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Abstract: During the maintenance and management of solar photovoltaic (PV) panels, how to
efficiently solve the maintenance difficulties becomes a key challenge that restricts their performance
and service life. Aiming at the multi-defect-recognition challenge in PV-panel image analysis, this
study innovatively proposes a new algorithm for the defect detection of PV panels incorporating
YOLOv7-GX technology. The algorithm first constructs an innovative GhostSlimFPN network
architecture by introducing GSConv and depth-wise separable convolution technologies, optimizing
the traditional neck network structure. Then, a customized 1 × 1 convolutional module incorporating
the GAM (Global Attention Mechanism) attention mechanism is designed in this paper to improve
the ELAN structure, aiming to enhance the network’s perception and representation capabilities
while controlling the network complexity. In addition, the XIOU loss function is introduced in the
study to replace the traditional CIOU loss function, which effectively improves the robustness and
convergence efficiency of the model. In the training stage, the sample imbalance problem is effectively
solved by implementing differentiated weight allocations for different images and categories, which
promotes the balance of the training process. The experimental data show that the optimized model
achieves 94.8% in the highest mAP value, which is 6.4% higher than the original YOLOv7 network,
significantly better than other existing models, and provides solid theoretical and technical support
for further research and application in the field of PV-panel defect detection.

Keywords: photovoltaic-panel defect detection; target detection; attention mechanism; YOLOv7

1. Introduction

As the heart of a solar photovoltaic (PV) system, the performance and durability of
PV panels are directly related to the energy efficiency and stability of the entire system [1].
Despite the rapid development of photovoltaic (PV) technology globally and its emergence
as an important part of the green-energy sector, the maintenance and operational issues
of PV panels during their lifecycle are still significant factors affecting their efficacy and
longevity. There is a wide variety of faults and defects that PV panels may encounter
during actual operation, including but not limited to hot spots, physical fragmentation,
surface shading, etc. These problems not only lead to an effective loss of energy, but also
may cause an overall decrease in system efficiency or even lead to system failure, thus
impacting the reliability and economy of PV-power generation [2].

In the traditional mode, the detection of defects in PV panels mainly relies on manual
inspection and the use of specific inspection equipment, such as visual inspection, thermal
imager scanning, electrical performance analysis, and optical methods to identify faults.
Although these means are able to identify some common problems of PV panels to some
extent, they generally suffer from low efficiency and high cost, and due to the limitations of
the technical means, it is often difficult to achieve the accuracy required for industrialized
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large-scale applications. With technological advances, especially the wide application of
convolutional neural networks (CNNs) and deep learning techniques in the field of image
processing, image-based deep learning defect-detection methods have begun to receive
attention [3]. Such methods are able to achieve more accurate and efficient fault detection
by automatically learning and recognizing feature patterns in PV-panel images. Compared
with traditional methods, deep learning can not only significantly improve the accuracy of
defect detection, but also show higher efficiency in processing large-scale data, providing
new solutions for PV-panel maintenance and fault prevention.

Deep learning techniques have demonstrated significant advantages in processing
complex images and recognizing subtle differences, which is particularly important for
maintaining robustness in the defect detection of photovoltaic panels under variable envi-
ronmental conditions. Although deep learning-based methods have achieved significant
advances in recognizing specific types of defects, existing methods still exhibit significant
shortcomings when faced with challenges such as multiple fault recognition, environmental
changes, and small-size defect detection and defect recognition in complex backgrounds;
for example, defect detection in complex backgrounds. Photovoltaic panels are installed in
a variety of environments, from deserts to rooftops, and different backgrounds interfere
with defect detection in different ways. In desert environments, sand and dust may cover
the PV panels, blurring the real defect features, while in rainy regions, the reflection of
water droplets may mislead the defect-detection algorithm. These factors greatly increase
the difficulty of detection, requiring detection algorithms to not only recognize defects
but also resist interference from complex backgrounds. Recently, research on applying
deep learning to PV-panel defect detection has gained widespread attention, and numerous
studies have made significant progress by adopting diverse network structures and data-
processing strategies. For example, one study proposed an effective solution strategy for the
surface-defect-detection problem under limited sample conditions by erasure-filling data
enhancement, showing its exploitation of data-enhancement potential [4]. Another study
significantly improved the recognition rate of surface defects on steel plates by utilizing an
attention mechanism and a multilevel feature-fusion network [5].

In the research area of PV-panel defect detection, Latoui A [6] used an innovative
approach to extract features from a two-dimensional (2-D) scale map by means of a pre-
trained AlexNet Convolutional Neural Network (CNN) in order to predict whether or
not a PV panel is in a partial-shading (PS) condition. This approach utilizes 2-D scale
maps generated in real-time from photovoltaic (PV) data-acquisition systems to effectively
identify the shading problem of solar panels. Although this technique performs well
in shading detection, its application is limited to a single type of detection, and thus has
limitations in the widespread deployment of large-scale PV power plants. Menghao Guo [7]
successfully developed a hot-spot defect-detection model based on the Faster RCNN
framework and combining image preprocessing, migration learning, and the improvement
of the feature-extraction-network model to deeply analyze infrared images. The model
achieves a high accuracy of 97.34% in hot-spot detection, showing excellent performance.
However, just like Latoui A’s study, Menghao Guo’s approach also focuses on a single fault
type, limiting its utility in a wider range of fault-detection applications.

