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Abstract: Cloud-induced atmospheric extinction and occlusion significantly affect the effectiveness
and quality of telescope observations. Real-time cloud-cover distribution and long-term statistical
data are essential for astronomical siting and telescope operations. Visual inspection is currently the
primary approach for analyzing cloud distribution at ground-based astronomical sites. However, the
main disadvantages of manual observation methods are human subjectivity, heavy workloads, and
poor real-time performance. Therefore, a real-time automatic cloud image classification method is des-
perately needed. This paper presents a novel cloud identification method named the PSO+XGBoost
model, which combines eXtreme Gradient Boosting (XGBoost) with particle-swarm optimization
(PSO). The entire cloud image is divided into 37 sub-regions to identify the distribution of the clouds
more precisely. Nineteen features, including the sky background, star density, lighting conditions,
and subregion grayscale values, are extracted. The experimental results have shown that the overall
classification accuracy is 96.91%, and our model can outperform several state-of-the-art baseline
methods. Our approach achieves high accuracy in comparison with the manual observation methods.
Moreover, this method meets telescope real-time scheduling requirements.

Keywords: nighttime cloud image; observational astronomy; all-sky cameras; PSO; XGBoost

1. Introduction

In selecting observatory sites for ground-based optical/infrared astronomy, some
considerations are astronomical seeing, number of clear nights, humidity, and night-sky
brightness [1,2]. Cloud coverage is one of the most critical elements affecting observations.
Cloudy weather significantly reduces the telescope’s observable time. Moreover, clouds
may carry precipitation, damaging a telescope’s optical surface, structure, and electronics.
To solve these problems, most well-known astronomical observatories deploy all-sky
cameras to monitor the sky conditions and identify the distribution of cloud coverage.

Real-time cloud-coverage identification can improve the effectiveness and quality
of telescope observations. In addition, the total amount of observable time throughout
the year can be calculated, if we know the number of clear nights and the distribution of
cloud coverage. Optical telescopes are generally operated at night. However, nighttime
cloud images present specific challenges compared to daytime images: (1) The color-
based image identification techniques are difficult to apply because the nighttime images
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lack distinguishable color information. (2) The nighttime images are more difficult to
identify due to the low grayscale values and the absence of cloud contours in nighttime
images caused by inadequate illumination conditions. Therefore, one of the main goals of
astronomical observation is to propose a precise and automated method for identifying
cloud images throughout the night.

In astronomy, cloud-coverage analysis is usually conducted through manual observa-
tion. For instance, some outstanding telescopes and observation sites, such as the Thirty
Meter Telescope (TMT) [3], Large Optical/Infrared Telescope (LOT) [4], and Dome A [5],
employed manual observation methods to estimate the distribution of night clouds. Man-
ual observation involves identifying and interpreting cloud images through visual analysis.
It is still the semi-quantitative method. The accuracy of manual observation is susceptible
to subjective factors like observer experience, and this method is labor intensive. There-
fore, manual observation is primarily utilized for offline cloud-coverage statistics. It is
impractical to conduct real-time observations using the manual inspection method. Thus,
many researchers have investigated other methods for identifying nighttime cloud images,
including pixel segmentation, photometry, and machine-learning techniques.

The pixel segmentation method assesses cloud distribution by comparing pixel varia-
tions between clouds and clear sky areas. Dev et al. [6] employed superpixel techniques
for the binary segmentation of nighttime images. Azhar et al. [7] classified the nighttime
cloud images into clear and cloudy regions based on the peak value of the all-sky image
histogram. Jadhav et al. [8] utilized Gaussian fitting and threshold methods for binary
cloud image segmentation. However, the pixel segmentation approach is suitable for
cloud images with significant grayscale contrasts between targets and backgrounds. The
segmentation accuracy tends to be low under conditions of low illumination and minimal
grayscale discrepancies in images. The photometry method involves analyzing cloud-
coverage distribution by measuring the brightness (or luminosity) of celestial objects. Yin
et al. [9] created a reference image of star magnitudes and distinguished moonless cloud
images by comparing the brightnesses of stars in the reference image with those in the
target image. Mandat et al. [10] segmented a night cloud image into 70 subregions, counted
the number of stars in each subregion, and utilized the Yale Bright Star Catalog (BSC5)
to analyze cloud distribution. Nevertheless, the photometry method is not suitable for
processing images with poor signal-to-noise ratios. In addition, it is ineffective for images
with a bright moon that affects the observable star magnitudes.

