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Abstract: Vehicular edge computing (VEC) effectively reduces the computational burden on vehicles
by offloading tasks from resource-constrained vehicles to edge nodes. However, non-uniformly
distributed vehicles offloading a large number of tasks cause load imbalance problems among edge
nodes, resulting in performance degradation. In this paper, we propose a deep reinforcement learning-
based decision scheme for task offloading and load balancing with the optimization objective of
minimizing the system cost considering the split offloading of tasks and the load dynamics of edge
nodes. First, we model the mutual interaction between mobile vehicles and Mobile Edge Computing
(MEC) servers using a Markov decision process. Second, the optimal task-offloading and resource
allocation decision is obtained by utilizing the twin delayed deep deterministic policy gradient
algorithm (TD3), and server load balancing is achieved through edge collaboration using a server
selection algorithm based on the technique for order preference by similarity to the ideal solution
(TOPSIS). Finally, we have conducted extensive simulation experiments and compared the results
with several other baseline schemes. The proposed scheme can more effectively reduce the system
cost and increase the system resource utilization.

Keywords: task offloading; resource allocation; edge collaboration; load balancing; deep reinforcement learning

1. Introduction

The Internet of Vehicles (IoV) is a convergence of vehicular ad hoc networks (VANETs)
and the Internet of Things (IoTs) that will enhance transportation efficiency and vehicle
safety [1]. Vehicles fitted with a wide range of advanced equipment generate a variety of
computationally intensive applications, such as collision warning and driverless driving,
which have stringent latency requirements. However, local processing in the vehicle can be
affected by insufficient resources, resulting in performance degradation [2]. How to ensure
low-latency requirements for vehicles with limited resources is therefore a key challenge
for IoV.

VEC has a promising application in intelligent vehicle applications as an extended ap-
plication of edge computing in IoV [3]. VEC improves vehicle computational performance
by deploying MEC servers with high computational power in road side units (RSUs) to
provide computational services. Specifically, computation-intensive application tasks can
be offloaded from the vehicle over the wireless network and computed by MEC servers
with more resources [4]. MEC servers have greater computing power than vehicles, en-
abling the faster processing of application tasks and shorter application response times. For
this reason, a growing number of researchers have started to focus on task offloading in
VEC [5].

Deep reinforcement learning (DRL) incorporates the perceptual and decision-making
capabilities of deep learning and is a subfield of artificial intelligence. DRL is capable of
solving problems that traditional reinforcement learning cannot in high-dimensional state
and action spaces, and edge nodes utilizing DRL’s cognitive and analytical capabilities
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can interact directly with dynamic vehicular networks to reduce backhaul bandwidth and
cached content delivery latency and enhance computational efficiency [6]. Up to now,
the effectiveness of DRL-based task-offloading optimization in VEC scenarios has been
validated in several studies [7–9].

However, the following issues still need to be explored. First, due to the high commu-
nication and storage costs of MEC servers, particularly when a high number of vehicles
gather within their communication coverage, unloading vehicle tasks to MEC servers
may have the opposite effect [10]. In addition, the mobility of vehicles in a VEC network
and the disparity in regional infrastructure deployments can lead to load imbalances be-
tween MEC servers. Appropriate offloading decisions for vehicle-generated tasks can
effectively balance the load between edge servers, thus effectively improving the resource
utilization [11].

A Markov decision process (MDP) is a mathematical model for describing a decision-
maker’s choice of an optimal policy in uncertain environments and is well suited for the
complex and varied offloading environments of Telematics tasks. TD3 is an efficient and
stable deterministic policy reinforcement learning algorithm and is easy to implement and
suitable for high-dimensional continuous action spaces, and thus, it can be used to solve
MDP problems. TOPSIS is a common and effective method in multi-objective decision
analysis that accurately responds to gaps between evaluation options. On the basis of the
above considerations, we design a task-offloading and load-balancing decision scheme
based on DRL called TOLB. Our main contributions can be summarized as follows:

1. For the multi-vehicle and multi-server scenario in vehicular networking, a dynamic
computational offloading problem is constructed as an MDP. The decision problem is
then transformed into an optimization problem to minimize the system cost while
guaranteeing the load balancing of the MEC servers.