The study by Winston et al. [8] introduces an innovative approach that combines feed-
forward back-propagation neural network and support vector machine (SVM) techniques
dedicated to accurately identifying photovoltaic (PV) modules affected by microcracks
and hot spots. This approach looks at the problem of defect detection in PV panels from
a new perspective. However, despite its excellent performance under specific conditions,
the method is not as robust in the face of environmentally induced variations in the
color deviation of infrared images. This limits its adaptability and wide application in
changing real-world-application environments. Chen Z [9] proposed a novel deep residual
network model trained using an adaptive moment-estimation algorithm, which aims to
enhance the intelligence of PV-array fault detection and diagnosis. This model supports
the accuracy of fault diagnosis by deeply analyzing the operating state of the PV system.
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However, despite the theoretical innovativeness of this approach, it still faces challenges
in practical applications such as high data requirements, long training times, and a high
demand for computational resources, which may limit its feasibility in resource-constrained
environments. In addition, the model may need to be further optimized when dealing
with multiple fault types in order to improve its generalization ability and robustness to
changes in complex environments. The study by Vega Díaz J J [10], on the other hand,
focuses on the use of images trained with three different preprocessing operations to infer
the location of undetected panels from detected panels through postprocessing techniques.
This method works by analyzing the area and the rotation angle of the panels in order
to select appropriate contour lines and locate new panel positions by extrapolating these
contour lines.

These deep learning-based defect detection algorithms have made significant progress
in improving detection accuracy, but most of them focus on the detection of single faults,
which somewhat limits their ability to recognize multiple faults, to cope with robustness
under different environmental conditions, and to detect dense and very small targets.
Therefore, although these algorithms have shown potential in theoretical and experimental
tests, they still face certain challenges and limitations in practical industrial applications,
particularly in scenarios that require the identification of multiple types of faults and
high adaptability.

In order to further improve the model’s detection accuracy and robustness to small
targets, this paper chooses to adopt YOLOv7 [11] as the baseline of the study, and based
on it, we propose our YOLOv7-GX algorithm (the name of YOLOv7-GX is taken from the
initial G of the GAM attention mechanism and the initial X of the XIOU loss). YOLOv7, as
the current leading technology in the field of target detection, has been highly recognized
by the industry for its excellent performance and wide range of application scenarios.
The model demonstrates excellent target-recognition and localization capabilities through
multi-scale feature fusion and advanced convolutional neural network design. Especially
in practical applications such as intelligent surveillance and autonomous driving, YOLOv7
proves its efficiency and reliability.

The main contributions of this paper are as follows. (1) GSConv and depth-separable
convolution techniques are introduced to optimize the traditional neck network structure
and construct an innovative GhostSlimFPN network architecture. This structural opti-
mization helps to solve the problems of excessive semantic differences and the loss or
degradation of feature information that may occur between different levels of features in
the original model, and effectively improves the efficiency of feature extraction and fusion.
(2) A 1 × 1 convolutional block with GAM attention mechanism is proposed: this attention
mechanism can automatically learn and select key features in the image to improve the
model’s ability to perceive and recognize defects in PV panels. Compared with the tradi-
tional attention mechanism, the method in this paper avoids increasing the complexity of
the network structure and ensures the efficiency and practicality of the model. (3) The XIOU
loss function is used to replace the traditional CIOU loss function. The XIOU loss function
can more accurately measure the accuracy of target detection and localization accuracy. By
using the XIOU loss function, this paper enhances the robustness and convergence speed
of the model, further improving the performance of target detection. (4) To address the
problem of uneven sample distribution, this paper incorporates a weight-adjustment strat-
egy. By giving different weights to different images and categories, it balances the impact
of uneven sample distribution on model training and improves the detection performance
of the algorithm in various categories.

2. Materials and Methods
2.1. YOLOv7-GX Model

The YOLOv7 algorithm, as a typical representative of one-stage target detection
algorithms, is based on deep neural networks for object recognition and localization, and
has a fast running speed for real-time systems. YOLOv7 performs well in the range
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from 5FPS to 160FPS, and outperforms in both speed and accuracy YOLOR, YOLOX,
Scaled-YOLOv4, YOLOv5, DETR, deformable DETR, DINO-5scale-R50, and many other
object detectors. The main contributions of YOLOv7 include the introduction of model
reparameterization into the network architecture, the adoption of the cross-grid search label-
assignment strategy of YOLOv5, and the adoption of the matching strategy of YOLOX [12].
In addition, a more efficient ELAN network architecture is introduced. Meanwhile, YOLOv7
proposes an auxiliary head-training method, which improves the accuracy by increasing
the training cost without affecting the inference time, since the auxiliary head only appears
during the training process, as shown in Figure 1 for the model structure of YOLOv7.
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Although the YOLOv7 algorithm has achieved remarkable success in terms of speed
and accuracy and has become an important milestone in the field of one-stage target
detection, it still faces certain challenges when dealing with a large number of dense and
very small-sized targets. Especially in the defect detection dataset of photovoltaic panels
involved in this study, the feature information of dense and small targets is often severely
lost after the multilayer convolutional network of YOLOv7, which directly affects the
model’s ability to detect tiny defects, such as hot spots.