Due to the extraordinary development of computer processing power and pattern-
recognition technology, machine-learning-based automatic cloud image recognition has
recently emerged as a hot research topic. For instance, a novel deep convolutional neural
network called CloudU-Net [11], has been proposed for the binary segmentation of cloud
images. Li et al. [12] employed support vector machines (SVM), K nearest neighbors
(KNN), decision trees (DT), and random forests (RF) for automated cloud classification,
and the input features included cloud weight, cloud area ratio, and cloud dispersion. Two
machine-learning models [13], namely Light Gradient Boosting Machine (LightGBM) and
ResNet, have been utilized for the binary classification of cloud images.

Traditional machine-learning algorithms have some disadvantages, such as low com-
puting efficiency, interpretability issues, and high dimensionality of the model. This study
proposes a nighttime cloud image classification algorithm based on XGBoost [14,15] to meet
the demands of real-time cloud identification. The PSO algorithm is utilized to globally
optimize the key hyperparameters of the model. We propose a PSO+XGBoost model for
classifying cloud images at night. This model achieves 96.91% overall accuracy and enables
real-time automatic classification of cloud images. The main contributions of this paper are
presented as follows:

1. Considering the limitations of conventional manual observation methods and the
constrained computer resources of observatories, a PSO+XGBoost model is proposed
to identify cloud coverage. We use the PSO algorithm to optimize the hyperparameters
of XGBoost, enhancing the generalization and precision of the proposed model;
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2. Considering the absence of color features and poor illumination in nighttime images,
one image is divided into 37 subregions, and a set of 19 features is extracted from each
subregion, which improves reliability and reduces the complexity of cloud-coverage
identification;

3. After analyzing the relative importance of all input features, we find that the most
essential feature is the elevation angle of the moon, which offers a comprehensive
interpretation of nighttime image identification.

This paper is organized in the following sections. Section 2 provides a comprehensive
introduction to the instrument and data description, while Section 3 provides a detailed
explanation of the automated classification approach. The extensive experimental results
are elaborated in Section 4. Finally, we present the conclusion in Section 5.

2. Instrument and Data Description
2.1. Instrument

We use the nighttime cloud images collected from KLCAM (Kunlun Cloud and Aurora
Monitor). The KLCAM was built by the National Astronomical Observatories (NAO) and
installed at the Muztagh Observatory (74◦53′48′′ E, 38◦19′47′′ N) in April 2017. It operated
until August 2019 and 48,870 images were obtained, with an exposure time of 30 s. The
KLCAM (see Figure 1a) has a 3456 × 5184 Canon EOS 100D camera (Beijing, China) and
a Sigma 5 mm f/2.8 fisheye lens. KLCAM generated one image every 30 min. Figure 1b
shows the structural schematic of KLCAM. A customized ARM-based computer controls
the image acquisition and storage [16]. The format of raw images is RGGB. We used the
two green channels as samples and merged the pixel values of the two green channels into
a single channel.
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Figure 1. (a) KLCAM at Muztagh site; (b) structural schematic of KLCAM. Figure 1. (a) KLCAM at Muztagh site; (b) structural schematic of KLCAM.

To show the long-term trend within an entire year, we use nighttime images collected
from KLCAM in the entire 2018 year to construct our training and testing datasets. All
images are selected from when the sun’s altitude angle is below −18◦ [1]. Local weather
conditions, such as snow, fog, and frost on the camera limit the measurement of KLCAM.
Examples of fog and frost are shown in Figure 2. These defective images have been removed.
In total, we have 1958 nighttime images for training and testing. We compare the available
nighttime images for different months in 2018 in Figure 3. The monthly average number of
nighttime images in 2018 is 163, with the lowest number of 94 in January and the highest
number of 250 in November.
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Figure 3. Monthly available nighttime images in 2018.

