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Abstract: Stereophonic acoustic echo cancellation (SAEC) requires the identification of four unknown
impulse responses corresponding to four loudspeaker-to-microphone pairs. Recent developments
in the field of adaptive filters for SAEC setups have allowed for the handling of a single complex-
valued adaptive impulse response, instead of the four classical real-valued adaptive filters. With
the simplified framework provided by the widely linear (WL) model, more advanced versions of
recursive least-squares (RLS) were employed in order to take advantage of their superior tracking
speeds when working with highly correlated input signals (such as speech). Despite the performances
and numerical stability provided by using exponentially weighted versions of the RLS family in
combination with line search methods (LSMs), the SAEC configurations have limited capabilities
in mitigating the negative effects caused by high-level disturbances affecting the two microphone
signals. Such is the case of double-talk scenarios, which considerably reduce the update accuracy of
the adaptive system. This paper analyzes a regularization technique for the named WL-RLS-LSM
adaptive filters by adjusting the correlation matrix associated with the input signals and creating
a reaction in the update process. The proposed method is designed to considerably slow (or even
freeze) the adaptation process while the disturbance is manifested. Simulation results are discussed
in order to validate the theoretical content.

Keywords: stereophonic acoustic echo cancellation; recursive least-squares; widely linear model; line
search methods; double-talk; regularization

1. Introduction

In the telecommunications domain, every audio terminal is equipped with a number
of M microphones and L loudspeakers. When aiming to create the sensation of acoustic
directionality, the values of M, respectively of L, are higher than 1. Correspondingly, every
loudspeaker-to-microphone pair can form an undesired acoustic echo path and generate
an associated acoustic echo signal [1–4]. The stereophonic configuration is obtained when
employing the configuration M = L = 2, and M × L = 4 unknown impulse responses
must be estimated using four adaptive filters in order to cancel the effects of the associated
echo signals [5–10].

In [2,6,11], the stereophonic acoustic echo cancellation (SAEC) problem was recast
using the widely linear (WL) model, and the four adaptive filters were combined into a
single adaptive impulse response with complex-valued coefficients. The WL framework
maintains the same overall arithmetic effort and performance, with respect to the classical
approach. Moreover, the new model can be applied to both the least-mean-square (LMS),
respectively the recursive least-squares (RLS) , families of adaptive algorithms [6,12–14].
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From a practical point of view, SAEC applications have to manage hundreds or
thousands of filter coefficients. Correspondingly, the convenient solution for the associated
system identification problems is the LMS methods, which have poor performance when
working with highly correlated input signals (e.g., with speech) [6,15–18]. As an alternative,
the RLS methods have been the subject of ample research efforts because they can reduce
the mentioned correlation problem and generate superior results. However, most RLS
versions generate a direct solution for a system of N equations by using a complexity
proportional to O(N3) (in terms of multiplications), where N is the length of the associated
adaptive filter. The approach is prohibitive for most modern chips. Even when applying
less complex solutions to decrease the arithmetic workload, such as the one based on the
matrix inversion lemma or the fast-RLS algorithm (complexities of O(N2), respectively
O(N)), they tend to have numerical stability issues proportional to the reduction that is
applied on the complexity side [6,12].

An alternative approach for the RLS adaptive algorithms with direct estimation of
coefficients is to exploit the statistical properties of the input signal and replace the men-
tioned system of equations with an auxiliary system, which can be solved using iterative
methods [2,19–22]. The result determined at each filter iteration is added to the previous
filter estimate in order to generate the newest set of coefficients [19]. The approach is
convenient for employing various line search methods (LSMs), which comprise several arith-
metically efficient versions well suited for processing systems of equations specific to the
complex-valued RLS adaptive algorithms [13].

Despite the fact that the named WL-RLS-LSM adaptive algorithms do not manifest
numerical stability issues and are attractive for SAEC practical applications, they manifest
the same vulnerabilities in high-noise or double-talk (DT) scenarios [23–30]. In such
occurrences, the microphone signals are affected by other speech signals, and the update
process of the complex-valued adaptive filter loses most of its accuracy. This paper studies
a variable regularization (VR) technique for the RLS-specific correlation matrix designed to
slow down or freeze the update operation [31,32]. We combine the mentioned regularization
method with several complex-valued LSM alternatives, and we analyze the resulting
algorithms from several points of interest: tracking speeds, accuracy at steady state, and
efficiency in DT scenarios, respectively, and arithmetic complexity.

Traditional approaches require performing DT detection (DTD) on the four adaptive
filters, estimating the four unknown impulse responses. The corresponding process of
slowing down (or freezing) the update process of the coefficients depends on four associated
indicators and can affect the performances of the entire mechanism. By interpreting the
four adaptive filters as a single complex-valued filter, the decision is simplified, and the
methodology can be focused on the efficiency of fewer decision indicators and parameters
(e.g., thresholds, etc.). Consequently, for the case of the WL-RLS-LSM adaptive systems, the
VR methodology is applied for a single correlation matrix instead of four such matrices.

The paper is organized as follows. Section 2 describes the system model corresponding
to the SAEC setup working with RLS adaptive algorithms employing LSMs. In Section 3, the
principle of the variable regularized RLS-LSM methods working within the WL framework
is discussed. Section 4 presents several LSMs by taking into consideration the associated
arithmetic complexities, and Section 5 analyzes the simulation results with the associated
compromises between performances and complexity. Several conclusions are drawn in
Section 6 regarding the possible practical applications of the WL-RLS-LSM family of
adaptive algorithms.

2. System Model

This section describes the SAEC configuration using the WL model with respect to its
corresponding particularities for the complex-valued RLS family of adaptive methods. To
this purpose, the basic notation and the main relations that define the WL framework for
SAEC from [2,6] are briefly described in this section, summarizing the required background
for the upcoming developments. Moreover, using the simplified handling provided by the
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WL model, the exponentially weighted RLS adaptive algorithm using LSMs (i.e., the WL-
RLS-LSM) is presented for solving the corresponding system of equations. The arithmetic
workloads are also discussed.