As a typical fault type in PV panels, hot spots appear as tiny bright spots in the
original image, occupying a very limited number of pixels. As demonstrated by the area
indicated by the blue arrow in Figure 2, these tiny bright spots represent the presence
of hot-spot faults. Under the original YOLOv7 architecture, since its design focuses on
balancing the detection speed and the overall target-recognition accuracy, it is easy to
ignore or lose the feature information of this type of very small target when performing the
deep convolutional processing, which leads to the omission of small-sized faults, such as
hot spots.

To address this problem, the improved algorithm needs to enhance its ability to
capture small target features while maintaining the original advantages of YOLOv7 to
ensure accurate recognition of dense small targets. This involves adjusting the network
architecture, optimizing the feature-fusion strategy, or introducing a more refined feature
extraction mechanism. The sensitivity of the network to small-sized targets can be improved
by tuning the parameters of the convolutional layers or introducing special attention
mechanisms. In addition, the optimization of the feature-fusion strategy, such as the use of
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multi-scale feature fusion, can also effectively enhance the model’s ability to detect dense
small targets.
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In summary, although the YOLOv7 algorithm performs well in many aspects, it still
has some limitations when dealing with specific types of dense-small-target-detection
tasks. Therefore, targeted improvements to YOLOv7 to enhance its performance in specific
application scenarios such as the defect detection of PV panels is an important direction of
research in this paper. Through these improvements, the applicability and effectiveness
of the YOLOv7 algorithm in practical applications can be further extended, especially in
occasions where the accurate detection of dense small targets is required.

Standard convolution (SConv) is commonly used in deep learning models to extract
image features by applying different convolution kernels to multiple channels at the same
time, thus enabling the model to capture rich spatial information. However, the number of
parameters required for standard convolution increases rapidly with the increase in network
depth and the demand for feature extraction, resulting in computational complexity and
network operation speed being the main factors limiting its application.

In contrast, depth-separable convolution (DWConv) is widely used in various network
architectures. It first applies deep convolutions to each input channel independently [13],
and then combines the results of these deep convolutions by 1 × 1 convolution (also known
as dot convolution). This approach can significantly reduce the number of parameters
and the computational burden of the model and speed up the inference. However, while
reducing parameters, depth-separable convolution may also lose some of the semantic
information between channels, affecting the overall accuracy of the model.

To overcome these limitations, GSConv is proposed as a novel convolutional struc-
ture [14], as shown in Figure 3, which skillfully blends the advantages of standard con-
volution and depth-separable convolution. GSConv effectively addresses the limitations
of depth-separable convolution (DSC) in preserving the channel-information processing,
which is a key drawback of DSC. While DSC reduces computational cost, it tends to separate
channel information, which leads to a significant reduction in feature extraction and fusion
capabilities, especially detrimental when detecting small targets. This separation hinders
the ability to capture the complex details required for the model to accurately recognize
small objects. In contrast, GSConv combines standard convolution (SC), DSC, and blending
operations, allowing the model to reduce computational requirements while retaining
information about interactions between channels. The incorporation of SC operations in
GSConv ensures that depth-separated information is combined with channel-intensive
features, compensating for the loss of detail encountered when using DSC alone. This
design significantly improves the model’s ability to identify and accurately localize small
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targets, ensuring that critical spatial and feature-level details are not lost during the convo-
lution operation. In addition, the mixing operation within GSConv ensures a homogeneous
mixing of information, allowing SC-extracted features to effectively permeate the output of
the DSC operation. This process ensures a more comprehensive feature representation and
further enhances the model’s sensitivity to small-scale details, which is critical for detecting
small targets.
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By optimizing the balance between computational efficiency and model accuracy
while preserving inter-channel linkages, GSConv is particularly suitable for application
scenarios that require efficient real-time processing and highly accurate detection, such
as PV-panel defect detection. It is able to effectively represent the fault deformation and
overlap on PV panels due to variations in shooting angles, heights, and environmental
conditions, providing an effective means to improve the generalization ability and ro-
bustness of the model. The introduction of this convolutional structure opens up new
possibilities for the application of deep learning models in areas such as PV-panel defect
detection, allowing the model to maintain a low computational complexity while effectively
improving detection performance.

Replacing all the convolutions of the model with GSConv may significantly increase
the number of layers of the model, which leads to an increase in the inference time for
the PV panels. In the YOLOv7 network, the backbone layer requires enough convolution
operations to extract the defect information on the PV panels. Therefore, we chose to
replace the convolution operation only at the neck layer. By performing convolutional
substitution at the neck layer, redundant and repetitive information can be reduced to
improve the efficiency and performance of the model [15]. Such an optimization strategy
can reduce the computational complexity of the model without sacrificing the accuracy
of the model, making the model more feasible in resource-constrained environments [16].
Through extensive experiments, we redesigned the neck structure and proposed a new
GhostSlimFPN network structure, as shown in Figure 4. This structure replaces the previous
top-down and bottom-up pyramid structure in YOLOv7, which greatly compresses the
number of layers of the model while ensuring that there is no loss of model accuracy, which
not only reduces the computational cost, but also maintains the connectivity between the
channels as much as possible [17].
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2.2. Custom Convolution with GAM Attention Mechanism