2.2. Image Preprocessing

The images contain the sky, ground buildings, and topography because of the large
field of view of KLCAM. These local background features seriously impact the accuracy
of cloud image recognition. Hence, we crop the images by masking the local background
objects. Furthermore, we divide the images into subregions to identify the distribution of
cloud coverage.

(1) Image cropping: The local background objects, such as buildings, telescopes,
and topography elements, have characteristics (color or shape) similar to those of clouds.
These objects may be misclassified as clouds. Furthermore, ground-based astronomical
telescopes usually avoid observing objects near the horizon due to significant atmospheric
interference and dispersion. Therefore, we mask the portions of the image where the zenith
angle exceeds 65◦. The image size after cropping is 1410 × 1430 pixels, and all images are
saved in 16-bit FITS format. The cropped image is shown in Figure 4b;

(2) Subregion division: We adopted a similar method to that used for TMT site
testing [3], which is widely used to classify clouds in astronomy. The TMT method divides
each image into two rings centered on the local zenith. The outer ring is the area between
the zenith angles of 44.7◦ and 65◦. The inner ring is the area within the zenith angle of
44.7◦. The advantage of this division is that the outer ring has the same area as the inner
ring. The area outside the outer ring is ignored because of the observing limit of TMT. Our
method divides each image into many subregions to get detailed spatial information. The
borders of these subregions are defined in terms of zenith and azimuth. First, we divide
each image into five rings centered at the local zenith, and each ring occupies the zenith
angle of 13◦. Then, we divide each image into 37 subregions, and the azimuth angle range of
each subregion was 40◦. This subregion division has the advantage that segments on the same
circle have the same elevation and air mass. The labeled subregions are shown in Figure 4c.
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2.3. Data-Set Description

A total of 1958 raw nighttime images are selected and further divided into 72,446 sub-
regions. Subsequently, each subregion is labeled manually based on the cloud distribution.
Each subregion is classified into three categories, as Figure 5 depicts.

1. Clear: no clouds are detected in the subregions;
2. Moon: The moon’s presence distorts or obscures the edges and details of low-brightness

clouds. Meanwhile, the moon significantly changes the background of the sky, making
astronomical observations unimplementable. Therefore, the subregion with the moon
is labeled as a “moon” category;

3. Covered: all subregions that do not belong to the “clear” and “moon” categories are
classified into this category.

The subregions are marked independently by three individuals to minimize the sub-
jective assessment of a single person. Then, we follow the principle of the minority obeying
the majority if the labeling results are different. This approach increases the reliability of
the manual labeling method.
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Figure 5. Example of KLCAM nighttime image classification definition. Black represents the subre-
gions without clouds, light blue represents the presence of clouds in subregions, and bright white is
the moon.

3. Methodology

We adopt a PSO+XGBoost model to classify nighttime cloud images automatically.
The workflow of our framework is illustrated in Figure 6. Our framework comprises three
components: image preprocessing, feature extraction, and classification decision-making.
More specifically, image preprocessing is the premise of cloud identification. We apply
feature extraction to each subregion to generate new features. These new features are
inputted into the PSO+XGBoost model for cloud identification. The image preprocessing
is explained in the previous section. The details of the following two components are
presented in the subsequent parts of this section.
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3.1. Feature Extraction

Feature extraction generates a manageable synoptic data structure from the original
time-series images while preserving the characteristics of the original images as much as
possible. Feature extraction can reduce the number of images and use human experience for
future processing. Cloud features include visual and non-visual features related to the cloud
images. We extract 19 features from the subregions to train and test our proposed model.

