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Abstract: Printed circuit board (PCB) defect detection is an important and indispensable part of
industrial production. PCB defects, due to the small target and similarity between classes, in the
actual production of the detection process are prone to omission and false detection problems.
Traditional machine-learning-based detection methods are limited by the actual needs of industrial
defect detection and do not show good results. Aiming at the problems related to PCB defect
detection, we propose a PCB defect detection algorithm based on DSASPP-YOLOv5 and conduct
related experiments on the PKU-Market-PCB dataset. DSASPP-YOLOv5 is an improved single-stage
detection model, and we first used the K-means++ algorithm for the PKU-Market-PCB dataset to
recluster the model so that the model is more in line with the characteristics of PCB small target defects.
Second, we design the Depthwise Separable Atrous Spatial Pyramid Pooling (DSASPP) module,
which effectively improves the correlation between local and global information by constructing
atrous convolution branches with different dilated rates and a global average pooling branch. The
experimental results show that our model achieves satisfactory results in both the mean average
precision and detection speed metrics compared to existing models, proving the effectiveness of the
proposed method.

Keywords: printed circuit board; defect detection; K-means++; atrous convolution

1. Introduction

Industrial internet is the core cornerstone of the fourth industrial revolution [1], so in
the field of electronics manufacturing, printed circuit board (PCB) as a variety of compo-
nents connected to the important parts [2], its quality plays a vital role in the quality of
electronic products integrated by it. In recent years, the density and complexity of PCB
have been increasing, and the production process of PCB is also gradually becoming more
cumbersome. PCB in industrial production often has various defects, such as open circuit,
short, missing holes, mouse bite, spur, spurious copper [3], etc. These defects, if not found
and dealt with in a timely manner, will affect the subsequent assembly and debugging
processes and even cause the failure of the entire product. Therefore, PCB surface defect
detection is a key link in the electronic manufacturing process, and its quality directly
affects the service life and reliability of electronic products [4].

The methods used in the field of industrial defect detection are categorized into
traditional methods and vision-based detection methods. Traditional methods mainly
include manual visual detection [5] and functional testing [6], while traditional methods are
characterized by low efficiency, slow detection speed, and difficulty in identifying similar
defective targets, so they are not suitable for applications in large-scale industrial scenarios,
and fast and accurate vision-based detection methods occupy the mainstream at present [7].
Vision-based industrial defect detection not only has important research value but also
offers many potential applications. The traditional machine learning approaches include
support vector machines [8], decision trees [9], and genetic algorithms [10], etc., but the
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traditional machine learning approaches in the domain of industrial defect detection are
affected by the diversity of the defects and their weaknesses; the detection effect is poor.

Recent advances in deep learning have led to more mature applications for deep-
learning-based visual detection methods, including two-stage detection algorithms R-
CNN [11], Fast R-CNN [12], Faster R-CNN [13], and Mask R-CNN [14], etc.; as well as
single-stage detection algorithms SSD [15] and YOLO [16–19] series, etc.

Zhang et al. [20] learned the high-level features present in the defects by using VGG-16
as a base network, and the authors evaluated SVM in combination with LBP and HOG
features, respectively, demonstrating the superior performance of deep feature learning;
Xie et al. [21] introduced a multilevel residual mixed-attention module for feature learning
in the YOLOv4 network to improve the shallow network’s capacity for feature represen-
tation and focus more attention toward object features while reducing the interference
of irrelevant features; Adibhatla et al. [22] used a miniature YOLOv2 network improved
by YOLOv1 in order to achieve faster PCB defect detection and obtained good detection
accuracy on 11,000 images of 11 types of defects; Ding et al. [23] learned a similarity
measure between image pairs by designing a Siamese network fusing multi-scale deep
features. During the training phase, the authors applied a contrast loss function to optimize
the feature extraction network by utilizing the distance between pairs of picture vectors.
The described multi-scale model offers a good solution for the defect detection problem
and outperforms the single-scale feature structure. Single-stage detection approaches such
as YOLO do not require additional candidate region generation [24], which simplifies the
complexity of the target detection procedure and converts the issue into a straightforward
regression problem when compared to two-stage candidate region-based detection ap-
proaches, simplifies the process of target detection, accelerates the speed of defective target
detection, and is more suitable for industrial scenarios, so this paper selects YOLOv5 [25]
as a baseline model for single-stage detection algorithms.