The GAM attention mechanism is a method that can amplify global interaction features
with reduced information dispersion [18]. A sequential channel-space attention mechanism
was adopted and the CBAM sub-module was redesigned [19]. In order to effectively inte-
grate the GAM attention mechanism into the model, while considering the computational
efficiency of the model and the feasibility of practical applications, we skillfully integrated
the GAM into a 1 × 1 convolutional block to form a new type of convolutional block,
Conv_ATT, as shown in Figure 5. This design not only retains the advantages of 1 × 1
convolution in reducing the number of parameters and the computational burden, but also
introduces the GAM attention mechanism, which enables the model to focus on and zoom
in on the key features in the image more accurately, and effectively reduces the dispersion
problem of the information in the process of transmission.
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By integrating the GAM attention mechanism in a 1 × 1 convolutional block, Conv_ATT
is able to achieve an efficient extraction and enhancement of the global features of an image,
which is particularly important in tasks requiring fine characterization such as PV-panel
defect detection. PV-panel defects, such as tiny occlusions and hot spots, often occupy a
very small area in the image and are not easy to clearly distinguish, and the introduction
of the GAM mechanism can help the model better recognize these subtle differences, thus
improving the accuracy and reliability of detection.

In deep learning models, especially those used for image recognition and target detec-
tion, the introduction of the attention mechanism has become one of the most important
methods to enhance the performance of the model. The GAM attention mechanism ef-
fectively enhances the model’s ability to understand and capture the global features of
an image through the design of its channel-attention sub-module and spatial-attention
sub-module.

In the GAM attention mechanism (e.g., Figure 6), given an input feature map F1 an
intermediate feature map F2 and an output feature map F3, are defined as

F2 = MC(F1)
⊗

F1 (1)

F3 = MS(F2)
⊗

F2 (2)

where MC and MS denote channel-attention and spatial-attention feature mapping, respec-
tively; and ⊗ denotes the multiplication operation by element.

Electronics 2024, 13, x FOR PEER REVIEW 8 of 20 
 

 

as PV-panel defect detection. PV-panel defects, such as tiny occlusions and hot spots, often 
occupy a very small area in the image and are not easy to clearly distinguish, and the 
introduction of the GAM mechanism can help the model better recognize these subtle dif-
ferences, thus improving the accuracy and reliability of detection. 

 
Figure 5. Schematic of convolution equipped with the GAM attention mechanism. 

In deep learning models, especially those used for image recognition and target de-
tection, the introduction of the attention mechanism has become one of the most important 
methods to enhance the performance of the model. The GAM attention mechanism effec-
tively enhances the model’s ability to understand and capture the global features of an 
image through the design of its channel-attention sub-module and spatial-attention sub-
module. 

In the GAM attention mechanism (e.g., Figure 6), given an input feature map 𝐹ଵ an 
intermediate feature map 𝐹ଶ and an output feature map F3, are defined as 𝐹ଶ = 𝑀஼(𝐹ଵ)⨂𝐹1 (1)𝐹ଷ = 𝑀ௌ(𝐹ଶ)⨂𝐹2 (2)

where 𝑀஼  and 𝑀ௌ  denote channel-attention and spatial-attention feature mapping, re-
spectively; and ⨂ denotes the multiplication operation by element. 

The channel-attention sub-module effectively preserves the three-dimensional infor-
mation of the input features by employing a three-dimensional arrangement, as shown in 
Figure 7. This design enables the module to strengthen the cross-dimensional channel-
space dependencies while preserving the spatial information. By applying a two-layer 
MLP (multilayer perceptron), the sub-module not only amplifies the inter-channel corre-
lations, but also enhances the model’s ability to perceive different spatial location infor-
mation. The encoder–decoder structure adopted by the MLP further optimizes the use of 
parameters with the help of the reduction ratio r, which ensures the efficient transfer and 
processing of information. 

 
Figure 6. Example of integration of channeling and spatial-attention mechanisms in GAM modeling. 

The spatial-attention sub-module focuses on capturing and fusing spatial infor-
mation. By using two convolutional layers, this sub-module effectively fuses spatial infor-
mation from different locations, enhancing the model’s understanding of the spatial fea-
tures of the image. Similar to the channel-attention sub-module, the spatial-attention sub-
module also employs a reduced ratio r to maintain the efficiency and accuracy of 

Figure 6. Example of integration of channeling and spatial-attention mechanisms in GAM modeling.

The channel-attention sub-module effectively preserves the three-dimensional infor-
mation of the input features by employing a three-dimensional arrangement, as shown
in Figure 7. This design enables the module to strengthen the cross-dimensional channel-
space dependencies while preserving the spatial information. By applying a two-layer MLP
(multilayer perceptron), the sub-module not only amplifies the inter-channel correlations,
but also enhances the model’s ability to perceive different spatial location information. The
encoder–decoder structure adopted by the MLP further optimizes the use of parameters
with the help of the reduction ratio r, which ensures the efficient transfer and processing
of information.

The spatial-attention sub-module focuses on capturing and fusing spatial information.
By using two convolutional layers, this sub-module effectively fuses spatial information
from different locations, enhancing the model’s understanding of the spatial features of
the image. Similar to the channel-attention sub-module, the spatial-attention sub-module
also employs a reduced ratio r to maintain the efficiency and accuracy of information
processing. Notably, in order to avoid the possible loss of information from the maximum
pooling operation, this sub-module removes the pooling step to further preserve the
feature mapping.
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In order to balance the number of parameters of the model and the computational
efficiency, the spatial attention sub-module employs group convolution with channel shuffle
in models such as ResNet50. This design aims to optimize the model’s parameter usage
while maintaining or improving the model’s ability to capture spatial features through the
group processing of group convolution and the channel shuffling of channel shuffle.