(1) Sky background: The brightness of clouds depends on the conditions of the sky’s
illumination. Clouds then appear as dark or bright patches against the clear sky.
Furthermore, the brightness distribution of the sky background is usually uneven
due to the solar or lunar elevation [17]. We utilize the sky-background estimation
technique in SExtractor [18,19] to assess the gray level of the sky background of
different subregions. The sky-background estimation technique uses the mode value
via σ-clipping, and its formula is:

Mode = 2.5Median − 1.5Mean (1)

(2) Star density: The number of stars in one subregion varies significantly at different times
due to the Earth’s rotation and the uneven distribution of stars. However, star density
can directly reflect the clarity of the sky. For example, the presence of stars precludes
the presence of thick clouds, and a high density of stars typically indicates a clear sky.
Therefore, star density is utilized as a characteristic in cloud image classification. We
calculate the star density by dividing the number of stars by the total subregion pixel
area. This method can eliminate the variability of subregion sizes;

(3) Cloud gray values: The sky and clouds have different light scattering and reflection
characteristics, which induces the different gray values for the sky and clouds. There-
fore, to indirectly reflect the distribution and thickness of clouds, we first calculate the
gray values of each subregion and background. Then, the background’s gray values
are subtracted from the gray values of each subregion to obtain the gray values of the
residual image. The average, median, and standard deviation of grayscale values are
calculated from residual images as features. Moreover, the gray values of subregions
are also highly influenced by the elevation and azimuth angles of the moon and sun.
Therefore, in addition to three grayscale features from the residual images, we extract
four other features for each subregion: solar elevation angle, solar azimuth, moon
elevation angle, and moon azimuth;

(4) Cloud movement: In addition to the image’s visual characteristics, non-visual elements
like the surrounding environment can influence cloud properties. Clouds are seldom
stationary because the wind blows the clouds and causes clouds to move at different
speeds. The dynamic behavior of clouds influences the distribution within the same
subregion. Seven features have been derived from the nighttime images that were
taken 30 min ago. The features include the star density, the median, mean, and
standard deviation of gray values of the sky background, and the median, mean, and
standard deviation of gray values of residual images.
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To examine the correlation between features in current images and images from 30 min
ago, we use the Kendall coefficient [20] to calculate the correlation coefficient between the
features. The Kendall coefficient between variables i and j can be calculated as follows:

KRij =
2(c − d)
n(n − 1)

(2)

where c is the number of element pairs with consistency in i and j, d is the number of
inconsistent element pairs, and n is the total number of samples. The value range of
KRij is between −1 and 1. When

∣∣KRij
∣∣ ≤ 0.39, it indicates a low correlation. When

0.39 ≤
∣∣KRij

∣∣ ≤ 0.59, it indicates a moderate correlation. When
∣∣KRij

∣∣ ≥ 0.6, it indicates a
high correlation.

The correlation matrix between features is shown in Figure 7; the color intensity in
the figure indicates the strength of the correlation among features. Cells with more blue
indicate stronger positive correlations between two features and vice versa. It can be
seen that the maximum correlation coefficient between the seven features in the current
images and those from 30 min ago is 0.53, which is a moderate correlation. The rest of the
correlation coefficients are lower than 0.39. Hence, it can be concluded that the movement
of clouds will not introduce a high correlation in features.
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(5) Subregion index: The subregion index of each subregion indicates the location of the
local sky. Therefore, the subregion index is selected as a feature.

To visualize the relationships between extracted features, we plot three value curves
of seven features in Figure 8. The seven features include the median, mean, and standard
deviation of the sky background, star density, and residual images’ median, mean, and
standard deviation. These features are normalized to a range between zero and one through
the min–max normalization method. The normalization formula is as follows:

Xnorm =
X − Xmin

Xmax − Xmin
(3)

where X represents the original feature values, Xnorm is the data matrix after normalization,
and Xmin and Xmax represent the maximum and minimum values for each feature across
all samples, respectively. And their mean values are plotted in Figure 8. It can be seen
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from Figure 8 that the distances for different cloud categories are significantly distinct. This
means that there is a high correlation between the features and the categories of clouds. All
feature values are at their highest position when the moon exists in a subregion, except for
the star density. The “covered” feature curve is located between the “clear” and “moon”
feature curves. When the sky is clear, the value of star density is at its highest position,
while all other features show the lowest values.
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3.2. PSO+XGBoost

XGBoost is a supervised algorithm based on decision trees. XGBoost utilizes ensemble
learning to combine multiple decision trees to form a strong learner. This principle can
solve the problem of the weak learning ability of an individual decision tree. XGBoost
explicitly adds a regular term to control the complexity of the model and prevent overfitting.
It constructs multiple classification and regression trees (CART) to make predictions. Each
tree operates in an iterative manner, where each subsequent tree is trained to correct the
errors made by the previous trees. The final prediction is the sum of the outputs of all the
trees. The advantage of XGBoost is that it performs better than neural network models in
processing uncorrelated tabular data.