As the production of PCB currently tends to be thin and light and densification,
the density of its wiring and welding is increasing day by day [26]. While the defects
on the surface of the PCB have a small target area and the background is complex in
industrial scenarios, the defects and the background are easily confused and it is not easy
to differentiate between them, with a high rate of misdetection and omission and a poor
effect of detection. For the purpose of meeting the demand for accuracy in PCB surface
defect detection in industrial situations, this paper proposes a PCB surface defect detection
algorithm based on DSASPP-YOLOv5, with the following two main contributions:

1. Utilize the K-means++ clustering algorithm to re-cluster the initial anchor box param-
eters and adopt 1-IoU as the distance metric to enhance the model’s capacity to detect
defective targets in smaller areas;

2. In this paper, we design and propose the Depthwise Separable Atrous Spatial Pyra-
mid Pooling (DSASPP) module, which constructs atrous convolution branches with
different dilated rates and global average pooling branches to improve the correlation
between local and global information. We also introduce depthwise separable convo-
lution using the Gaussian error linear Unit (GELU) as activation function in atrous
convolution blocks to balance precision and number of parameters.

2. Methods
2.1. DSASPP-YOLOv5 Network

This study makes improvements based on the YOLOv5 network model, and Figure 1
displays the improved model’s structure. The original YOLOv5 model itself has excellent
detection capability, but the detection accuracy of the model still requires improvement for
PCB defective targets that are small in size and easy to confuse with the background. This
study uses the K-means++ approach to re-cluster the nine initial anchor values of YOLOv5
in order to precisely locate and identify the target information in the effective region. The
re-clustered anchors are more in line with the feature distribution characteristics of the
PCB surface defect dataset, so the model is more effective in capturing and extracting
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the target region information; In order to strengthen the backbone network part’s feature
extraction ability for defective targets, improve the network’s anti-interference capability
for unimportant background information, and enhance the network’s detection accuracy,
this paper designs the DSASPP module and introduces it into the YOLOv5 backbone
network in order to make full fusion of multiscale contextual information to get better
detection effects and to make misdetection and omission of detection effectively controlled.

Figure 1. Structure of DSASPP-YOLOv5.

2.2. K-Means++ Clustering Algorithm

There are three prediction branches in the YOLOv5 network model, and nine different
sizes of anchor values (anchors: 10, 13; 16, 30; 33, 23; 30, 61; 62, 45; 59, 119; 116, 90; 156,
198; 373, 326) are set by default, which are applied to the three separate feature map scales
for the purpose of predicting the target bounding box. Since the YOLOv5’s default anchor
set is derived from the K-means clustering approach on the PASCAL VOC dataset with a
size of 608 × 608, it is only applicable to feature maps with a more uniform scale size and
a larger target detection area. In this study’s PCB surface defects dataset, the location of
various types of PCB defects is not fixed, the target size is more extreme, and most of them
are small targets and use the 640 × 640 size of the image as the input, so the preset anchor
value of YOLOv5 is not applicable to the content of the research in this paper.

The first task of the K-means clustering method is the initial procedure to complete
initializing all k cluster centers, and its convergence is extremely dependent on the cluster
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centers’ initialization state. Consequently, there is a significant risk of running into the
local optimum problem when clustering using the K-means clustering method. Compared
with the traditional K-means clustering method, the K-means++ [27] algorithm improves
the effectiveness of clustering by optimizing the choice of the initial cluster centers.Under
comprehensive consideration, this paper adopts the K-means++ clustering algorithm to
re-cluster the anchor box in the PCB surface defects dataset. Intersection over Union
(IoU) calculates the overlap between the bounding box and the ground truth. We take the
maximum IoU as a reference and use the value of 1-IoU instead of Euclidean distance as a
distance metric. The distance is calculated as in Equation (1), where box is the true labeled
box in the dataset, and centroid is the centroid of the clusters. By recalculating the distance
between each cluster, the clustering accuracy of this paper is finally improved.