With these well-designed sub-modules, the GAM attention mechanism provides an
effective way for deep learning models to enhance their understanding of image channels
and spatial information. The introduction of this mechanism will undoubtedly ensure the
efficiency of the model while significantly improving its performance in complex image-
processing tasks, especially in the fields of target detection and image recognition. The
spatial-attention sub-module without group convolution is shown in Figure 8.
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At the same time, we will reconstruct the ELAN and SPPCSPC modules. We obtain the
ELANA module by replacing the last 1 × 1 convolution in the ELAN module with a custom
convolution Conv_ATT as in Figure 9. In the same way, we can obtain the SPPCSPC_ATT
module, as in Figure 10.
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2.3. Loss Function

YOLOv7 incorporates a boundary regression loss function known as CIOU that con-
siders three critical geometric aspects: the intersecting area, the center-point distance, and
the aspect ratio between predicted and actual bounding boxes. The CIOU metric evaluates
the shared area between the predicted and actual boxes, calculates the Euclidean distance
between their centers, and considers the angle difference related to their aspect ratios
against the IOU metric [20]. The formula for the CIOU loss is expressed as follows:

CIOU = IOU −
(

ρ2(b, bgt)
c2 + αv

)
(3)

v =
4

π2

(
tan−1 wgt

hgt − tan−1 w
h

)2

(4)

α =
v

(1 − IOU) + v
(5)

Nevertheless, the utilization of the arctan function in the last term of the CIOU loss,
intended as a penalty for aspect ratio variance, introduces a couple of issues impacting
the speed of convergence and the stability of the CIOU. The sensitivity of this term to
outliers can cause significant swings in the value range of the loss function, undermining
its effectiveness. Furthermore, the output range of the arctan function (0, π

2 ) does not
align with the normalization standards set for the loss function. The need to incorporate
additional coefficients for the numerical normalization of this penalty term also contributes
to a rise in computational demand.

Based on the above, we designed a more efficient loss function, the XIOU regression
loss function. The XIOU loss function serves as an improvement of the overlap metric
between the bounding boxes. The XIOU loss function introduces an additional parameter
tuning on top of the CIOU loss, which also takes into account the shape factor of the
bounding boxes through the convex diagonal loss. Specifically, the XIOU loss function
introduces two additional parameters, q1 and q2, which are calculated by applying Sigmoid
functions to the width and height of the bounding box. By adjusting the terms in the
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calculation formula, the XIOU loss function provides a more accurate measure of the
bounding box overlap. The formula is as follows:

q1 = 1 + e−
w1
h1 (6)

q2 = 1 + e−
w2
h2 (7)

v = (1/q2 − 1/q1)
2 (8)

From Equations (6)–(8), it can be seen that the XIOU loss function introduces the q1
and q2 parameters in the parameter-tuning section, which is obtained by calculating the
Sigmoid function for the width and height of the bounding box. These two parameters
are used to adjust the terms in the equation when calculating the XIOU to provide a more
accurate loss metric.

The proposal of the XIOU loss function not only effectively improves the problems
in the CIOU loss, but also provides a more accurate and robust bounding box regression
loss-calculation method for the target-detection model. By applying the XIOU loss function
in advanced target-detection models such as YOLOv7, the performance of the model in
various detection tasks can be further improved, especially in the precise localization
and the handling of scenarios with large variations in target aspect ratios, which show
significant advantages.

2.4. Weighting Strategies

In order to solve the sample imbalance problem in the target-detection task, we
introduced the methods of category-weight calculation and image-weight calculation in
the implementation of the YOLOv7 model. These two methods can effectively adjust
the model’s focus on different categories and images, thus improving the accuracy and
performance of target detection. In category-weight calculation, we assigned appropriate
weights to different categories based on the distribution of each category in the training
data [21]. By analyzing the training-label data, we counted the number of occurrences of
each category in the training data to obtain the frequency information of the categories.
In order to avoid the impact of certain categories not appearing in the training data on
the weight calculation, we processed the categories with zero occurrences. Specifically, we
replaced the weights of these empty categories with a default value to ensure that they
play an appropriate role in the weight calculation. In addition, this is done to improve the
detection accuracy of the “hotspot”, which is a small target and difficult to detect in this
dataset sample. In order to improve the detection accuracy of “hot spot”, we adjusted the
weight of the category “hot spot” by doubling its original weight to increase its importance
in the training process.