Moreover, XGBoost has few parameters, a simple structure, and a fast training speed
on the CPU. The computational capabilities are limited at actual telescope sites because
most telescopes are located in remote places. Moreover, the correlation between the images
is not significant. Therefore, XGBoost is suitable for image processing in these situations.

Let D = {Xi, yi} represent the training set with n samples, where the true value for
the input sample Xi is denoted by yi. In cumulative training, the prediction ŷi at step (k)
can be calculated as:

ŷi = ∑K
k=1 fk(Xi) = ŷ(K−1)

i + fK(Xi) (4)

where ŷ(K−1)
i is the predicted value of the first (K − 1) trees, and fK(Xi) is the predicted

model of the Kth tree.
The objective function for regularization and optimization of the learning process is

represented as:
obj = ∑n

i=1 l(yi, ŷi) + ∑K
k=1 Ω( fk) (5)

where l is a differentiable loss function, which quantifies training error by measuring the
difference between the predicted classification value (ŷi) and the actual value (yi). The
Ω( fk) is a regularization term that is used to prevent overfitting. The definition of the
regularization term is as follows:

Ω( ft) = γT +
1
2

λ∑T
j=1 w2

j (6)
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where T denotes the number of leaf nodes in a tree; γ and λ are the L1 and L2 regularization
coefficients, respectively; and wj denotes the weight of the jth leaf node of the tree. For an
in-depth exploration of XGBoost, see reference [14].

The XGBoost model includes essential hyperparameters such as the learning rate,
maximum number of iterations, maximum depth, and L2 regularization term. The model’s
performance profoundly depends on the expert’s experience, and the model is prone to
local optimization due to the vast number of hyperparameters. To address the issue, var-
ious stochastic techniques, such as simulated annealing [21], genetic algorithm [22], and
PSO [23], are employed. The PSO method possesses several benefits over other algorithms,
including robust global search capability, parallel search capability, and straightforward
programming implementation. Therefore, the PSO is selected to optimize the hyperparame-
ters of XGBoost. The PSO algorithm is a heuristic methodology that draws inspiration from
the collective foraging activities observed in birds. It continuously alters the movement of
the whole group through sharing knowledge among group members. The target of the PSO
algorithm is to ultimately realize the global optimal solution to the problem. The flowchart
of PSO+XGBoost is shown in Figure 9.
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4. Experimental Results and Discussion
4.1. Experimental Setup

The experiments were conducted on a customized workstation with an Intel Xeon
E5-2683 v4 @ 2.10 GHz CPU, NVIDIA GeForce RTX 2080 Ti GPU, 64 GB RAM, and the
Windows 10 operating system. The programming environment is Python 3.8, utilizing the
integrated development environment PyCharm.

4.2. Model Parameters

We collected 72,446 labeled subregions from our 1958 training-data images. The
detailed label categories are shown in Table 1. We can see from Table 1 that the number
of “clear” samples is 47,378, the number of “moon” samples is 2928, and the number
of “covered” samples is 22,140. The ratio of “clear”, “moon”, and “covered” samples is
approximately 16:1:7. This indicates that the training sample has a class imbalance, and the
number of clear sky samples is in the majority compared to other categories.

Table 1. Number of samples for different cloud types.