D(box, centroid) = 1 − IoU (1)

The process of the K-means++ clustering algorithm is shown below:

1. A sample point is chosen at random from the project dataset as the first initial cluster-
ing center Ci;

2. Define the farthest distance between each sample point and the current existing
clustering center as D(x). As shown in Equation (2), the probability of each sample
point being selected as the next clustering center is defined as P(x), and in this paper,
we use the roulette wheel method to select a new clustering center Ci based on the
size of the probability P(x).

3. Repeat process 2. until k clustering centers are selected.

P(x) =
D(x)2

∑ x∈XD(x)2 (2)

2.3. DSASPP Module

For the purpose of better improving the correlation between local and global informa-
tion, DeepLabV2 [28] proposes an atrous spatial pyramid pooling (ASPP) structure. The
atrous convolution and pooling structure, which together make up ASPP, allow for the ex-
traction of multi-scale features from objects with a larger receptive field while maintaining
image resolution, but the module still suffers from the following shortcomings:

1. Using the same dilation rate consecutively or using a set of dilation rate values with a
common factor relationship other than 1, both of which may cause “Gridding Effect”
and result in local information loss;

2. The ReLU function used in the improved ASPP has certain defects, which may cause
the problem of “Dying ReLU” and make some effective information lost;

3. In practice, the ASPP module often introduces a significant number of additional
parameters while increasing accuracy, which is not worth the cost for industrial
application scenarios with detection speed requirements.

To deal with the problem that exists within the ASPP structure, we have addressed it
through several works on standardized construction rules for atrous convolution, the use
of the GELU activation function, and the introduction of depthwise separable convolution.
Inspired by the related work in this paper, this paper proposes the DSASPP Module. As
illustrated in Figure 2, the YOLOv5 model backbone network’s output feature map is
initially sent into the DSASPP module, where there are three primary components to the
DSASPP module:

1. The first component is the first branch, which utilizes a 1 × 1 standard convolution in
order to maintain the original receptive field;

2. The second part is the second to the fourth branch, using atrous convolution with a
3 × 3 convolution kernel size and dilation rate of 2, 3, and 5 to obtain different size
receptive fields while enhancing feature extraction. We decreased the total quantity of
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parameters in this study by introducing depthwise separable convolution, where the
activation function part is chosen to be the theoretically better GELU function;

3. The third component is the fifth branch, which introduces global average pooling so as
to obtain global features, improves the model’s stability and accuracy, and suppresses
the overfitting phenomenon in the network.

Figure 2. Structure of the DSASPP module.

Ultimately, the five branches of the three DSASPP modules’ components process the
feature maps, which are stacked in the channel dimension after that, and then processed by
the standard convolution of 1× 1 to make the information at different scales fully integrated.

2.3.1. Atrous Convolution

It has been found that the practice of successive atrous convolution at the same
dilation rate to obtain the same spatial resolution fills zero between the expanded pixels
of the convolution kernel, but the model only samples the locations with non-zero values,
thus losing local information and generating the “Gridding” problem, also known as the
“Gridding Effect”, as illustrated within Figure 3. The reasonable dilation rate is set as shown
in Figure 4. Wang and others [29] proposed the concept of hybrid dilated convolution
(HDC), which aims to enable the receptive field’s final size to completely cover a square
region with no empty or missing edges after a sequence of convolution processes. Thus, it
specifies the standardized construction rule of the atrous convolution:

1. The dilation rate of different layers should not have a common factor relationship
other than 1, otherwise the problem of the “Gridding Effect” at higher levels remains;

2. Define “the maximum distance between two non-zero values” as Mi:

Mi = max[ri, Mi+1 − 2ri, Mi+1 − 2(Mi+1 − ri)] (3)

As shown in Equation (3), where Mi stands for the maximum distance in the i-th
layer between two non-zero values and ri is the i-th layer’s dilation rate, for the last layer,
the maximum distance Mn should be equal to the size of rn. Assuming ki is the actual
convolution kernel’s size, for n atrous convolution layers, our design goal is to make
Mi ≤ ki, that is, to require that the maximum distance between two non-zero elements in
each layer is less than or equal to the actual convolution kernel’s size in that layer.
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Figure 3. The “Gridding Effect” of atrous convolution.