2.1. The Widely-Linear Model

For the SAEC setup, the signals generated by the two loudspeakers represent the
input information. We denote the discrete time index as n, and we write the corresponding
acoustic signals by using xLc(n) (for the left channel) and xRc(n) (for the right channel). The
WL model combines the two real-valued signals into a single complex-valued notation,
and we write

x(n) = xLc(n) + jxRc(n), (1)

where j =
√
−1 [6,11]. Correspondingly, we can express the two N × 1 vectors comprising

the last samples associated with the two acoustic channels as

xLc(n) = [xLc(n) xLc(n − 1) · · · xLc(n − N + 1)]T , (2)

xRc(n) = [xRc(n) xRc(n − 1) · · · xRc(n − N + 1)]T , (3)

where the superscript T represents the transpose operator. We can also cumulate all input
information into a single N × 1 complex-valued vector as

x(n) = xLc(n) + jxRc(n). (4)

Furthermore, we denote the four N × 1 impulse responses associated with the loudspeaker-
to-microphone echo paths by using ht,LcLc , ht,LcRc , ht,RcLc with ht,RcRc , respectively. The
output samples corresponding to the left and right channels are obtained by employing the
inputs in (2) and (3) [2,11] and writing

yLc(n) = hT
t,LcLc

xLc(n) + hT
t,RcLc

xRc(n), (5)

yRc(n) = hT
t,LcRc

xLc(n) + hT
t,RcRc

xRc(n), (6)

where we can also express a complex-valued output signal in the form of

y(n) = yLc(n) + jyRc(n). (7)

The four real-valued acoustic impulse responses can be combined into two N × 1
complex-valued systems

hα =
ht,LcLc + ht,RcRc

2
+ j

ht,RcLc − ht,LcRc

2
, (8)

hβ =
ht,LcLc − ht,RcRc

2
− j

ht,RcLc + ht,LcRc

2
, (9)

and we introduce a single notation for handling all the real-valued loudspeaker-to-microphone
echo paths in the form of a 2N × 1 complex-valued impulse response using the
interleaving operation:

ht =
[
hα,0 hβ,0 . . . hα,N−1 hβ,N−1

]T , (10)

where hα,l and hβ,l , with l = 0, 1, . . . , N − 1, are the elements of the vectors hα and hβ,
respectively [6].

The input information can also be arranged in a suitable manner by employing the
interleaving operation. We write the 2N × 1 complex-valued vector

xin(n) = [x(n) x∗(n) . . . x(n − N + 1) x∗(n − N + 1)]T , (11)



Electronics 2024, 13, 1479 4 of 21

and we can obtain a simpler expression for the complex output as

y(n) = hH
t xin(n). (12)

where H denotes the Hermitian operator [6].
With the improved handling provided by the WL model, we also write the complex

reference signal as

d(n) = y(n) + w(n), (13)

where w(n) = wLc(n) + jwRc(n) represents the complex noise affecting the microphone
channels. Its corresponding components (i.e., wLc(n) and wRc(n)) are uncorrelated with the
loudspeaker signals. Moreover, considering the complex estimate ỹ(n) generated by the
SAEC system for the output y(n), by employing a single adaptive filter, h̃(n), with 2N × 1
complex-valued coefficients, the a posteriori error can be defined as

e(n) = d(n)− ỹ(n) = d(n)− h̃H(n)xin(n). (14)

The described WL model simplifies the handling of the SAEC setup by employing
the minimum possible number of notations for all the involved signals. Additionally,
four unknown acoustic impulse responses, which would normally require four adaptive
algorithms, are now combined into a single complex-valued system estimated using a
single adaptive filter. The overall arithmetic complexity and the associated performances
do not change [2,6].

2.2. The WL-RLS-LSM Algorithm

The exponentially weighted versions of the RLS adaptive methods are developed
based on the cost function

JLS

[
h̃(n)

]
=

n

∑
i=1

λn−i
[
d(i)− h̃H(n)xin(i)

]2
, (15)

where 0 < λ ≤ 1 denotes the forgetting factor [6,12]. The value of λ is associated with a
compromise made between the tracking capabilities of the algorithm, on one side, with
respect to the accuracy it has at steady state on the other side. For lower values of λ,
the memory of the algorithm is diminished, and the contributions associated with older
information become negligibly faster. In such cases, the algorithm adapts faster to any
changes that might occur in the unknown system to be identified. When the value of
λ is closer to 1 (i.e., to infinite memory), the tracking of changes is slower. However,
more information about loudspeakers and the respective microphone signals is stored at
once. Thus, the accuracy of the RLS is better under a steady state, and the misadjustment
decreases [13]. We employ the forgetting factor and express the recursive notations

R(n) = λR(n − 1) + xin(n)xH
in(n), (16)

p(n) = λp(n − 1) + xin(n)d(n), (17)

where R(n) is the 2N × 2N estimate of the correlation matrix associated with the complex
input signal, and p(n) represents the 2N × 1 cross-correlation vector between the input
signal and the complex reference, respectively [6,12]. Consequently, we can employ the
notations mentioned above, and the minimization of the cost function in (15) leads to the
system of equations

R(n)h̃(n) = p(n). (18)

The direct solution for (18) requires computing the inverse of the matrix R(n) at
every time index, n. Such an approach is prohibitive for modern chips because the usual
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number of filter coefficients for SAEC applications is in the range of thousands. A popular
alternative to the direct solution is the complex-valued RLS method based on the matrix
inversion lemma (also known as Woodbury’s identity), which is often used as a reference
for research work [12]. In the rest of the paper, we will call the mentioned algorithm the
WL-RLS method. It requires a number of complex multiplications proportional to 4N2,
as well as 4N real-valued divisions for every filter iteration. Despite the reduction in
computational effort by an order of magnitude, the overall complexity is still considered
difficult to approach for SAEC applications, which might also be affected by the associated
numerical stability issues.

Fundamental research led to the reinterpretation of the system in (18) in order to
exploit the statistical properties of the loudspeaker signals, as they are reflected in the
correlation matrix R(n) [19–21]. Consequently, the exponentially weighted RLS methods
can be combined with different LSM variants in order to solve an auxiliary system of
equations. The resulting WL-RLS-LSM algorithms can provide performances comparable
to the WL-RLS without manifesting numerical stability issues [2,19]. Several versions
also have lower arithmetic complexities with respect to the WL-RLS. The steps of the
WL-RLS-LSM general method are presented in Table 1, where the corresponding amounts
of necessary real-valued multiplications are also displayed.

Table 1. WL-RLS-LSM Algorithm.

Step Actions ×
Initialization:
h̃(0) = 02N×1; 0
r(0) = 02N×1; 0
R(0) = ΦI2N , Φ > 0 0
For n = 1, 2, 3 . . . . . .