2. In this study, we designed a novel jointly optimized task-offloading and load-balancing
scheme, TOLB. TOLB designs a TD3-based task-offloading and resource allocation
algorithm to obtain the best decision for task offloading, and it uses a TOPSIS-based
server selection algorithm to select low-load MEC servers to which high-load MEC
servers can migrate the tasks and achieve load balancing through edge collaboration.

3. We have carried out some comparative experiments to evaluate how the proposed
scheme performs. Compared to the benchmark scheme, the findings reveal that the
proposed scheme can better optimize the processing power of the MEC server and
lower the system cost.

The remainder of this paper is structured as follows: Section 2 analyzes related work,
Section 3 discusses the system network architecture and optimization issues, Section 4 details
the specifics of the TOLB scheme, Section 5 evaluates the experimental performance, and
Section 6 concludes the paper.

2. Related Work

The transfer and computation of computationally intensive tasks between the vehi-
cle and the MEC server not only consume energy but also generate time delays [12,13].
Optimization schemes for the delay and energy consumption incurred by tasks during exe-
cution have become a crucial research direction in task-offloading studies [14]. Numerous
task-offloading methods have been proposed for offloading studies of latency-sensitive
and high-complexity tasks in VEC.

Ning et al. [15] considered edge collaboration in an intersection scenario by using
Lyapunov optimization to minimize the entire task computation latency of vehicles under
the RSU’s persistent energy consumption. Zeng et al. [16] analyzed the dynamic between
an MEC server and a vehicle according to the Stackelberg game, proving the existence of
an optimal offloading policy between the two entities; they also designed a rapid search
algorithm using a genetic algorithm to find the optimal MEC server pricing strategy.
Liu et al. [17] presented a distributed algorithm using the Stackelberg game with multiple
leaders and followers to improve the utility of mobile vehicles and MEC servers under



Electronics 2024, 13, 1511 3 of 18

deadline constraints. Lin et al. [18] explored a heterogeneous VEC network, leveraging
task popularity among vehicles for dynamic clustering, and proposed an online vehicle
task-offloading solution based on bandit context clustering. Luo et al. [19] designed a
self-learning-based distributed computing offloading algorithm to solve the distributed
offloading decision game and minimize the computational cost of performing the task.
However, traditional optimization algorithms require several iterations to reach a relatively
optimal solution, which can cause unacceptable delays in realistic application scenarios [20].

The application of DRL to address the challenges of task offloading has gained at-
tention in recent years. Wang et al. [21] aimed to minimize the delay of each task and
developed a deep learning-based resource allocation method to adapt to changing MEC
environments and handle high-dimensional inputs. Pang et al. [22] considered multitasking
offloading and designed a time-optimized Dueling Double Deep Q Network (D3QN)-based
multitasking offloading algorithm to decrease the latency and energy consumption of the
system. Zheng et al. [23] developed an asynchronous dominant participant–critic-based
decision-making algorithm in a digital twin network framework aiming at fast convergence
and reduced system cost. Shi et al. [10] proposed an offloading algorithm based on a
dual-depth Q network to solve the problem of offloading subtasks between vehicles and
subtasks between vehicles and edge nodes with the aim of reducing the subtask packet loss
rate, the average task delay, and the total energy consumption. Liu et al. [24] accounted for
dependencies between subtasks by modeling these dependencies with a directed acyclic
graph and proposed a task-offloading algorithm based on a deep deterministic policy
gradient (DDPG). Peng et al. [14] allowed different vehicles to share the results of similar
tasks and designed a shared offloading strategy based on DRL. Shi et al. [25] developed
a smart-contract-based vehicular task allocation scheme within a lightweight blockchain-
based VEC framework and utilized DRL to determine the resources required to perform a
task, and dynamic pricing was used to incentivize vehicles to make idle resources available.
Long et al. [26] designed a power allocation scheme based on decentralized DRL in a
non-orthogonal multiple-access communication scenario with multiple inputs and outputs.
These DRL-based schemes focus primarily on offloading decisions.