Figure 4. Atrous convolution at a reasonable rate of dilation.

Considering the characteristics of the PCB surface defect dataset, this study confirms
the impacts of different combinations of dilation rate of the model performance after
experiments and finally designs the ASPP module based on the dilation rate combinations
of 1, 2, 3, and 5.

2.3.2. GELU Activation Function

The activation function can help the model fit the training data better. ReLU is a
common and critical activation function in various studies of neural networks, but the
ReLU function has certain shortcomings in practical use.

The image of the ReLU function is shown in Figure 5. Since the gradient of the ReLU
function is zero at x < 0, this directly leads to the negative gradient being directly set to
zero in the ReLU function, and this neuron will probably not be activated by the data in the
subsequent training, and when this happens, the neuron that cannot be activated will be
zero forever in the subsequent gradient change, which also shows the situation of “Dying
ReLU” and will not respond to any data, making the effective information partially lost.

Figure 5. Functional images of ReLU, PReLU and GELU.
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Based on this, some authors [30] proposed the Parametric Rectified Linear Unit
(PReLU) with self-learning capability as the activation function to alleviate the problems
of ReLU function, while in this paper, Gaussian Error based the GELU [31] is used as
the activation function of the ASPP module. The expression of the GELU function can
be approximated as Equation (4), and the comparative images of activation functions are
shown in Figure 5.

GELU(x) = 0.5x(tanh(

√
2
π
(x + 0.044715x3)) + 1) (4)

Compared to the ReLU function, although the PReLU function solves the problem of
dead neurons by introducing a learnable parameter in the negative part of the function,
it can be seen from the function images that the nonlinearities of the ReLU function and
the PReLU function itself are obtained due to the segmentation function itself, and thus
they are both non-frivolous at the zeros, which will have a certain impact on the network’s
performance. The GELU function introduces the stochastic regularization idea compared
with ReLU and similar functions, the GELU function is smoother at the zero point; it
not only increases the nonlinearity of the network but can also inhibit the overfitting
phenomenon of the network, so that the network converges faster; and it can also avoid the
problem of dead neurons.

2.3.3. Depthwise Separable Convolution

In order to better meet the lightweight requirements of models in industrial scenarios
based on the standard convolution operation, the literature [32] first proposed a more
efficient separable convolution (SC) to decrease the model’s parameters and computational
effort, which is usually utilized in neural networks in the form of depthwise separable
convolution (DSC) [33,34]. Depthwise separable convolution provides a new way of
thinking about convolution by decomposing the normal convolution process into two
components: depthwise (DW) convolution and pointwise (PW) convolution.

As illustrated within Figure 6, the idea of depthwise convolution procedure is to
split the convolution kernel in the form of a single channel, perform the convolution of a
single channel separately, and then stack them together so that not only the convolution
operation can be performed separately for each channel but also maintain the input feature
map’s depth. After the depthwise convolution procedure, we get the output feature map
with an equal number of channels given the input feature map. After that, the pointwise
convolution operation, which is 1 × 1 convolutions, is performed to raise and lower the
feature map’s dimension, and the output channels of the depthwise convolution operation
are projected onto the new channel space.

Figure 6. Structure of the depthwise separable convolution.
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As for the input feature map of size H × W × M and convolution kernels of size k × k,
the computational effort f1 of the standard convolution is given by Equation (5):

f1 = H × W × k × k × M × N (5)

where H × W denotes the size of the input feature map, k denotes the convolution kernel
size, M indicates the input channel’s number, and N indicates the output channel’s number.