1 Update xin(n) using (1) and (11) 0
2 Update R(n) using time-shift

R:,1(n) = λR:,1(n − 1) + x∗(n)xin(n) 4N
3 ỹ(n) = h̃H(n − 1)xin(n) 8N
4 e(n) = d(n)− ỹ(n) 0
5 p0(n) = λr(n − 1) + e∗(n)xin(n) 4N
6 R(n)∆h(n) = p0(n)

LSM−−→ ∆h̃(n), r(n) ...
7 h̃(n) = h̃(n − 1) + ∆h̃(n) 0

The initialization stage runs once and employs the 2N × 1 zero-valued vector 02N×1
to set the values of the filter coefficients h̃(0) of the 2N × 1 residual vector, r(0). Moreover,
the 2N × 2N identity matrix I2N is used to fill the correlation matrix estimate R(0) with
zeroes on all positions, excepting the main diagonal, where the small, real-valued positive
constant Φ is used to avoid the singular property in the initial stages of the algorithm. In
the form presented in Table 1, the effect of Φ becomes negligible after the WL-RLS-LSM
runs for a certain number of iterations due to the effect of the forgetting factor.

Steps 1 to 7 run each time for every time index n, and the first four stages are the same
as the other exponentially weighted RLS methods working with complex values in the
SAEC framework [6,11]. Steps 1 and 2 perform the update of the input vector xin(n) with
respect to the correlation matrix R(n). Apparently, the computation of the latter using (16)
requires an amount of multiplications proportional to the square of 2N. However, the input
vector has the time-shi f t property and can be expressed as

xin(n) =
[

x(n) x∗(n) xT
in,1:2N−2(n − 1)

]T
, (19)

where xin,1:2N−2(n − 1) is the (2N − 2) × 1 vector comprising the last 2N − 2 complex-
valued input samples from time index n − 1. Correspondingly, R(n) can be updated by
exploiting its highly redundant structure. The matrix is Hermitian, and every consecutive
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two columns, starting from the first one, comprise the same information, each pair of values
being conjugated and having switched positions in the neighboring column [2,19,33]. The
same rules apply to the numerical composition of the rows. Thus, by copying the upper
left (2N − 2) × (2N − 2) submatrix of R(n − 1) to the lower right (2N − 2) × (2N − 2)
submatrix of R(n), and computing the first column R:,1(n) as

R:,1(n) = λR:,1(n − 1) + x∗(n)xin(n), (20)

then the second column, or the first two rows, respectively, can be determined by copying
values from the first column and considering the enumerated properties. We considered
that λ can be chosen using the form λ = 1 − 1/(2NK), where N, respectively the positive
constant K, can be expressed as powers of 2. Thus, any multiplication performed with λ
can be replaced with a bit-shift and a subtraction. Moreover, it can be deduced that approx-
imately a quarter of the complex values comprising R(n) have to be stored in memory. The
complexity of step 2 is, therefore, proportional to N in terms of multiplications.

Considering that the filter output computation in step 3 requires 8N multiplications,
and step 4 (the determination of the a priori error) employs no arithmetic operations more
complex than additions, the first four steps require only additions and multiplications. The
corresponding overall effort is proportional to the adaptive filter’s length, i.e., O(N).

The discussion regarding the rest of the arithmetic complexity is more elaborate when
referring to steps 5, 6, and 7, which implement the auxiliary solution associated with the
system in (18). The auxiliary system of equations

R(n)∆h(n) = p0(n), (21)

that must be solved in step 6 provides an estimate for the solution vector ∆h̃(n) and requires
the computation of the so-called residual component denoted by p0(n) (step 5) by employing
the residual vector, r(n − 1), generated at the previous filter iteration (weighted using the
forgetting factor) and cumulated with the product between the error and the input signal
vector [2,19]. Considering that λ can have the form mentioned when discussing step 2, and
the redundant structure of xin(n), the only multiplications necessary for step 5 correspond
to the multiplication between the conjugate form of e(n) and half the values comprising
the vector xin(n).

As mentioned before, the system to be solved in step 6 generates the estimate solution
vector ∆h̃(n) and an updated version of the residual vector. The latter will be employed
again in the next adaptive filter iteration (in step 5). Moreover, considering the unknown
complex-valued system as being fixed for a given number of iterations, as the adaptive
filter converges, the absolute values of the real and imaginary parts comprising r(n) tend to
decrease [33]. The task in step 6 is suitable for LSMs, which can compute both mentioned
vectors, ∆h̃(n) and r(n). There are multiple methods that can be employed in this stage of
the WL-RLS-LSM [20]. As they rely more on the specific properties of the input signal of the
correlation matrix R(n), with respect to r(n), the arithmetic complexity tends to decrease.
However, the correlation properties of some signals, such as speech, tend to be stationary
for limited amounts of time, such as the corresponding variations determined in R(n).
Validating some low-complexity LSM variants is necessary, especially when combining
them with other features. Finally, in step 7, the solution vector is added to the previous set
of filter coefficients in order to generate a new estimate.

3. The Variable Regularized WL-RLS-LSM

In [31], the cost function expressed in (15), corresponding to the exponentially weighted
RLS methods, was enhanced to take into account a permanent addition to the main diagonal
of the correlation matrix. The modification aims to alter the purpose of the regularization
parameter Φ, which is traditionally inserted in the initialization stage in order to avoid
the non-singular property of R(n). Consequently, the value of Φ will not be arbitrarily
chosen, and it will be determined at every time index, n, as a function of the estimated
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echo-to-noise (ENR) ratio. The proposed approach targets to mitigate the effects of the DT
scenarios when the value of the ENR is usually very low.

We define the new cost function as [31,34]

JLS−REG

[
h̃(n)

]
= JLS

[
h̃(n)

]
+ Φ

∥∥∥h̃(n)
∥∥∥2

2
, (22)

where ∥·∥2 denotes the ℓ2 norm. For the minimization of (22), the updated equation of the
filter coefficients can be developed using (12), with respect to (14), and then emphasizing
two important components as

h̃(n) = Q(n)h̃(n − 1) + h(n), (23)

where we employed the notations

Q(n) = I2L + [R(n) + ΦI2N ]
−1xin(n)xH

in(n), (24)

h(n) = [R(n) + ΦI2N ]
−1(n)xin(n)d(n). (25)

It can be noticed that both occurrences of the matrix R(n) are added with the unit
matrix I2N multiplied by the contribution of the regularization parameter Φ. Furthermore,
the notation in (25) can be regarded as the solution for the system of equations

[R(n) + ΦI2L]h(n) = xin(n)d(n), (26)

which is relevant because it comprises the contribution of the complex microphone signal
d(n) and (implicitly) the noise source influencing the performances of the SAEC system.
The associated complex-valued error for the newly employed system of equations can be
written as

e(n) = d(n)− hH(n)xin(n), (27)

where the unknown system h would be estimated using the set of coefficients h̃. The
corresponding update process is influenced by the already introduced complex-valued
noise, w(n).