Equation (9) is the category of frequency statistics, where fi is the number of times
the ith category appears in the training set and ci is the ith category. Equation (10) deals
with the empty categories; for the categories that do not appear, their frequency is set
to 1. Equation (11) is the category-weight adjustment; for a specific category “hot spot”,
we doubled its weight by w′

i = 2 × wi. Equation (12) is the calculation of the inverse
frequency weights. Equation (13) is the weight normalization, where nc is the total number
of categories.

fi = count(ci) (9){
fi, i f fi > 0
1, i f fi = 0

(10)

w′
i = adjust(wi) (11)

wi =
1
f ′i

(12)
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wi =
wi

∑nc
j=1 wj

(13)

In addition to category-weight computation, we also introduced the method of image-
weight computation to better handle the sample-imbalance problem at the image level. By
analyzing the distribution of each category in each image in the training data, the weights of
each image were calculated. These image weights can be used to adjust how much attention
the model pays to different images, thus balancing the importance of different images in the
training process [22]. Specifically, we calculated a category-weighted sum for each image
based on the category weights and the number of occurrences of each category in each
image. Then, by processing and normalizing the category-weighted sum appropriately, we
obtained the final weight values for each image. With the introduction of category-weight
calculation and image-weight calculation, we are able to better deal with the sample-
imbalance problem during the training process and improve the performance and accuracy
of the target-detection algorithm. These methods were applied in the YOLOv7-GX model
and achieved significant improvements.

3. Results
3.1. Experimental Environment

To complete the experiment, we used the PyTorch framework. The experimental
conditions were the following: Ubuntu 20.04 operating system, Python 3.8, PyTorch 1.10.0,
and RTXA5000 GPU (Nvidia Corporation, Santa Clara, CA, USA) with 24 GB of video
memory. The batch size was 16 and the number of epochs was 100.

3.2. Datasets

The dataset used in this study was collected from 13 large power stations by the
cooperative enterprises of the group using drones carrying infrared cameras. In order
to improve the accuracy of detection, we selected 2261 infrared images from the original
dataset as the original images for this study. In the original dataset, we used a labelimg tool
to manually annotate four types of faults, namely fractures, hot spots, plants, and battery
strings. The fracture and battery-string faults were labeled according to the size of the PV
module, and the plant shading and hot spot are labeled according to their size. In addition,
we did not label positive samples with unclear pixel regions to prevent overfitting in neural
networks [23], and the final dataset was stored in the Pascal VOC dataset format. In the
whole dataset, we labeled a total of 24,218 labels. Figure 11 illustrates the distribution of
labels, while Figure 12 shows the feature maps for the four fault types. These labels and
feature maps provide the basis and reference for subsequent studies.

We allocated the dataset in a ratio of 8:2, where 80% of the data was randomly selected
for training the network model and the remaining 20% was selected for validation and
testing. In this experiment, the SGD optimizer is used for optimization and training
by default, the YOLOV7-GX network parameters are initialized, the input image size is
640 × 640, the initial learning rate is set to 0.01, and OneCycleLR is used to reduce the
learning rate to further stabilize the training process, and in order to guide the model to
learn smoothly in the initial stage of training and provide a better initialization state for the
model, an optimization process is performed at the beginning of the training. At the same
time, in order to smoothly guide the model learning in the initial stage of training and to
provide a better initialization state for the model, a “warmup” strategy [24] is carried out
at the beginning of training to warm up the model (warmup = 3).
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3.3. Evaluation Indicators

By comparing the difference in the detection of several types of images by the network
model before and after the improvement in the same experimental environment to assess
the leakage and false detection, this paper mainly selects three indicators to measure the
performance of the network, the average accuracy (AP), the recall (R) and the average
precision (mAP), which are calculated using the following formulas:

R =
TP

TP + FN
(14)

AP =
∫ 1

0
precision(recall)d(recall) (15)

mAP =
1
N ∑N

i=1 APi (16)
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In this context, TP is indicative of accurate predictions, FP denotes incorrect predic-
tions encompassing missed and ignored targets, and FN points to the erroneous classifica-
tion of a target into a different category. Precision (P) quantifies the proportion of accurate
predictions among all the positive predictions made. Conversely, recall (R) gauges the
fraction of actual positive samples that were correctly identified. A precision–recall (P-R)
curve is plotted with precision and recall on the axes, defining an area equivalent to the
average precision (AP). To assess the overall efficacy of the object detection model, the mean
AP across all categories is computed, yielding the metric mean average precision (mAP).

By comparing the detection performance of the network model for different types of
images under the same experimental conditions before and after the improvement, the
leakage and false detection of the model as well as the overall detection accuracy and recall
ability can be specifically analyzed. Using the three metrics of recall, AP, and mAP, the
performance improvement of the model can be comprehensively evaluated to verify the
effectiveness of the network improvement. In the experimental results, the improvement
of the model’s accuracy in detecting the fault types of PV panels can be visualized by
increasing the mAP value, especially for the small targets that are difficult to detect, such
as “hot spots”, etc., and the improvement of these indexes better reflects the significance of
the model’s improvement.

3.4. Experimental Results and Analysis
3.4.1. Comparison with Other Algorithms

In this study, in order to validate the effectiveness of our proposed YOLOv7-GX
model for PV-panel defect detection, we compare it with several current leading models.
These models include YOLOv5s, YOLOX, YOLOv7, and YOLOv8, all of which show their
respective advantages in our evaluation metrics. However, by introducing an improved
feature extraction and fusion mechanism, YOLOv7-GX achieves significant performance
gains in all metrics. The experimental results are shown in Table 1.

Table 1. Performance comparison of different network models.