A similar analysis taken for depthwise separable convolution shows that the compu-
tational effort f2 of the depthwise convolution operation and the pointwise convolution
operation is shown in Equation (6):

f2 = H × W × k × k × 1 × M + H × W × 1 × 1 × M × N (6)

The ratio of computation of depthwise separable convolution to standard convolution
is Equation (7):

f2

f1
=

H × W × k × k × 1 × M + H × W × 1 × 1 × M × N
H × W × k × k × M × N

=
1
N

+
1

k × k
(7)

From Equation (7), it can be seen that when the convolution kernel size k is 3, the
utilization of depthwise separable convolution might decrease nearly 90% of the computa-
tion, thus achieving the purpose of model light-weighting. In this paper, we introduced
depthwise separable convolution for light-weighting in the ASPP module and obtained
significant results to improve the computational efficiency without significantly degrading
the model performance.

3. Experimental Results and Analysis
3.1. Experimental Environment

This experiment was built based on the PyTorch deep learning framework, with a
PyTorch version of torch 1.11.0 and a Python version of 3.8.16. The CPU model was Intel
Core i5-12400F, and the GPU model was NVIDIA GeForce RTX3060Ti with 8GB of video
memory, using single card training mode and GPU acceleration via CUDA11.3.

This experiment makes use of the open dataset of PCB defect detection released by the
Intelligent Robotics Open Laboratory of Peking University (PKU-Market-PCB). The original
images of this dataset total 693, and there are 6 defect categories, namely Missing_hole,
Mouse_bite, Open_circuit, Short, Spur, and Spurious copper, and the sample defect images
are shown in Figure 7.

Figure 7. Types of PCB surface defects.

Due to the difficulty of collecting industrial datasets, the dataset used in this ex-
periment has the problem of being too small. Based on this, this experiment uses data
enhancement to expand the dataset, such as randomly rotating, scaling, mirroring, bright-
ness adjustment, and Gaussian filtering operations on the original data, so that the dataset is
expanded five times; there are a total of 4158 images after the expansion, and the expanded
dataset is displayed within Table 1. To better carry out the independence experiment, the
dataset is randomly split into training and test sets in an 8:2 ratio, of which 3300 pictures
are within the training set and 858 pictures are within the test set.
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Table 1. Dataset partition.

Class Original Images Enhance Images

Missing_hole 115 690
Mouse_bite 115 690

Open_circuit 116 696
Short 116 696
Spur 115 690

Spurious_copper 116 696

Totle 693 4158

3.2. Evaluation Metrics

In this study, the evaluation metrics used in the experiments related to PCB surface
defect detection are the precision rate (P), recall rate (R), mean average precision (mAP),
number of parameters, and frames per second (FPS), which are commonly used as the main
evaluation metrics. The specific formulas are shown in Equations (8)–(11).

P =
TP

TP + FP
(8)

R =
TP

TP + FN
(9)

AP =

1∫
0

P(r)dr (10)

mAP =

n
∑

i=0
AP(i)

n
(11)

where TP (True Positive) denotes the target’s numbers that were actually detected correctly,
FP (False Positive) denotes the target’s numbers that were actually detected erroneously,
and FN (False Negative) denotes the target’s numbers that were overlooked. The precision
rate P is defined as the ratio of the number of correct ones predicted by the network model
to the whole number, and the recall rate R is defined as the ratio of the number of true ones
predicted by the network model to the whole number of true ones. AP is the region that
the P-R curve encloses and the coordinate system, while mAP measures how well a trained
model acts on the full range of categories. mAP is also used as the main evaluation metric
for the target detection task. The mAP can be specifically categorized into mAP_0.5, which
is the mAP at the 0.5 IoU threshold, and mAP_0.5:0.95, which is the mean mAP across a
range of IoU thresholds (0.5 to 0.95 in steps of 0.05).