For the system described in (26), with respect to (27), we intend to employ a variable
Φ(n) at each filter iteration in order to influence the update process. The feature has an
equivalent effect on any solutions for (18) or (21), including the WL-RLS-LSM approach.
Thus, we impose the equality between the variances of the complex-valued signals e(n)
and w(n) [31,32] by employing the mathematical expectation E[·] as

E
[
|e(n)|2

]
= σ2

w = E
[
|w(n)|2

]
. (28)

When replacing (27) in (28), we also employ several approximations. We consider that
the complex input signal is stationary, with the statistical properties of white noise. After a
reasonable amount of iterations has passed, we can approximate for (16):

R(n)(1 − λ) ≈ xin(n)xH
in(n) ≈ σ2

xin
I2N , (29)

where σ2
xin

is the variance of xin. We can write R(n) + ΦI2N as

R(n) + ΦI2N ≈
[

σ2
xin

1 − λ
+ Φ

]
I2N , (30)
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and we limit the effect of the forgetting factor to the one of a rectangular window with the
length of the complex-valued adaptive filter (i.e., to 2N). Correspondingly,

∞

∑
i=1

λi =
1

1 − λ
= 2N, (31)

where it is reasonable enough to assume that 2N ≫ 1, and the value of λ can be written as

λ = 1 − 1
2N

. (32)

The expression in (32) implies that the forgetting factor from (30) can be replaced using the
length of the adaptive filter, and we can write

R(n) + ΦI2L ≈
[
2Nσ2

xin
+ Φ

]
I2N . (33)

Additionally, we can use the variance of the input signal to write the approximation

xH
in(n)xin(n) ≈ 2Nσ2

xin
. (34)

If we denote the variance of the complex reference signal d(n) as σ2
d , after some

calculations, we obtain the equation

σ2
d − 2

2Nσ2
xin

2Nσ2
xin

+ Φ
σ2

d +

(
2Nσ2

xin

)2(
2Nσ2

xin
+ Φ

)2 σ2
d = σ2

w, (35)

where Φ is considered the unknown quantity. In order to simplify (35), we can denote
α = 2Nσ2

xin
, and we obtain

σ2
d − 2

α

α + Φ
σ2

d +
α2

(α + Φ)2 σ2
d = σ2

w. (36)

Furthermore, we can express the variance of the reference signal as

σ2
d = σ2

y + σ2
w, (37)

where the samples of y(n), with respect to w(n), are uncorrelated. By considering the ENR as

ENR =
σ2

y

σ2
w

, (38)

after performing some calculations, the expression in (36) becomes

Φ2ENR − 2αΦ − α2 = 0, (39)

with the possible solutions

Φ1 = α
1 +

√
1 + ENR

ENR
, Φ2 = α

1 −
√

1 + ENR
ENR

. (40)

By taking into account that the values on the main diagonal of R(n) are always real
and positive, the regularization process based on adding Φ to all the values on the main
diagonal can be applied by using only positive values [31]. Consequently, from (40), the
form of Φ1 is usable in practice.
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A practical concern is the determination of the variances σ2
xin

, σ2
d , and σ2

w. An estimate,
σ̃2

w, corresponding to σ2
w is not straightforwardly available. However, after the adaptive

filter has converged to a certain point, we can use the output ỹ(n) and write

σ̃2
w = σ̃2

d − σ̃2
ỹ . (41)

At every iteration of the algorithm, for x(n), d(n), and ỹ(n), which can be generically de-
noted by c(n), we can use an exponential window for the estimation of the
associated variances:

σ̃2
c (n) = γσ̃2

c (n − 1) + (1 − γ)|c(n)|2, (42)

where 0 < γ ≤ 1 is a real-valued, positive, and sub-unitary parameter used to control the
memory of the estimates.

A variable-regularized (VR) version of the WL-RLS-LSM is presented in Table 2, which
estimates the value of the ENR at every time index, n t, with respect to the variance σ2

xin
.

We considered the filter length 2N as a power of two, and we excluded the corresponding
multiplications (they are performed using bit-shifts, just as in the case of Table 1).

We also employed a new column for real-valued divisions, which are necessary in steps
6 and 7. With respect to the WL-RLS-LSM algorithm, the VR-WL-RLS-LSM requires two
divisions and one square root operation per filter iteration (see step 7). The impact of the VR
portion on the overall arithmetic workload does not change the corresponding orders of de-
gree between Tables 1 and 2 (for additions, complex multiplications, etc.). With the minimal
extra complexity, the VR-WL-RLS-LSM is expected to better mitigate the effects of low ENR
scenarios, such as the DT situations. The next section will describe several WL-RLS-LSM
versions and demonstrate the practical advantages of performing the associated matrix
regularization. The analysis will comprise performances and arithmetic complexities.

Table 2. VR-WL-RLS-LSM Algorithm.

Step Actions × /

Initialization:
h̃(0) = 02N×1; 0 0
r(0) = 02N×1; 0 0
R(0) = Φ̃(0)I2N , Φ̃(0) > 0 0 0
σ̃2

x (n) = 0; σ̃2
d (n) = 0; σ̃2

ỹ (n) = 0; σ̃2
w̃(n) = 0 0 0

For n = 1, 2, 3 . . . . . .
1 Update xin(n) using (1) and (11) 0 0
2 Update R(n) using time-shift

R:,1(n) = λR:,1(n − 1) + x∗(n)xin(n) 4N 0
3 Update σ̃2

xin
(n), σ̃2

d (n) using (42); α = 2Nσ̃2
xin
(n) 8 0

4 ỹ(n) = h̃H(n − 1)xin(n) 8N 0
5 Update σ̃2

ỹ (n) using (42) 4 0

6 σ̃2
w(n) =

∣∣∣σ̃2
d (n)− σ̃2

ỹ (n)
∣∣∣; ẼNR =

σ̃2
ỹ (n)

σ̃2
w(n)

0 1

7 Φ̃(n) =
(

1 +
√

1 + ẼNR
)

α / ẼNR 1 1

8 e(n) = d(n)− ỹ(n) 0 0
9 p0(n) = λr(n − 1) + e∗(n)xin(n) 4N 0

10
[
R(n) + Φ̃(n)I2N

]
∆h(n) = p0(n)

LSM−−→ ∆h̃(n), r(n) ... ...