Arithmetic mAP@0.5 R Fracture Hot Spot Plant Battery String

YOLOV5s 83.4 77.3 96.1 60.7 83.7 93
YOLOX 85.0 79.5 75 80 93 92

YOLOV7 88.4 81.5 98.4 70.1 90.3 94.9
YOLOV8 91.8 85.2 98.8 79.3 92.6 96.5

YOLOV7-GX 94.8 91.2 99.5 88.3 94.1 97.5

Note: Indicators in the table are expressed in percentages.

As can be seen from Table 1, the mAP of the improved algorithm (YOLOV7-GX) is
6.4% higher than that of the original network (YOLOV7), and the recall rate is increased
by 9.7%, which greatly reduces the missed-detection rate of the network and improves
the performance of the network. As shown in Figure 13, the performance of the improved
network is better than that of the original YOLOV7 network in this dataset, and the
improved network is more stable. We can also use mAP@0.95 as an evaluation metric to
describe the performance of the network. In this case, we set the threshold for the overlap
rate of the detected target with the real target at 0.95. As can be seen from Figure 14,
the improved network can also converge quickly under more stringent requirements,
and the network performance is significantly better than that of the original YOLOv7
network, which can better reflect the performance of the network under the high-precision
requirements. In addition, the APs of the four fault types are improved, and the AP value of
hot spots is increased by 18.2%, which is extremely important for improving the network’s
ability to detect small targets. The AP value of the fragmentation is increased to 99.5%,
which is an accuracy that is difficult to break through. The AP value of plant occlusion has
increased by 3.8% to 94.1%, which fully meets the needs of industrialization.
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In the experiment, we compare the performance of the proposed algorithm and the
original YOLOv7 in terms of convergence speed and recall. This is an evaluation of whether
our network can improve recall rates while maintaining a fast convergence rate. First,
as can be seen from Figure 15, our network shows faster convergence during training.
Specifically, with the same number of training iterations, our network achieves a lower
training loss and a higher validation accuracy. This shows that our network is able to learn
and adapt to patterns and features in the dataset more quickly. Secondly, we compare the
recall rates of the YOLOv7_GX network and the original YOLOv7 network on the training
set. The results show that our network achieves higher recalls with the same number of
iterations. This shows that our network is able to detect defective content in target images
more comprehensively and is able to identify real objects more accurately. Overall, our
network has demonstrated excellent performance in terms of convergence speed and recall.
Not only is our network able to learn the characteristics of the data faster, but it is also able
to achieve higher recall rates than the original network, resulting in better performance in
object-detection tasks.
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In this study, we provide an in-depth review of the performance of the algorithms
proposed in this paper in comparison to the current leading defect-detection models in
the field (e.g., YOLOV5s, YOLOX, YOLOV7, and YOLOV8), especially in the area of
dense small target detection, i.e., “hotspot” detection, where the algorithms clearly outper-
form the other models in the comparison group. Through comprehensive evaluation, the
YOLOV7-GX algorithm reached 94.8% on the key performance indicator mAP@0.5, which
significantly surpassed the other models in the comparison group. In particular, YOLOV7-
GX achieves a high accuracy of 88.3% in the hot-spot-detection category, confirming its
superior ability to handle dense small targets. Benchmark tests show that compared to
similar models, YOLOV7-GX not only demonstrates higher accuracy on multiple complex
defect-recognition tasks, such as cracks, hot-spots, plants, and battery strings, but also
has a significant advantage in terms of stability and robustness. For example, it achieves
99.5% and 97.5% accuracy on the crack- and battery-string-detection tasks, respectively,
demonstrating the model’s ability to efficiently recognize and adapt to a wide range of fault
types. This significant improvement in performance comes from a number of innovations
in the algorithm design of the YOLOV7-GX, including a finer feature extraction mechanism,
optimized target classification and localization strategies, and a significant enhancement
in the sensitivity to detecting small-sized targets. In summary, the YOLOV7-GX model
not only sets a new industry standard in the field of dense-small-target detection, but also
demonstrates its outstanding performance in complex defect-detection tasks, especially in
performing the technically challenging hot-spot-detection task, which shows its obvious
competitive advantages and broad application prospects. The results of this study not only
prove the leadership of our proposed algorithm, but also provide an important reference
direction for the future development of defect-detection technology.

In order to visualize the superiority of this algorithm over the original algorithm,
Figure 16 shows some of the comparison results of YOLOv5, YOLOv7, and YOLOv8
with the algorithm on the test set. The original graph at the bottom of Figure 16a shows
that there are four faults in this graph, namely two “hot spots” and two “battery string”
faults. In the YOLOv5 test chart, there is a false detection of a “hot spot”. Similarly,
YOLOv7 and YOLOv8 have one missed detection, as shown in the green enlargement
in the figure. Figure 16b: The middle and top two inspection images can be compared
with the original image in Figure 16a) to see that there is a “hot spot” missed detection. In
Figure 16c, the middle and top inspection maps of YOLOv7 have a “plant” and “battery
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string” leakage, respectively. In Figure 16d, there is an obvious “hot spot” leakage in the
detection diagram. The various errors in the detection of the above comparison networks
are effectively solved in this paper’s algorithm YOLOv7-GX, which greatly reflects the
superiority of this paper’s algorithm.
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In addition, the data analysis in Table 1 further demonstrates the superiority of
the YOLOv7-GX algorithm. Compared with other classical target-detection algorithms,
YOLOv7-GX not only performs excellently in terms of overall mAP, but also has generally
higher AP values in all categories; especially, its recall is as high as 91.2%, which means that
the algorithm is able to capture the real targets more efficiently, which is very important in
practical applications, and for the application context of this paper, the higher recall can
ensure that as many real targets are correctly recognized and detected [25], reducing the
risk of missing important targets.