3.3. Model Performance Evaluation
3.3.1. K-Means++ Clustering Result Analysis

Figure 8 shows the distribution of defective target aspect ratios in the PCB surface
defect dataset, and as seen in the figure, the target box dimension’s width and height in
the dataset used in this study are mainly concentrated in the intervals of [0∼40, 0∼40].
The resulting intervals also demonstrate that most of the targets in the PCB surface defect
dataset are small and that the preset anchor box sizes in the original YOLOv5 are not
applicable to the needs of the PCB defect dataset. Figure 9 displays the effects of using the
K-means++ clustering method to re-cluster the smaller targets in the PCB surface defects
dataset; the clustering center’s number is set to 9. After many iterations of the genetic
algorithm, all the data points in the final image are clustered into 9 regions labeled with
different colors, where the yellow five-pointed stars represent the clustering centers of the
regions, and the various clustering centers indicate that ultimately, we have obtained 9
combinations of different sizes of the anchor box.
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Figure 8. PCB defect target aspect ratio.

Figure 9. K-means++ clustering results.

In this study, we use the K-means++ clustering method to obtain the combination of
anchor box sizes as displayed within Table 2, in which the feature map of 20 × 20 size is
assigned with the largest three anchor box, the feature map of 40 × 40 size is assigned with
the medium-sized three anchor box, and the largest feature map of 80 × 80 size is assigned
with the smallest set of anchor box, which is also in line with the principle of “small targets
are predicted on the large feature maps, and the large targets are predicted on the small
feature maps”.

Table 2. Combination of anchor box.

Feature Map Anchor Box

80 × 80 (7,7) (12,12) (16,11)
40 × 40 (10,17) (15,15) (14,22)
20 × 20 (24,14) (19,20) (27,24)

3.3.2. DSASPP Experimental Analysis

In this paper, ASPP modules with different combinations of dilation rate are tested
through experiments, and as shown in Table 3, for the combinations of dilation rate that do
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not meet the optimal requirements for the design of atrous convolution, such as (1,2,2,2)
and (1,6,12,18), there is a certain gap in the performance of the actual detection accuracy
compared to that of the dilation rate combinations designed in this paper (1,2,3,5) and
(1,2,3,7) due to the successive use of the same dilation rate or the presence of a common
factor in the combination of the dilation rate except for 1, among which the combination
of the dilation rate of (1,2,3,5) is the best performance. Combined with the characteristics
of the PCB surface defect dataset, the redesigned dilation rate combination in this study
effectively increases the detection accuracy of defective targets; mAP_0.5 reaches 97.23% .

Table 3. Effect of different dilation rates.

Dilation Rates mAP_0.5 (%) mAP_0.5:0.95 (%)

1,2,2,2 96.56 60.13
1,6,12,18 96.82 60.06

1,2,3,7 96.91 60.38
1,2,3,5 97.23 60.82

Considering some of the lightweight requirements of real industrial application scenar-
ios, experiments are carried out for the improvement of the ASPP module while maintaining
the same quantity of input and output channels. From Table 4, it is evident that the ASPP
module has a strong potential for capturing multi-scale information and obtains a certain
degree of mAP improvement, but consequently, it increases the detection accuracy while
introducing a significant number of parameters, which increases the computational burden
on the model. In this paper, the Gaussian error-based GELU activation function is utilized
to improve the ASPP module, and the mAP_0.5 is improved by 0.4% with only a small num-
ber of parameters added, which indicates that the GELU activation function can increase
the model’s detection accuracy. On this basis, the quantity of parameters in the model
is significantly decreased by 41% through the use of multi-branch depthwise separable
convolution, indicating that depthwise separable convolution can effectively decrease the
quantity of parameters of the ASPP module, and the improved overall model still achieves
a 0.35% improvement in the mAP_0.5 compared to the unimproved ASPP module due to
the GELU activation function. This paper’s improvement of the ASPP module decreased
the number of parameters while increasing detection accuracy, and it verified the excellent
performance of the DSASPP module in capturing multi-scale target context information.

Table 4. ASPP module improvement experiment.