11 h̃(n) = h̃(n − 1) + ∆h̃(n) 0 0

4. VR-WL-RLS-LSM Versions

The complex-valued exponentially weighted RLS method can be combined, as men-
tioned in the previous sections, with different LSMs in step 6 of Table 1, with respect to step
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10 of the algorithm presented in Table 2. The LSMs are suited to solve the auxiliary system
of equations in (21) by minimizing the cost function [19,35]

F
[
∆h̃(n)

]
=

1
2

∆h̃H(n)R(n)∆h̃(n)− p0(n)∆h̃(n). (43)

When considering (43), the residual vector is also named the gradient vector, and can
be expressed as

r(n) = −∇F
[
∆h̃(n)

]
= p0(n)− R(n)∆h̃(n), (44)

where ∇ denotes the gradient operator [19,20,35].
This section will describe several such iterative methods, which generate estimates

for the solution vector ∆h̃(n), with respect to the residual vector r(n). The presented
LSMs have different arithmetic complexities and exploit (up to certain levels) the statistical
properties of the input data. They initialize ∆h̃(n) with 02N×1, with respect to the transitory
residual vector rtmp, by using the residual component p0(n), and this iteratively updates the
two complex vectors for a number of Nu iterations. At every iteration, k, with k = 1 . . . Nu,
the step-size (denoted by α and an associated subscript) is determined and employed in
order to perform the mentioned updates. As the value of k progresses towards the value of
Nu (within an adaptive filter’s iteration n), the absolute values of the real and imaginary
parts comprising rtmp are expected to decrease. When the LSM iterations are finished, the
last set of 2N values comprising rtmp are output as r(n). Moreover, as mentioned before,
when considering the unknown system ht as fixed, the same observation regarding the
constituent real and imaginary parts should be true for r(n) as h̃(n) converges towards ht.

For the next three subsections, we will alternatively denote (between parantheses)
the time index n or the corresponding LSM iteration k at the associated adaptive filter
iteration n. Furthermore, we will use a subscript to denote the position of an element in a
vector, with respect to the column of a matrix or the coordinates of a single element in a
matrix (when employing 2 coordinates in the subscript). In perspective, the employed LSM
performs a number of Nu iterations for every time index, n.

4.1. The Conjugate Gradient LSM

The conjugate gradient (CG) method is presented in Table 3 [19,35]. It recursively
determines a 2N × 1 direction vector d(k) using rtmp(k − 1) (from the previous CG itera-
tion), with respect to the values of the parameter δ at iterations k − 1 and k − 2, which are
computed as the squared ℓ2 norms of the corresponding rtmp iterations. The orthogonality
of the residual vector (i.e., rH

tmp(k)rtmp(i) = 0 for i = 0 . . . k − 1) and the form in step 1
ensure the R(n) conjugacy for the direction vector, i.e.,

dH(k)R(n)d(i) = 0, i ̸= k. (45)

Consequently, the step size αCG determined in step 3 minimizes the cost function in (43),
and an update is made for the solution vector, with respect to the residual vector (steps 4 and
5). Every iteration is ended with the computation of the newest value for δk, corresponding
to the latest form rtmp(k).

Despite being considered too complex for acoustic applications, which require hun-
dreds or thousands of filter coefficients, the CG is popular for its attractive performances,
especially the tracking speeds. It requires one division in step 1 and another one in step 3,
summing up to a total amount of 2Nu of such operations for all Nu iterations. However,
step 2 is the most costly from an arithmetical point of view, with a multiplication effort
proportional to the square of the adaptive filter’s length. It makes the named WL-RLS-CG
and VR-WL-RLS-CG algorithms have a complexity of O(4N2), which is prohibitive for
applications requiring long adaptive filters.
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Table 3. Complex-valued CG algorithm.

Step Actions × /

Initialization:
∆htmp = 02N×1; rtmp(0) = p0(n); δ(0) = rH

tmp(0)rtmp(0)
For k = 1, 2, . . . , Nu :

1 d(k) = (k > 1) ? rtmp(k − 1) +
δ(k − 1)
δ(k − 2)

d(k − 1) : rtmp(0) 4N 1

2 v = R(n)d(k) 16N2 0
3 αCG = δ(k − 1)/[dH(k)v] 8N 1
4 ∆htmp = ∆htmp + αCGd(k) 4N 0
5 rtmp(k) = rtmp(k − 1)− αCGv 4N 0
6 δ(k) = rH

tmp(k)rtmp(k) 8N 0

4.2. The Coordinate Descent LSM

The coordinate descent (CD) method (Table 4) is designed to exploit the statistical
properties of the correlation matrix [19,21,35]. The values comprising R(n) are real and
positive on the main diagonal. Moreover, the absolute values of the real and imaginary
parts corresponding to the other elements of the matrix are much smaller than the values
situated on the main diagonal (from a statistical point of view).

In step 1, the CD algorithm searches for the position with the maximum absolute value
in the residual vector rtmp(k), and determines the step size αCD using the associated value
on the main diagonal of R(n) (step 2). Step 3 updates a single value (its real or imaginary
part) in the solution vector ∆h̃tmp, and step 4 adjusts rtmp(k) correspondingly.

The CD method requires one division per iteration and an amount of multiplications
proportional to the adaptive filter’s length. Together with the CG, the CD iterations are
called exact line search methods. Nevertheless, the arithmetic workloads of the WL-RLS-CD,
respectively VR-WL-RLS-CD, are of O(2NNu) multiplications, which makes them more
suitable for hardware implementations of acoustic applications.

Table 4. Complex-valued CD algorithm.

Step Actions × /

Initialization:
∆htmp = 02N×1; rtmp(0) = p0(n)
For k = 1, 2, . . . , Nu :

1 Get val, pos and real/imaginary status
(v; p) = max

{∣∣∣Re{rtmp;i(k − 1)}
∣∣∣, ∣∣∣Im{rtmp;i(k − 1)}

∣∣∣}, 0 0
i = 1 . . . 2N
s =

(
val is Re{rtmp;p(k − 1)}

)
? 1 : j

2 αCD = v/Rp,p 0 1
3 ∆htmp;p = ∆htmp;p + sαCD 0 0
4 rtmp(k) = rtmp(k − 1)− sαCDRp 4N 0

4.3. The Dichotomous Coordinate Descent LSM

The dichotmous coordinate descent (DCD) iterations are presented in
Table 5 [2,19,21,22,35]. It is an inexact LSM, which employs a greedy approach when solving
the auxiliary system in (21). By searching at each iteration for the maximum absolute
value among the real and imaginary components of the residual vector rtmp (step 1), the
DCD determines the most likely position on which the method could perform a so-called
successful iteration. With respect to the CG and CD methods, for the DCD, the significance
of parameter Nu is slightly different. It represents the maximum number of successful updates.

When selecting the initial value Hmax for the step size as a power of two, all the
multiplication operations with αDCD can be replaced by bit-shifts. The updates performed
in steps 6 and 7 are decided based on the condition assessed in step 4, where the associated
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value on the main diagonal of R(n) scaled with αDCD is used as a reference for comparison.
The method attempts to execute updates equivalent to setting bits in a binary numerical
representation up to a depth of Mb bits. One update represents a single bit set to the
value 1 in a real or imaginary position from the solution vector. When the current bit to be
processed (i.e., the variable m) indicates a value greater than Mb, the algorithm stops, even
if k < Nu (step 3).

