−1). At this time,

ρ =

Σ
(i−1)
l,p(i)p(i)

+

(
ˆ
γ
(i)

p(i) −
ˆ
γ
(i−1)

p(i)

)−1
−1

=
[
Σ
(i−1)
l,p(i)p(i)

]−1
(40)

With the substitution of Equation (40) into Equations (37)–(39), the update for each
parameter can be completed.

Once the signal parameters have updated in an iteration,
(
ΣN

l
)(i) is updated by

Equation (25), ⟨σl⟩(i) is obtained by substituting µ
(i)
l to Equation (26), and

(
ˆ
γ

N

l

)(i)

is

updated by Equation (28).
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The iteration is terminated when ∥ ˆ
γ
(i)

− ˆ
γ
(i−1)

∥2/∥ ˆ
γ
(i−1)

∥2 ≤ τ for a small tolerance
of τ or a maximum number of iterations of Itermax is reached. Once the iteration converges,
the estimated spectrum PMSBL−BPO can be obtained by

PMSBL−BPO =
L

∑
l=1

µ
(i)
l (41)

A summary of the MSBL-BPO is provided in Algorithm 1.

Algorithm 1 Summary of the implementation of the MSBL-BPO

Input:
˜
r

B
l ,

˜
i
B

l ,
˜
Al ,

¯
Q

B

l ,
ˆ
σl , l = 1, . . . , L

Initialization: Initialize
ˆ
γ
(0)

, Σ
(0)
l , µ

(0)
l through Equations (21)–(23). Set

(
ΣN

l
)(0), ⟨σl⟩(0), (

ˆ
γ

N

l )(0),

S(0)
l,p ,

⌢
G
(0)

l,p , and
⌣
G
(0)

l,p using Equations (29)–(32). Φ(0) =
{

p(0)
}

, and i = 0.

while ∥ ˆ
γ
(i)

− ˆ
γ
(i−1)

∥2/∥ ˆ
γ
(i−1)

∥2 > τ and i < Itermax

Update i = i + 1.
Compute γp using Equation (18).
Compute the increment ∆p caused by γp using Equation (19), and record the index

corresponding to the largest ∆p as p(i).

Update
ˆ
γ
(i)

using Equation (20).

if
(

p(i) /∈ Φ(i−1)
)
∩
(

ˆ
γ
(i)

p(i) ̸= ∞

)
Φ(i) = Φ(i−1) ∪

{
p(i)
}

.

Update Σ
(i)
l ,

⌢
µ
(i)
l ,

⌣
µ
(i)
l , S(i)

l,p,
⌢
G
(i)

l,p, and
⌣
G
(i)

l,p using Equations (33), (34) and (36).

end if

if p(i) ∈ Φ(i−1) ∩ ˆ
γ
(i)

p(i) ̸= ∞

Φ(i) = Φ(i−1).

Update Σ
(i)
l ,

⌢
µ
(i)
l ,

⌣
µ
(i)
l , S(i)

l,p,
⌢
G
(i)

l,p, and
⌣
G
(i)

l,p using Equations (37)–(39).

end if

if p(i) ∈ Φ(i−1) ∩ ˆ
γ
(i)

p(i) = ∞

Update Φ(i) by removing p(i) from Φ(i−1).
Compute ρ using Equation (40).

Update Σ
(i)
l ,

⌢
µ
(i)
l ,

⌣
µ
(i)
l , S(i)

l,p,
⌢
G
(i)

l,p, and
⌣
G
(i)

l,p by substituting Equation (40) into
Equations (37)–(39).

end if

Update µ
(i)
l using Equation (35).

Update
(
ΣN

l
)(i), ⟨σl⟩(i), and

(
ˆ
γ

N

l

)(i)

using Equations (25), (26) and (28), respectively.

end while

Output:PMSBL−BPO = ∑L
l=1 µ

(i)
l

4. Simulation Results

In this section, the MSBL-BPO is compared with the SBL-BPO [32], eigenanalysis-based
adaptive interference suppression based CBF (EAAIS-CBF) [24], and covariance-based fast
SBL (C-FSBL) methods [21]. The EAAIS-CBF is a subspace-separation-based method, and
the C-FSBL is a method that extends the Fast-RVM to a vectorized covariance matrix. For
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all simulations, a uniform linear array with 32 sensors and 4 m spacing is considered. Two
weak targets and a strong interference impinge on the array from −10◦, −7◦ and 10◦ (90◦

is defined as the endfire direction). The frequency ranges of targets and interference are
[90, 180] Hz. The sample frequency is 2 kHz. The received data are divided into N blocks,
with a length of 1000. Then, a 1000-point DFT is applied in each block, i.e., frequency
resolution is 2 Hz. The sector-of-interest ΘS used in MSBL-BPO and SBL-BPO is set to
[−14, −2]◦. The sector is divided with a step of 2◦ to obtain beam pointing angles. The
coarse bearing range where the targets may exist is also set to [−14, −2]◦ in EAAIS-CBF. The
C-FSBL estimates DOAs in whole space with a grid interval of 1◦ to ensure the inclusion of
the bases of the signals in the dictionary matrix, while other methods search for the DOAs
in ΘS with a grid interval of 1◦, since the signals out of ΘS are suppressed. The tolerance τ
and the maximum number of iterations Itermax are set to 10−3 and 3000, respectively. All
simulations are performed in MATLAB on a PC with an Intel Core i7-6820HQ CPU and
32 GB RAM.