Model Params (M) mAP_0.5 (%) mAP_0.5:0.95 (%) Model Size (MB)

ASPP 15.29 97.23 60.82 29.4
ASPP + ReLU 15.30 97.33 62.25 29.4

ASPP + PReLU 15.30 97.42 63.31 29.4
ASPP + GELU 15.30 97.63 64.46 29.4

DSASPP 9.03 97.58 62.31 17.4

3.4. Ablation Experiments

To confirm the model’s actual performance as described in this study, considering the
actual needs of industrial defect detection, the more lightweight YOLOv5 model is selected
for the benchmark model within this study, and ablation experiments are conducted on the
PCB defect dataset. As shown in Table 5, where YOLOv5 represents the original model;
DA is the data augmentation method used in this study; K-means++ is the anchor box
clustering method used in this paper, which is used to re-cluster for the training dataset;
and DSASPP indicates the Depthwise Separable Atrous Spatial Pyramid Pooling module
designed in this paper.
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Table 5. Ablation experiments with different modules.

Different Modules Params (M) P (%) R (%) mAP_0.5 (%)

YOLO v5 DA k-means++ DSASPP
✓ 7.04 96.30 95.40 95.91
✓ ✓ 7.04 97.27 94.34 96.96
✓ ✓ ✓ 7.04 98.58 95.45 98.04
✓ ✓ ✓ ✓ 9.03 99.15 96.56 98.62

The experimental results presented in Table 5 display that the training model with the
data augmentation method used in this paper performs better than the original YOLOv5
benchmark model without data augmentation, with improvements of 0.97% and 1.05% in
precision rate and mAP_0.5, respectively. After that, the dataset used in this paper was re-
clustered by the K-means++ anchor box clustering algorithm, which effectively improved
the model’s detection accuracy, leading to an increase in the model’s precision rate, recall
rate, and mAP_0.5 of 1.31%, 1.11%, and 1.08%, respectively. Finally, the effectiveness of
the DSASPP module in capturing multi-scale contextual information is demonstrated by
the introduction of the DSASPP module, which reached 99.15%, 96.56%, and 98.62% for
precision rate, recall rate, and mAP_0.5, respectively. Compared to the original YOLOv5
benchmark model without data augmentation, the overall model designed in this study
achieved a 2.71% enhancement in the mAP_0.5 metric, and the best performance in both
precision rate and recall rate with a 2.85% and 1.16% improvement, respectively, which
proves the advancement of this paper’s method. From the experimental data of the ablation
experiments, it is evident that the model in this paper is able to realize an accurate target
detection and recognition function.

3.5. Comparison with Other Models

To validate the benefits and disadvantages of this study’s algorithm compared to
other advanced algorithms in the same field, the proposed method is compared and experi-
mented with algorithms such as Faster-RCNN [35], EfficientNet [36], MobileNetV2 [37],
and YOLOv3 [38] on a PCB defect detection dataset. The quantity of parameters in the
model, mAP_0.5, and FPS are utilized as the evaluation indexes of the model performance.
To guarantee the experiment’s fairness, each model within the comparison experiment
has the same image input size and the parameter settings are kept the same, and the best
weight files of the above models are selected in the model validation for comparison on the
test set, and Table 6 also displays the experimental results.

Table 6. Comparative experiments of different methods.

Model Backbone Params (M) mAP (%) FPS (f/s)

Faster-RCNN VGG16 43.89 93.47 16.49
Faster-RCNN EfficientNet 7.68 91.04 28.81
Faster-RCNN MobileNetV2 19.90 91.48 24.96

YOLOv3 DarkNet53 62.60 95.22 30.54
YOLOv5 CSPNet 7.04 95.91 112.51

Ours CSPNet +
DSASPP 9.03 98.62 101.67

Upon examination of Table 6’s data, it is evident that the results of the comparison
experiments show that this paper’s method has a greater advantage in the quantity of
parameters compared with the models of Faster-RCNN (VGG16), Faster-RCNN (Efficient-
Net), Faster-RCNN (MobileNetV2), and YOLOv3; the mean average precision improved by
5.15%, 7.58%, 7.14%, and 3.4%, respectively; and the speed of detecting images per second
improved by 85.18 frames, 72.86 frames, 76.71 frames, and 71.13 frames, respectively. The
comprehensive performance of this paper’s model clearly has a significant advantage; not
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only has the mean average precision been improved to varying degrees, but the inference is
also faster. In contrast to the CSPNet-based original YOLOv5 model, the improved model
in this paper improved the mean average precision by 2.71%. However, due to an increase
in model complexity, the quantity of parameters in the model increased by 28.3%, and the
detection speed decreased by 10.84 frames. Despite the fact that the detection speed has
somewhat decreased, the model designed in this paper can achieve better detection results
under the premise of close to 100 frames per second, to satisfy the needs of industrial PCB
defect detection, and the focus is to improve the defect detection precision, which is more
crucial for the high-quality production of PCB, demonstrating the effectiveness of this
paper’s method for the application of PCB surface defect detection.