The DCD is the most efficient from an arithmetical point of view. It requires only addi-
tions [O(2NNu)], and no multiplications or divisions. With a correct use of the value Hmax,
the multiplications are all replaced by bit-shifts. Considering that the DCD method can
have unsuccessful iterations, it is possible that many of the DCD runs employ less than Nu
updates (especially when the adaptive algorithm approaches convergence). Consequently,
the namely WL-RLS-DCD, respectively the VR-WL-RLS-DCD, are the most attractive
variants from the point of view of necessary chip areas for SAEC hardware applications.

Table 5. Complex-valued DCD iterations with a leading element.

Step Actions +

Initialization:
∆htmp = 02N×1; rtmp = p0(n); αDCD = Hmax, m = 0
For k = 1, 2, . . . , Nu :

1 Get val, pos and real/imaginary status
(v; p) = max

{∣∣∣Re{rtmp;i}
∣∣∣, ∣∣∣Im{rtmp;i}

∣∣∣}, i = 1 . . . 2N 2N − 1
s =

(
val is Re{rtmp;p}

)
? 1 : j

2 αDCD = αDCD/2; m ++
3 If m > Mb −→ RETURN ∆htmp and rtmp

4 If |v| ≤ (αDCD/2)Rp,p
jump−−−→ Step 2 1

5 βk = sign{v}sαDCD
6 ∆htmp;p = ∆htmp;p + βk 1
7 rtmp = rtmp − βkRp 4N

RETURN ∆htmp and rtmp

5. Simulations

This section presents simulations performed in the context of SAEC. It is comprised of
two subsections, which describe the practical aspects regarding the considered setup, respec-
tively the presentation of the actual simulation results and the associated interpretations.

5.1. Practical Considerations

For the SAEC setup using different WL-RLS-LMS/VR-WL-RLS-LMS variants, we
employed different types of input signals with different correlation properties, such as
Gaussian noise sequences filtered through an autoregressive system with a single pole
[AR(1)] with the value 0.99 or speech signals. Moreover, for each simulation, the original
signal is filtered through two real-world acoustic paths in order to simulate the propagation
from the acoustic source to each of the two microphones.

In comparison to single-channel acoustic echo cancellation (AEC) scenarios, the SAEC
system has to mitigate the correlation between the two input channels, which can drastically
reduce the performance of the adaptive algorithm. Therefore, after generating the two
acoustic inputs, we use the predistortion block introduced in [6,11] in order to reduce the
mentioned correlation. The samples of the new input signal can be expressed using the
half-wave rectifier, as

x̂Lc(n) = xLc(n) + αr[xLc(n) + |xLc(n)|] (46)

x̂Rc(n) = xRc(n) + αr[xRc(n)− |xRc(n)|], (47)

where we can have the predistortion parameter αr < 0.5. In practice, the effect of αr is
considered adequate for the interval (0, 0.25] in order to keep the distortion effect within ac-
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ceptable limits. The new signals, x̂Lc(n) and x̂Rc(n), are computed before being reproduced
by the loudspeakers and become the inputs of the complex-valued adaptive filter.

The four acoustic impulse responses generating the echo signals are also real-world
measured impulse responses decimated to obtain the lengths N = 128 and N = 256. After
combining them according to (8)–(10), the obtained complex echo path ht is employed at
every filter iteration for measuring the normalized misalignment(NM) [6]:

NM(n) = 10lg

∥∥∥ht − h̃(n)
∥∥∥2

2

∥ht∥2
2

[dB]. (48)

Finally, when displaying simulation results using the performance criterion expressed in
(48), we do not consider the initial convergence as relevant.

5.2. Results

For the first set of experiments, the WL-RLS-CG adaptive algorithm was studied in
tracking scenarios with four acoustic echo paths having the length N = 128. In order to
simulate the acoustic echo impulse response changes, the corresponding sets of coefficients
were shifted by 25 positions after some simulation time. For the input signals, we employed
Gaussian noise filtered through the AR(1) system mentioned above with respect to a
speech sequence.

The results are displayed in Figures 1a,b. The performance of the WL-RLS based on
Woodbury’s identity was also added as a reference. It can be noticed that increasing the
number of iterations Nu leads to better tracking speeds, with the compromise of lower
accuracy at a steady state. In Figure 1a, the WL-RLS-CG with the highest values of Nu
converge in less than 2 s and match the tracking speed of the WL-RLS. At steady state,
the WL-RLS-CG with Nu = 4 outperforms the WL-RLS by more than 5 dB for the NM
value. The gap in performance between the different values of Nu is narrower in Figure 1b,
where the input is speech. As expected, the steady-state values for the NM are higher (i.e.,
lower accuracy with highly correlated input signals). The curves for Nu ≥ 2, with respect
to WL-RLS, have very similar tracking speeds, with only Nu = 2 having consistent NM
values below −20 dB at a steady state. Although for Nu = 1 the NM approaches −25 dB
for most of the time, its corresponding tracking speed is 2.5 seconds longer than the cases
for Nu ≥ 2 (i.e., double).

In both cases, above a certain value for the parameter Nu, the associated extra arith-
metic workload does not provide satisfactory results (i.e., the tracking performances become
capped for the higher values of Nu). The WL-RLS is the algorithm to match during the
tracking period, and has the worst accuracy after convergence is achieved.

The scenarios discussed in the first set of experiments were repeated for the WL-RLS-
CD adaptive algorithm (Figures 2a,b) with respect to the WL-RLS-DCD (Figures 3a,b). The
differences between the tracking performances with respect to the value of the parameter
Nu are more evident in comparison to the WL-RLS-CG method. For the case of Figure 2a
(the input is an AR(1) sequence), the WL-RLS has superior tracking speeds with respect
to all versions of the WL-RLS-CD, including the variant with Nu = 8, which requires
two more seconds to reach a steady state after the echo paths change. In the scenario
corresponding to speech input (i.e., for Figure 2b), the WL-RLS and the WL-RLS-CD with
Nu = 8 re-converge approximately at the same time. However, all the CD variants are more
accurate at a steady state and attain NM values of less than −25 dB, while the WL-RLS
rarely achieves misalignment values of −20 dB.