These performance advantages of the YOLOv7-GX are particularly important in an
application scenario such as PV-panel defect detection, which requires high precision and
high recall, to ensure that as many real targets as possible are correctly recognized and
detected, thus reducing the risk of missing important targets and providing strong technical
support for the accurate diagnosis of PV-panel defects.

In summary, the YOLOv7-GX algorithm demonstrates excellent performance in the
PV-panel defect-detection task, showing significant advantages in terms of improving
detection accuracy, reducing misses and false detections, and maintaining a high recall rate.
These advantages not only prove the practical application value of the algorithm, but also
provide a more reliable and efficient technical solution for the PV-energy industry.

3.4.2. Ablation Experiments

The ablation experiment is an important means to evaluate the contribution of each
module in the algorithm. By removing and combining the key modules in the YOLOv7-GX
algorithm, GhostSlimFPN, convolutional block with GAM attention mechanism, XIOU
loss function, and the weight-adjustment strategy individually and in combination, it is
possible to clarify the contribution of each module’s contribution to the overall performance
improvement, and the experimental data are shown in Table 2.
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Table 2. Effectiveness of different modules in detecting the model.

GhostSlimFPN GAM XIOU Weighting mAP (%)

88.4√
91.4√
92.7√
91.5√
92.4√ √ √ √
94.8

The experimental results show that when the four modules are used in fusion at the
same time, mAP achieves a significant improvement of 6.4% compared to the original
YOLOv7 algorithm, a result that fully demonstrates the effectiveness of the improvement
strategy in improving model performance. When examining the impact of each module
individually, the data shows that each module delivers a performance improvement of
3.0% to 4.3%, where the following is true.

The convolutional block with the GAM attention mechanism improves the experimen-
tal accuracy most significantly, reaching 4.3%. This indicates that the GAM convolutional
block can effectively enhance the network’s attention to global features, which plays a key
role in improving the model’s detection accuracy. The weight adjustment also improves the
model accuracy significantly, reaching 4.0%, indicating that reasonable weight adjustment
is crucial for improving the model performance in dealing with the task of target detection
with sample imbalance. The addition of the XIOU loss function brings about a performance
improvement of 3.1%, which proves that it significantly improves the accuracy and lo-
calization precision of the target detection while speeding up the convergence speed of
the model. The introduction of the GhostSlimFPN structure improves the mAP by 3.0%,
demonstrating its effectiveness in feature fusion and information transfer.

These ablation experimental results not only demonstrate the important contribution
of each module in the YOLOv7-GX algorithm to the overall performance improvement,
but also further validate the rationality and effectiveness of the improvement strategy.
In particular, the convolutional blocks and weight adjustments of the GAM attention
mechanism play a decisive role in improving the model’s accuracy in detecting defects in
PV panels. With these well-designed blocks, the YOLOv7-GX algorithm is able to capture
the target features more accurately and effectively improve the detection performance,
especially when dealing with sample imbalance and small-target-detection tasks. This series
of improvements makes YOLOv7-GX the preferred solution for high-precision demanding
scenarios such as PV-panel defect detection.

4. Discussion

Facing the common problem of dense-small-target detection in PV-panel defect detec-
tion, this study proposes an innovative solution: a detection algorithm based on YOLOv7-
GX. The core of this algorithm lies in the introduction of a newly designed GhostSlimFPN
network structure, which is specifically optimized for the detection of small targets, signifi-
cantly improving the recognition accuracy of small-sized targets and effectively reducing
the false-detection rate. In addition, the algorithm in this paper incorporates a customized
1 × 1 convolutional block with a GAM attention mechanism, and this innovative design
effectively enhances the model’s ability to perceive and express target features without
additionally increasing the network depth.

In terms of loss function selection, this study adopts the XIOU loss function instead
of the traditional CIOU loss function, and this improvement not only strengthens the
robustness of the model, but also improves the convergence speed, further enhancing the
detection performance. In order to cope with the possible imbalance of sample distribution
during the training process, this paper adopts the strategy of assigning different weights
to different images and categories, which achieves balanced training and ensures the
algorithm’s generalization ability and stability.
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Through a series of rigorous experimental evaluations of the algorithm, the results
confirm its significant advantages in the field of PV-panel defect detection. The experi-
mental results show that the method proposed in this paper achieves 94.8% in the mAP
index, which significantly exceeds the performance of other existing models in the current
market. This achievement not only highlights the excellent performance of this algorithm in
enhancing the detection capability of tiny targets and reducing the false-detection rate, but
also reflects the successful improvement of the overall perceptual capability and robustness
of the model through technological innovations such as the attention mechanism and loss
function optimization.

The contributions made in this study are significant to the maintenance of solar
PV panels, providing an efficient and accurate technological tool to ensure the efficient
operation and prolonged service life of PV panels. Looking ahead, we will work to further
improve the computational efficiency and generalized applicability of the algorithm, aiming
to meet the detection needs in a wider range of application scenarios, and to provide
stronger technical support for the development and application of PV technology.
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