Figure 1 shows the spatial spectra of the abovementioned algorithms with SIR of
−10 dB. The SNR and the number of snapshots N are set to −10 dB and 50, respectively.
Under such a condition, the MSBL-BPO, the SBL-BPO and the C-FSBL as super-resolution
methods, can estimate the two directions of the targets. On the contrary, though the
EAAIS-CBF can suppress the interference by removing the interference subspace from the
covariance matrix, it still cannot resolve the directions of signals because of the wide main
lobe, which results in low resolution.
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Figure 1. The spatial spectra of (a) MSBL-BPO, (b) SBL-BPO, (c) EAAIS-CBF, and (d) C-FSBL with the
SIR of −10 dB. Two dashed lines represent the directions of the targets, and the dotted line shows the
direction of the interfering source.

Then, the SIR increases to −30 dB. Figure 2 shows the spatial spectra of the method
considered above under such a condition. Obviously, the interference power increases with
a decrease in SIR. Once again, the proposed method and the SBL-BPO use the MVDR-DL
as preprocessor to suppress the interference. As such, they can maintain good performance
when the interference power increases. The C-FSBL can estimate the direction of the
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interference. However, its performance is seriously affected by the strong interference in
comparison with the result in Figure 1d. The method experiences problems in resolving
two directions of the targets. Furthermore, the EAAIS-CBF still cannot work under such a
condition, mainly due to the low resolution.
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Figure 2. The spatial spectra of (a) MSBL-BPO, (b) SBL-BPO, (c) EAAIS-CBF, and (d) C-FSBL with 
the SIR of −30 dB. Two dashed lines represent the directions of the targets, and the dotted line shows 
the direction of the interfering source.  
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Figure 2. The spatial spectra of (a) MSBL-BPO, (b) SBL-BPO, (c) EAAIS-CBF, and (d) C-FSBL with the
SIR of −30 dB. Two dashed lines represent the directions of the targets, and the dotted line shows the
direction of the interfering source.

Subsequently, the estimation accuracy of the methods is compared under different SIR
conditions, examined by the root-mean-square error (RMSE):

RMSE =

√
1

KW ∑K
k=1 ∑W

w=1 (
ˆ
θ

w

k − θk)
2

, (42)

where K and W are the number of signals and the sum of the Monte Carlo runs, respectively.
K = 2 and W = 200 in the simulations.

Figure 3 shows the RMSE of each method versus the SIR curve obtained by fixing the
SNR and the number of snapshots N to −10 dB and 50, respectively. It can be observed
that the performance of the MSBL-BPO is comparable to that of the SBL-BPO. They provide
stable DOA estimates as the interference power increases since the interference is suffi-
ciently suppressed by the MVDR-DL and cannot affect the DOA estimation. However, the
performance of the C-FSBL is affected by strong interference, and its estimation precision
decreases when SIR is smaller than −25 dB. The RMSEs of EAAIS-CBF are larger than in
other methods. This is mainly because that the main lobe of the CBF is wide and only a
peak exists in the sector [−14, −2]◦, as shown in Figures 1c and 2c. The peak out of the
sector is mistaken for the target, leading to a large bias.
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Figure 3. RMSE of DOA estimates versus SIR.

Figure 4 illustrates the RMSE of each method versus the SNR by fixing the SIR to
−30 dB. Other parameters remain unchanged. The MSBL-BPO and the SBL-BPO use the
MVDR-DL to suppress the interference, thus improving the signal-to-interference-and-
noise ratio. Hence, they can be applied under lower SNR condition in comparison with
other methods. Their RMSEs are lower than those of other methods when SNR < −2.5 dB.
The performance of the C-FSBL is worse than that of the proposed method, since it directly
estimates the DOAs from the received data and ignores the interference. The existence
of the interference affects its performance, especially in low SNR cases. Furthermore, the
EAAIS-CBF has a wide main lobe, which leads to low resolution. Hence, it cannot provide
DOA estimates for the targets.
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Finally, the computational efficiency is compared in terms of the running time. The
simulation settings are the same as those shown in Figure 1. The mean running time over
200 trials is shown in Table 1. The time usage of the proposed method is almost three
times smaller than that of the SBL-BPO. This is mainly because the SBL-BPO applies the
VBI to estimate the parameters in Equation (12) and the workload almost depends on
Equation (14), i.e., O