In Figures 3a,b, the WL-RLS-DCD benefit from the greedy nature of the DCD method
and are able to match the tracking speeds of the WL-RLS algorithm for Nu = 4, with
respect to Nu = 8. Similarly to the previous two figures, at a steady state, the WL-RLS-DCD
outperforms the WL-RLS. The accuracy at steady state is better for both the WL-RLS-CD
and the WL-RLS-DCD, with gaps of up to 9 dB for all values of Nu in comparison to the
reference WL-RLS.
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Figure 1. Misalignment of the WL-RLS and WL-RLS-CG for different values of Nu. The input signal
is an AR(1) sequence with the pole 0.99 for (a), with respect to a speech sequence for (b). The input
signals are predistorted with αr = 0.175. The length of the four unknown impulse responses is
N = 128 and λ = 1 − 1/(16N). The echo paths change at time index ta = 50 s for scenario (a), with
respect to tb = 60 s. The ENR is experimentally set to 25 dB.
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Figure 2. Misalignment of the WL-RLS and WL-RLS-CD for different values of Nu. The input signal
is an AR(1) sequence with the pole 0.99 for (a), with respect to a speech sequence for (b). The input
signals are predistorted with αr = 0.175. The length of the four unknown impulse responses is
N = 128 and λ = 1 − 1/(16N). The echo paths change at time index ta = 50 s for scenario (a), with
respect to tb = 60 s. The ENR is experimentally set to 25 dB.

For the following simulations, we consider that the tracking performances associated
with all presented LSMs are suitable for Nu > 1 and that a number of iterations, Nu = 8,
does not provide satisfactory improvements in performance in order to justify the corre-
sponding arithmetic workload. Consequently, we will analyze the behavior of the different
VR-WL-RLS-LSM versions for Nu = 2 and Nu = 4.

In Figure 4, the WL-RLS-CG and VR-WL-RLS-CG methods are studied when the
acoustic echo paths change, and a DT situation occurs later in the same simulation. The
tracking happens at the moment t0 = 120 s, and the DT manifests in the interval [230, 234]
seconds (i.e., another speech sequence is added to the microphone signals). The input
signal is also speech. It can be noticed that the VR-WL-RLS-CG versions track the echo
path changes approximately 10 s slower than the non-VR counterparts. However, they
have better accuracy at steady state, and the VR-WL-RLS-CG with Nu = 2 outperforms the
VR variant with Nu = 4.

When the DT situation occurs, the NM values associated with the WL-RLS-CG versions
increase up to 14.5 dB. At the same time, both VR-WL-RLS-CG variants perform the update
process in a slower manner, and the corresponding spikes in accuracy loss are situated at
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approximately −11 dB (more than 25 dB lower). Consequently, both VR variants return to
the accuracy levels from before the DT occurrence with a delay of approximately 4 s (i.e.,
around a time of 238 s). Considering that the non-VR algorithms need more than 10 s to
re-converge and attain previous accuracies at time 244 s, the results demonstrate that the
accuracy penalties imposed on the VR-WL-RLS-CG filters are greatly diminished.
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Figure 3. Misalignment of WL-RLS and WL-RLS-DCD for different values of Nu. The input signal is
an AR(1) sequence with the pole 0.99 for (a), with respect to a speech sequence for (b). The input
signals are predistorted with αr = 0.175. The length of the four unknown impulse responses is
N = 128 and λ = 1 − 1/(16N). The echo paths change at time index ta = 50 s for scenario (a), with
respect to tb = 60 s. The ENR is experimentally set to 25 dB.
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Figure 4. Misalignment of WL-RLS-CG and VR-WL-RLS-CG for different values of Nu. The input
signal is a speech sequence. Input signals are predistorted with αr = 0.175. The length of the
four unknown impulse responses is N = 256, λ = 1 − 1/(64N), and for the VR algorithm, it is
γ = 0.999. The echo paths change at time index t0 = 120, and a DT situation occurs in the time
interval [230, 234] s. The ENR is experimentally set to 25 dB.

The same observations can be made when repeating the scenario for WL-RLS-CD and
VR-WL-RLS-CD (Figure 5) with respect to WL-RLS-DCD and VR-WL-RLS-DCD (Figure 6).
The VR versions suffer losses in terms of their tracking capabilities. Firstly, the WL-RLS-CD
variants completely track the echo path changes approximately 10 s faster than their VR
counterparts with the same Nu values. However, when the DT occurs, the differences
between accuracies are around 24 dB in favor of the VR-WL-RLS-CD variants.
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Figure 5. Misalignment of WL-RLS-CD and VR-WL-RLS-CD for different values of Nu. The input
signal is a speech sequence. Input signals are predistorted with αr = 0.175. The length of the
four unknown impulse responses is N = 256, λ = 1 − 1/(64N), and for the VR algorithm, it is
γ = 0.999. The echo paths change at time index t0 = 120, and a DT situation occurs in the time
interval [230, 234] s. The ENR is experimentally set to 25 dB.

100 120 140 160 180 200 220 240 260 280 300

Time [s]

-25

-20

-15

-10

-5

0

5

10

15

N
o
rm

a
liz

e
d
 M

is
a
lig

n
m

e
n
t 
[d

B
]

WL-RLS-DCD, N
u
=2

WL-RLS-DCD, N
u
=4

VR-WL-RLS-DCD, N
u
=2

VR-WL-RLS-DCD, N
u
=4

Figure 6. Misalignment of the WL-RLS-DCD and VR-WL-RLS-DCD for different values of Nu. The
input signal is a speech sequence. Input signals are predistorted with αr = 0.175. The length of the
four unknown impulse responses is N = 256 and λ = 1 − 1/(64N), and for the VR algorithm, it
is γ = 0.999. The echo paths change at time index t0 = 120, and a DT situation occurs in the time
interval [230, 234] s. The ENR is experimentally set to 25 dB.

Secondly, for the DCD-based algorithms, the differences in tracking capabilities are
less influenced by the value of Nu and more by employing the VR approach. Consequently,
the VR-WL-RLS-DCD has similar tracking speeds for Nu = 2 and Nu = 4 and a 12–13 s
delay for fully estimating the complex echo path after it changes (with respect to the WL-
RLS-DCD). Nevertheless, in the DT interval, the non-VR algorithms have an NM of up to
13 dB, while the VR counterparts have accuracies no worse than −12 dB.