Types Clear Moon Covered Total

Number 47,378 2928 22,140 72,446
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To achieve better performance of the XGBoost model, we set some critical parameters of
the PSO algorithm that determine the physical capacity of the network. The configurations
of PSO are as follows: we use a population of 20–50 particles. The learning factors c1
and c2 increase from 1.5 to 2.0, while the weight factor w decreases from 0.9 to 0.4 in
increments of 0.1. The accuracy, which is defined in Section 4.3, Equation (7), is employed
as the fitness function in the PSO loop. The optimization problem is performed using PSO
by iteratively adjusting the parameters of the fitness function. The optimization process
stops until the number of iterations reaches the maximum of 10–30. Finally, our proposed
model achieves the highest classification accuracy when the swarm’s population size is
20; learning factors c1 and c2 are 1.6 and 2, respectively; the weight factor is 0.4; and the
maximum number of iterations is 25. We tuned four key hyperparameters of XGBoost by
PSO, including the learning rate, the maximum tree depth, the number of iterations, and
L2 regularization. Through the PSO algorithm, the four hyperparameters of XGBoost are
configured as follows: the learning rate is 0.16, the maximum tree depth is 8, the number
of iterations is 1200, and the L2 regularization is 4.15. To evaluate the performance of
our proposed model, we have compared it with four other models: SVM, KNN, RF, and
LightGBM. For a fair comparison, we fine-tuned the main hyperparameters that determine
the classification performance of the comparison models with the grid search [24]. Grid
search is a method that entails assessing each possible combination of hyperparameters
within a predetermined range. For each set of these hyperparameters chosen, the model is
recompiled, re-initialized, and retrained. Finally, these hyperparameters are configured as
listed in Table 2.

Table 2. Parameters of different models.

Models SVM KNN RF LightGBM PSO+XGBoost

Parameters

kernel: RBF
C: 0.1

gamma: 1
max iterations: 1200

neighbors: 7 estimators: 1200
max depth: 32

max depth: 12
estimators: 1200

learning rate: 0.02
num leaves: 32

min child samples: 20
alpha: 1

lambda: 25

learning rate: 0.16
max depth: 8

estimators: 1200
L2: 4.15

4.3. Evaluation Metrics

To evaluate the performance of the model on the test data, we use four evaluation
metrics: accuracy, precision, recall, and F1-score. The metrics are expressed as below:

Accuracy =
TP + TN

TP + FP + TN + FN
(7)

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

F1-score =
2 × Precision × Recall

Precision + Recall
(10)

where FP is the number of false-positive instances. TN is the number of true-negative instances.
TP is the number of true-positive instances. FN is the number of false-negative instances.

4.4. Experimental Results
4.4.1. Comparison of Different Models

In this study, 72,446 samples are randomly allocated into training and testing sets in a
ratio of 8:2. Table 3 displays the classification results for various cloud categories and the
classification time for one cloud image. The classification accuracy of the PSO+XGBoost
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model reached 96.91%, surpassing SVM, KNN, RF, and LightGBM by 23.65%, 11.17%, 1.90%,
and 0.53%, respectively. In addition, the PSO+XGBoost model exhibited superior precision,
recall, and F1 score in the “clear”, “moon”, and “covered” categories. These results validate
that our proposed model has remarkable performance in classification recognition in terms
of accuracy and stability. In addition, the classification time of our proposed model for
one cloud image is 0.975 s. The classification time can meet the demands of real-time
telescope scheduling.

Table 3. Classification results of different models (%) and classification time for one image (s).

Class Clear Moon Covered Average
Accuracy Time (s)

SVM

Precision 99.21 97.81 53.89

73.26 2.492Recall 67.26 57.77 88.31

F1 score 77.78 72.63 66.94

KNN

Precision 89.98 85.36 76.75

85.74 2.547Recall 90.40 71.68 77.71

F1 score 90.19 77.92 77.23

RF

Precision 97.31 93.46 90.49

95.01 2.122Recall 96.33 80.91 94.14

F1 score 96.82 86.73 92.28

LightGBM

Precision 97.70 94.43 93.83

96.38 1.279Recall 97.64 87.70 94.87

F1 score 97.70 90.94 94.35

PSO+XGBoost

Precision 98.09 95.03 94.66

96.91 0.975Recall 97.95 89.64 95.69

F1 score 98.02 92.26 95.17

Since the accuracy of PSO+XGBoost and LightGBM is similar, we use an independent
sample t-test to assess the statistical significance between these two models. The test
significance level (α) is set at 0.05, and the original hypothesis (H0) posits no substantial
disparity in accuracy. If the p-value is less than 0.05, the two models are regarded as
significant differences. If the p-value is greater than or equal to 0.05, the two models
are considered not statistically different. The independent sample t-test results between
PSO+XGBoost and LightGBM are illustrated in Table 4. As can be seen, the p-value is 0.006,
which is less than 0.05, indicating a significant statistical difference.