3.6. Validation and Visualization

Figure 10 displays the visualized detection effects of the original YOLOv5 model and
the model used within this study on the PKU-Market-PCB dataset, which shows the detec-
tion results of Mouse_bite, Short, Missing_hole, Spur, Open_circuit, and Spurious_copper.

Figure 10. Comparison of visual inspection results.

By comparing the two models’ detection effects prior to and following the improve-
ment, it can be found that the original YOLOv5 model’s precision rate level for the predic-
tion of PCB surface defects is not high; it is prone to miss the detection of defects, especially
for detecting the smaller defects in the six types of PCB surface defects, such as Spur and
Spurious_copper, whose detection effect is even worse. This paper’s improved model has
an exhaustive leading edge for the detection of six types of PCB surface defects, has a high
precision rate in the prediction, and is able to detect defects not detected by the original
model. The model in this paper improves the mean average precision, solves the problem
of omission of some of the targets that are highly similar to the background, and has the
value of practical application.
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As seen in Figure 11, the mean average precision curves trained by this paper’s model
and the unimproved YOLOv5 model are plotted as a comparison image by visualizing the
data of the training process. The comparison shows that the mean average precision of
this paper’s model has better performance and is basically in the convergence state after
50 epochs of training. The fluctuation of the curve at the late stage of training is better than
that of the unimproved YOLOv5 model, which proves the strong stability of the method
used in this study.

Figure 11. Comparison of mAP change curves prior to and following improvement.

4. Conclusions

For the challenges of PCB surface defect detection difficulty and high omission rate
in the industrial production process, we proposed a PCB surface defect detection method
based on DSASPP through research, which improved the existing model. First, the data
augmentation method improved the model’s detection accuracy. Then the dataset used in
this study was re-clustered using the K-means++ clustering algorithm. Finally, the DSASPP
module designed for this study is introduced into the backbone network, which is jointly
optimized by the GELU activation function and the depthwise separable convolution. It
not only acquires multi-scale target context information but also combines local and global
information, which effectively improves the model’s detection effect.

Experiments are conducted in this paper to evaluate the model against other neural
network models in the same field. According to the results of the ablation experiment
and comparison experiment of the model, the improved model in this study has different
degrees of lead in the mean average precision index compared to other models. At the
expense of several parametric quantities and computational effort, the model in this study
obtains a 2.85%, 1.16%, and 2.71% improvement in precision rate, recall rate, and mAP_0.5,
respectively, when compared to the unimproved YOLOv5 model. The final model is capable
of detecting defects at nearly 100 frames per second, making it meet the requirements of
industrial defect detection. Overall, the experiments conducted in this study demonstrate
that our model has excellent comprehensive performance and can realize accurate detection
and recognition tasks.

Due to the existence of limitations in time and hardware cost, the relevant experiments
in this paper are conducted on a limited number of PKU-Market-PCB datasets. Despite the
expansion using the data augmentation method, the dataset is not rich enough in samples,
and the generalization ability of the model needs to be strengthened. Considering that the
samples collected in real application scenarios are affected by the environment and other
factors, detection is more difficult compared to the laboratory environment. In addition
to this, although the detection precision of the method in this paper has improved, the
detection speed needs to be optimized with the increase in model complexity and number
of parameters.
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We will later try to prune unimportant channels in the network to train PCB defect
detection models with fewer parameters, a smaller size, and faster detection. In order to
better improve the detection effect of the algorithms in this paper under real industrial
scenarios, we are prepared to travel to real industrial environments in our subsequent
work, use small portable devices for image acquisition, and carry out the task of real-time
PCB defect detection.
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