In Figure 7, all the VR versions from the three previous simulations are compared in
the same scenario (i.e., first the tracking and then the DT period). It can be noticed that the
VR-WL-RLS-CG has better convergence speeds, with a penalty in terms of accuracy at a
steady state, with respect to the CD and the DCD versions. The VR-WL-RLS-DCD with
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both Nu values and the VR-WL-RLS-CD with Nu = 4 track the changes in the echo paths
with a 5–6 s delay, and the VR-WL-RLS-CD with Nu = 2 has the slowest reaction with a
more than 15 s delay, with respect to the VR-WL-RLS-CG. However, at a steady state, the
latter has NM values with minimum values of −22 dB, while the VR-WL-RLS-DCD and
the VR-WL-RLS-CD with Nu = 4 can easily reach −23 dB. The best steady-state results are
obtained for VR-WL-RLS-CD for Nu = 2 with NM values of around −24 and −25 dB. In
the DT interval, all the methods have similar performances for both values of Nu (the worst
performance is situated around −12 dB). From a practical point of view, the VR-WL-RLS-
CD and the VR-WL-RLS-DCD are more attractive because they require fewer arithmetic
resources and deliver satisfactory results.
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Figure 7. Misalignment of the VR-WL-RLS-CG, VR-WL-RLS-CD, and VR-WL-RLS-DCD for different
values of Nu. The input signal is a speech sequence. The input signals are predistorted with αr = 0.175.
The length of the four unknown impulse responses is N = 256, λ = 1 − 1/(64N), and γ = 0.999. The
echo paths change at time index t0 = 120, and a DT situation occurs in the time interval [230, 234] s.
The ENR is experimentally set to 25 dB.

For the next experiments, the tracking and DT scenario was simulated again with the
ENR set to 10 dB. In Figure 8 (WL-RLS-CG vs. VR-WL-RLS-CG), Figure 9 (WL-RLS-CD vs.
VR-WL-RLS-CD), and Figure 10 (WL-RLS-DCD vs. VR-WL-RLS-DCD), it can be noticed
that the difference in performance between the VR and non-VR algorithms has increased.
At a steady state, all the algorithms have worse NM values with respect to the case of the
scenarios with ENR = 25 dB. Although the delay in tracking manifests for all VR methods
(like in previous cases), the performance reductions in the DT occurrences are smaller.
The VR-WL-RLS-CG has a slight jump from −11.5 dB (at a steady state) to −9.5 for 3–4 s
during the DT interval. Similarly, the VR-WL-RLS-CD has a performance reduction of
−2.5 dB, and the VR-WL-RLS-DCD has a performance reduction of −2 dB, with the same
re-convergence interval of less than 4 s. Moreover, we can notice that the discrepancies in
performances between the VR and non-VR algorithms are higher than in the ENR = 25 dB
scenarios. From the differences in 3–4 dB, the VR versions perform well and are more than
7 dB better in Figure 8, −4.5 dB in Figure 9, and −6 dB in Figure 10. The regularization
leads to better accuracy at a steady state for all VR algorithms, and the update processes
are almost unaffected by the DT occurrences.
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Figure 8. Misalignment of WL-RLS-CG and VR-WL-RLS-CG for different values of Nu. The input
signal is a speech sequence. The input signals are predistorted with αr = 0.175. The length of the
four unknown impulse responses is N = 256, λ = 1 − 1/(64N), and for the VR algorithm, it is
γ = 0.999. The echo paths change at time index t0 = 120, and a DT situation occurs in the time
interval [230, 234] s. The ENR is experimentally set to 10 dB.
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Figure 9. Misalignment of the WL-RLS-CD and VR-WL-RLS-CD for different values of Nu. The input
signal is a speech sequence. Input signals are predistorted with αr = 0.175. The length of the four
unknown impulse responses is N = 256, λ = 1 − 1/(64N), and for the VR algorithm γ = 0.999. The
echo paths change at time index t0 = 120, and a DT situation occurs in the time interval [230, 234] s.
The ENR is experimentally set to 10 dB.

Moreover, when only the VR versions are compared in Figure 11, the misalignment
curves are very similar. Considering the compromise between performance and chip
area costs, the VR-WL-RLS-DCD method can be considered the most attractive as the
ENR decreases.
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Figure 10. Misalignment of WL-RLS-DCD and VR-WL-RLS-DCD for different values of Nu. The
input signal is a speech sequence. Input signals are predistorted with αr = 0.175. The length of
the four unknown impulse responses is N = 256, λ = 1 − 1/(64N), and for the VR algorithm, it
is γ = 0.999. The echo paths change at time index t0 = 120, and a DT situation occurs in the time
interval [230, 234] s. The ENR is experimentally set to 10 dB.
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Figure 11. Misalignment of VR-WL-RLS-CG, VR-WL-RLS-CD, and VR-WL-RLS-DCD for different
values of Nu. The input signal is a speech sequence. The input signals are predistorted with αr = 0.175.
The length of the four unknown impulse responses is N = 256, λ = 1 − 1/(64N), and γ = 0.999. The
echo paths change at time index t0 = 120, and a DT situation occurs in the time interval [230, 234] s.
The ENR is experimentally set to 10 dB.

6. Conclusions

The paper describes and analyzes several RLS-LSM adaptive algorithms for SAEC
applications. The WL framework employs complex-valued variables and simplifies the
handling of the system. The exponentially weighted complex-valued RLS algorithm
working within the WL model is combined with several LSMs in order to replace the
classical system of equations with an auxiliary set of equations. Three types of LSMs are
combined with the VR mechanism applied to the complex-valued RLS. The CG is the
most costly method, which leads to an overall arithmetic complexity proportional to the
square of the VR-WL-RLS-CG adaptive filter’s length. The CD and the DCD methods are
progressively simpler in terms of arithmetic workloads and are designed to exploit the
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statistical properties of the input signals. Both VR-WL-RLS-CD and VR-WL-RLS-DCD
require O(2N) multiplications, with an advantage for the latter, which solves the auxiliary
system of equations using only additions and bit-shifts.

The simulation results demonstrate that the VR variants of WL-RLS-LMSs decrease
the NM by approximately 25 dB during the DT intervals, with the compromise of reducing
the tracking speeds of the corresponding algorithms. Moreover, the VR-WL-RLS-LMSs
have better accuracy at a steady state with respect to the non-VR versions (at least 2–3 dB
in terms of NM for ENR = 25 dB, and more than 7 dB in terms of NM for ENR = 10 dB). The
performance gap at a steady state is better in favor of the VR variants as the ENR decreases.

The simulation results also showed that the greedy nature of the DCD iterations
partially compensates for the tracking loss of VR-WL-RLS-DCD and allows it to match the
tracking performances generated by VR-WL-RLS-CG. The associated robust performances
in low-ENR conditions (including DT situations), combined with the overall arithmetic
complexity (which is directly proportional to the adaptive filter’s length), make VR-WL-
RLS-DCD an attractive candidate for hardware implementations for SAEC. Future research
will concentrate on in-depth analysis for efficient hardware implementations (fixed-point
vs. floating-point) of WL-RLS-DCD incorporating a VR approach.
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