To model system utility, Dai et al. [27] formulated the optimization problem as a
mixed-integer nonlinear programming problem and decoupled it into two subproblems:
load-balancing and offloading decisions. Fan et al. [2] used an exact potential game model to
simulate the task-offloading contest process among RSUs by decomposing the optimization
problem into partial task-offloading and channel allocation subproblems and a server-load-
balancing subproblem. Lu et al. [28] developed a multi-RSU workload-balancing scheme
that adjusts to variable task popularity in dynamic environments to avoid wasting resources
by offloading duplicate tasks. Gao et al. [29] constructed task-offloading, task-scheduling,
and Central Processing Unit (CPU) frequency allocation problems as a hybrid nonlinear
optimization problem and adopted an iterative optimization algorithm based on a Deep
Q Network (DQN) and gradient descent to obtain the optimal decision. Marios et al. [30]
designed a two-stage reinforcement learning-based computational offloading scheme,
where the first stage designed a stochastic learning automata-based task-offloading decision,
and the second stage designed a DQN-based cooperative offloading mechanism for edge
sites to achieve load balancing. Wu et al. [31] proposed a bionic algorithm based on Invasive
Tumor Growth optimization, which achieves multiple goals, such as load balancing and a
reduction in energy consumption through collaboration between edge servers.

The existing research mainly focuses on the task-offloading problem in IoV, with rela-
tively little research on the load-balancing problem of the system, while the task-offloading
research on joint load balancing mostly considers the complete offloading of tasks, which
reduces the utilization of system resources. Therefore, this study proposes a DRL-based
task-offloading and load-balancing scheme. It splits the task into two parts according to
a certain ratio, executes one on the vehicle server and the other on the MEC server, and
allocates the computational power for executing the task to the vehicle and MEC servers.
In addition, it considers the load state of the edge servers and migrates the tasks from
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high-load MEC servers to low-load MEC servers for execution, which minimizes the system
cost, effectively improves the system resource utilization, and achieves load balancing.

3. System Model

This section first outlines the offloading framework of the VEC system. Subsequently,
a computational model is presented, encompassing local computation, task transfer, edge
computation, and result return. This model aims to calculate task processing latency and
energy consumption. The final section outlines the optimization objectives and constraints
of this study.

3.1. System Framework

The architecture of the VEC system is illustrated in Figure 1. The system is designed
around a unidirectional straight road, with RSUs positioned sequentially along the roadside.
RSUs are equally spaced along the road, and the wireless communication coverage of the
RSU is represented by L. Each RSU houses an MEC server, where the ensemble of MEC
servers is indicated by R = {1, 2, . . . , M}. The resource margin of the MEC server m is
denoted by Fm. MEC servers with ample resources are identified as low-load servers,
whereas those with limited resources are classified as high-load servers.
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The system contains N vehicles traveling at a constant speed, with the vehicle set repre-
sented by V = {1, 2, . . . , N}. We segment the travel time of vehicles within the current com-
munication coverage of the road into individual time slots, denoted by T = {0, 1, . . . , T − 1}.
In each time slot, a vehicle generates a task for processing. The task generated by vehicle
n(n ∈ V) is indicated by Tn = {dn, cn, tmax

n }, where dn denotes the total data volume of the
task in bits, cn indicates the computational density of the task in CPU cycles per bit, and
tmax
n is the upper limit of the delay that the task can tolerate.

In this paper, it is assumed that each task can be split and that the vehicle can offload
part of the task to the MEC server in any proportion. λnm is the offloading ratio of task Tn.
The amount of task data processed by MEC server m is λnmdn, and the amount of data
processed by vehicle n is (1− λnm)dn.