Table 4. Independent sample t-test for two models.

Models Accuracy t-Value p-Value

PSO+XGBoost 0.9691
3.748 0.006

LightGBM 0.9638

To evaluate the classification results more intuitively, a confusion matrix is used to
express the relationship between the classification result and the true label. The correspond-
ing result is depicted in Figure 10. The horizontal axis of the confusion matrix represents
the predicted labels of the cloud image samples, while the vertical axis represents the true
labels. The main diagonal elements represent the correct classification results. The variation
in color tones in the confusion matrix reflects the ratio of predicted labels to true labels. The
color tones change from blue to green. The darker blue indicates a higher ratio of predicted
labels to true labels. The color changes to green and even white as the ratio decreases. As
shown in Figure 10, the classification accuracy of PSO+XGBoost for the “clear” class is
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97.95%, which is higher than SVM, KNN, and RF by 30.69%, 7.55%, and 1.62%, respec-
tively, and higher than LightGBM, as reported in paper [13] by 0.31%. The classification
accuracies for the “moon” and “covered” samples are 89.64% and 95.69%, respectively.
Therefore, PSO+XGBoost has the best performance among all models. In the PSO+XGBoost
confusion matrix, the class with the highest probability of misclassification is the “moon”
class. Specifically, there is a 7.93% likelihood that the “moon” class is misclassified as the
“covered” class. The main reason is that the moon in some cloud images is small, which
causes their grayscale values to be similar to those of the “covered” class. Furthermore,
the grayscale values of the brighter clouds at night are similar to those of the moon. The
misclassification ratio from “covered” to “clear” is 3.77%. This misclassification is primarily
attributed to poor illumination conditions in nighttime cloud images and the low gray
value of the images. These factors result in similar grayscale values for both categories of
image samples.
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For model comparison, we have assessed the computational complexity of RF, Light-
GBM, and PSO+XGBoost, respectively, because these three models are decision-tree-based
supervised methods.

The model complexity is defined as follows:

Cmodel = T × n × d × m + T × m (11)

where T is the number of trees, n is the number of training samples, d is the feature
dimensions, and m is the maximum depth of each tree. The model complexity is the sum of
the training and prediction stages. According to Table 2, the model complexity of the RF is
42,284,736,000, the model complexity of the LightGBM is 15,856,776,000, and the model
complexity of the PSO+XGBoost is 10,571,184,000, respectively. From these results, we can
see that the PSO+XGBoost has the lowest model complexity. Therefore, the classification
results are convincing. We do not calculate the model complexity of SVM and KNN,
because the SVM and KNN are not decision-tree-based supervised methods.

To analyze the relative importance of the input features, we calculated the number of
times each feature appears in all decision trees and plotted the results in Figure 11. The
more times a feature is used to construct a decision tree, the more important it is. As shown
in Figure 11, it is clear that the elevation angle of the moon has the highest importance
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score in the cloud-distribution classification. The reason is that when the moon is present,
the edges and details of low-luminosity clouds become blurred and difficult to observe.
Furthermore, the moon’s brightness severely changes the background of the sky, reducing
the observable magnitude and making astronomical observations unimplementable.
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4.4.2. Comparative Results of the Manual Observation Technique

To evaluate our proposed model’s accuracy and generalization ability, we compared
the results with the manual observation at Muztagh [25]. The manual observation was
used to analyze nighttime cloud images from 2017 to 2021 to determine the length of
observable time. The specific method divides the nighttime images into two regions within
zenith angles of 65◦, with the outer region at a zenith angle of 65◦ and the inner region at
44.7◦. The outer and inner circles without clouds are considered “clear”. The term “outer”
indicates that clouds are only detected inside the outer ring (between 65◦ and 44.7◦ circles).
The observable time is the sum of “clear” and “outer”. Based on manual observation, the
percentage of observable time at Muztagh in 2018 is 66%.