(
LK3

G
)

in each iteration. In contrast, as shown in Algorithm 1, the
proposed method avoids matrix inversion. At this time, the computational workload of
Σ
(i)
l updating is O(LKactiveKB) if a basis is added to the active basis set in an iteration,

while the computational workload becomes O
(

LK2
active

)
if a basis is updated or deleted,

where Kactive represents the number of elements in active basis set. It is obvious that
the workload of the proposed method is smaller than that of the SBL-BPO since Kactive,
KB < KG. Hence, the proposed method successfully improves the computational efficiency
in comparison with SBL-BPO. Though C-FSBL also avoids matrix inversion, this method
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uses the vectorized covariance matrix model, increasing the dimension of the matrix. The
workload of this method is O

(
LKactive M2) if a basis is added to the active basis set in an

iteration, while the computational workload is O
(

LK2
active

)
when a basis is updated or

deleted. Hence, its computational workload is also larger than that of the proposed method,
since KB < M. Furthermore, the EAAIS-CBF achieves high computational efficiency
because it needs no iteration to estimate DOAs and the workload mainly depends on eigen
decomposition. Therefore, the proposed method can achieve high estimation precision
in the strong interference environment. At the same time, it achieves high computational
efficiency, which is comparable to the traditional method.

Table 1. Mean running time of each algorithm over 200 trials.

MSBL-BPO SBL-BPO EAAIS-CBF C-FSBL

0.17 s 0.48 s 0.13 s 0.78 s

5. Experimental Results

Experimental data were collected by a tow array with 32 hydrophones uniformly
spaced at 4 m, which was processed in [32]. Target1, target2 and target3 were, respectively,
located at −18◦, −25◦, and −29◦. The received data sampled at 2048 Hz, are divided into
96 frames with 15 s of data, and the overlap between the adjacent frames is 80%. The data
in each frame are divided into 49 blocks with 50% overlap, i.e., N = 49. A 1024-point DFT is
applied in each block, i.e., the frequency resolution is 2 Hz. The analyzed frequency ranges
from 90 to 180 Hz. The sector-of-interest in MSBL-BPO and SBL-BPO is set to [−30, −12]◦.
The sector is divided with a step of 2◦ to obtain beam pointing angles. The coarse bearing
range in EAAIS-CBF is also set to [−30, −12]◦. Other parameter settings remain the same
as those in the simulations.

Figure 5 illustrates the DOA estimation result of each method. The MSBL-BPO and
SBL-BPO use the MVDR-DL as preprocessor to sufficiently suppress the interferences, thus
decreasing the influence of the interference on DOA estimation. They can estimate three
weak targets well. In contrast, the performance of C-FSBL is affected by the interference,
and it has some difficulties in resolving target2 and target3 from 120 s to 150 s. The
EAAIS-CBF removes the interference subspace from the covariance matrix, thus preventing
the interference from masking the targets to some degree. Unfortunately, the main lobe
of its spatial spectrum is wide. Hence, it cannot resolve target2 and target3 due to the
low resolution.

Table 2 shows the mean running time of each algorithm over segments. Similar to the
simulation result, the computational efficiency of the proposed method is comparable to
that of EAAIS-CBF, but the EAAIS-CBF suffers from low resolution, as shown before. The
time usage of the MSBL-BPO is almost three times smaller than that of the SBL-BPO, since
the proposed method avoids matrix inversion. The mean running time of the C-FSBL is
longer than that of the proposed method due to the large matrix dimension. Hence, we
can draw a conclusion that the proposed method can achieve better performance than
state-of-the-art methods in a strong interference environment.

Table 2. Mean running time of each algorithm over frames.

MSBL-BPO SBL-BPO EAAIS-CBF C-FSBL

0.19 s 0.63 s 0.17 s 0.92 s
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6. Conclusions

DOA estimation in a strong interference environment is a difficult problem to be
solved. Under such conditions, strong interference will mask the target-of-interest and the
DOAs of the targets can hardly be obtained, leading to a significant challenge to weak target
detection for the passive sonar system. The SBL-BPO is a useful tool to estimate DOAs in a
strong interference environment. This method uses the MVDR-DL beamformer to suppress
interference and estimates the DOAs from BPO in the Bayesian framework. However, it
needs to compute matrix inversion in each iteration, which brings some computational
burden to the system. This paper modifies the SBL-BPO to reduce this computational
burden. The Fast-RVM is extended to the beam domain, and then a sequential solution
for the BPO probabilistic model is provided in this paper. As such, only single signal
precision parameter is updated in each iteration and matrix inversion computation is
avoided. Simulation and experimental results verify that the MSBL-BPO can provide
stable DOA estimates for targets in a strong interference environment, thus improving
the ability of the sonar system in weak target detection. Meanwhile, its computational
efficiency is comparable to the subspace-separation-based method. Hence, the proposed
method successfully reduces computational burden for the system and has potential in
practical signal processing. In future work, the DOA estimation problem should be further
researched under the condition where the target and interference are coherent in order to
increase the anti-interference ability of the system.
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