To align the evaluation criteria with the manual observation as closely as possible,
we segment the nighttime cloud images into inner and outer circles delineated by zenith
angles of 39◦. The zenith angles for manual observation and our proposed method are
44.7◦ and 39◦, respectively. The difference between the zenith angles of the inner circle of
the two methods is 5.7◦. To ensure the reliability of the comparison results, the definitions
of cloud distribution and observable time are identical for both methods. Figure 12 displays
example images of the “clear” and “outer” cloud categories in this paper.
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Figure 13 shows the monthly observable time of the manual observation method
and the proposed method from January 2018 to July 2019. Compared with the manual
observation method, the monthly average error of the proposed method was 7% in 2018,
while it was 4.4% in 2019. The maximum error of the proposed method occurred in January
2018, with an error of 14%. The main reason is that the number of available images is
small due to underexposed nighttime images. The proposed method achieves 63% of the
observable time throughout the entire year of 2018, which is less than 3% of the observable
time evaluated by manual observation. The main reason for this error is that we use
an all-sky camera with a 30 min sampling period. The lower sampling rate may lead
to variations in cloud-cover distribution between consecutive images, and some of the
cloud-cover distribution information may be missing. In contrast, the sampling period in
the manual observation method is 5 min, which can capture more detailed information on
cloud distribution.
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Figure 13. Comparison of PSO+XGBoost algorithm and manual observation method [25].

To make a fair comparison as much as possible, we segmented the nighttime cloud
images into two regions through one circle at the zenith angle of 52◦, as shown in Figure 14.
We calculated the full-year observable time in 2018 through our proposed method. The
observable time is 64% within the 52◦ zenith-angle circle, while the observable time is 63%
within the 39◦ zenith-angle circle. We can see that the difference in observable time between
52◦ and 39◦ zenith angles is only 1%. Therefore, we can infer that the error of observable
time between 44.7◦ and 39◦ zenith angles is less than 1%.
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5. Conclusions

Cloud coverage directly impacts the quality and efficiency of telescope observations.
Traditional manual cloud observation methods are subjective and labor intensive. Therefore,
this paper proposed an automatic cloud identification method using PSO+XGBoost. The
technique utilized the all-sky camera nighttime cloud images in Muztagh in 2018. We
divided nighttime cloud images into 37 subregions. Each subregion was labeled as “clear”,
“moon”, or “covered” based on the cloud distribution. The experimental results showed
that the overall classification accuracy of the PSO+XGBoost method reached 96.91%. The
precision, recall, and F1 scores outperformed other machine-learning algorithms, such as
SVM, KNN, RF, and LightGBM. The results were compared with the manual observation
method to verify the accuracy and generalization ability of the model. The comparison
results revealed that the average error in the monthly observable time in 2018 was 7%.
These results indicated that the proposed method met the observation requirements. The
classification time of our proposed method for one cloud image was 0.975 s. This time met
the real-time requirements of the telescope scheduling program.

Nevertheless, our proposed method had the following weaknesses: (1) The proposed
method can only roughly locate sky areas without cloud and moonlight contamination.
In the future, we need to calibrate the positions of objects in images. This will allow us
to determine cloud distribution accurately through projection and curve fitting. We may
improve the positional accuracy of cloud identification and enable a better schedule for
the telescope; (2) Most of the features extracted in this study were based on the grayscale
values of the images. Therefore, additional features may be considered in future studies
to conduct a more comprehensive understanding of cloud characteristics. These features
may include meteorological data, which can influence cloud movement and formation.
Moreover, the spectrum can be considered as part of the features. The spectrum reflects the
physical attributes of the cloud, such as brightness, whiteness, and temperature.
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