3.2. Communication Model
3.2.1. V2I Communication

In the system network model studied in this research, the unloading vehicle needs
to transmit the task to the MEC server for execution through the wireless channel, which
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must take into account the data transfer rate of the task in the channel. In addition, there
exists an edge collaboration model for the MEC servers in the system proposed in this
section, where the high-load servers can migrate the tasks to the low-load servers for task
processing. Therefore, V2I communication and I2I communication must be considered for
this system.

This study assumes that the wireless network connection state of the vehicle remains
static during data upload. The data transmission rate between vehicle n and the MEC
server is given by

rn,m = Bn,m log2

(
1 +

ρnhn,m

∑i′∈N′ ρi′hi′ ,m + N0

)
(1)

where Bn,m is the uplink channel bandwidth between vehicle n and MEC server m, ρn is the
transmission power of vehicle n, hn,m is the channel gain, N0 denotes the Gaussian white
noise power, and ∑i′∈N′ ρi′hi′ ,m represents the radio interference emitted by other vehicles
within the communication range of MEC server m.

3.2.2. I2I Communication

When the load of MEC server m is too high, MEC server m must migrate the tasks to a
low-load MEC server m′. Since the data transfer between MEC servers is performed via
I2I, the data transfer rate is extremely large compared to V2I; thus, this study neglects the
latency and energy consumption during task migration [32].

3.3. Computing Model

The total latency of the execution of the processing task consists of the transmission
latency and the computation latency, the total energy consumption of the processing
task consists of the transmission energy and the computation energy, and the computing
model for executing the task is varied for different locations. According to the different
execution modes of tasks, the computation model in the research scenario of this paper can
be obtained.

3.3.1. Local Computing Model

For the locally computed section of the task, f l
n

(
0 < f l

n ≤ Fl
n

)
denotes the computing

power allocated by the system to tasks executed locally, where Fl
n is the highest computing

power of vehicle n. The local delay of the processing task is given by

tl
n =

cn(1− λnm)dn

f l
n

(2)

The local energy consumption of vehicle n’s running task is expressed by

El
n = klcn(1− λnm)dn

(
f l
n

)2
(3)

where cn denotes the computational density of the task, (1− λnm)dn indicates the amount
of task data processed locally, and kl is the energy dissipation factor for vehicle n [33].

3.3.2. Edge Computing Model

When vehicle n offloads tasks to MEC server m, the amount of transmitted task data
is λnmdn. The task transmission delay is given by

ttrans
n =

λnmdn

rn,m
(4)

where rn,m is the rate at which vehicle n communicates with MEC server m.
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The energy consumption during task transfer is given by

Etrans
n = ρnttrans

n (5)

where ρn is the transmission power of vehicle n.
f MEC
n

(
0 < f MEC

n ≤ FMEC
m

)
denotes the computational capacity (in CPU cycles/second)

allocated by the system for tasks executed on MEC server m, where FMEC
m denotes the

maximum computational capacity of MEC server m. The computing latency of the offloaded
task is expressed by

tMEC
n =

cnλnmdn

f MEC
n

(6)

The energy consumption by MEC server m to execute tasks is defined as follows:

EMEC
n = kecnλnmdn

(
f MEC
n

)2
(7)

where cn equals the computational density of the task, λnmdn denotes the amount of
offloaded data for the task, and ke is the energy dissipation factor of MEC server m [33].

As the calculation results are very small compared to the amount of input data, this
paper ignores the latency and energy consumption of returning the computational results.

3.4. The Formulation of the Problem

As previously mentioned, for task Tn, the computing latency includes both the local
and offloaded parts. The total computing latency of task Tn can be described as

tn = max
{

tl
n,
(

ttrans
n + tMEC

n

)}
(8)

The overall energy consumption can be calculated as

En = El
n + Etrans

n + EMEC
n (9)

Hence, the system cost of task Tn’s execution can be given by

U(t) = uttn + ueEn (10)

where ut ∈ [0, 1] and ue ∈ [0, 1] are the weight factors for the delay and energy consump-
tion to indicate how much the user values delay and energy, respectively, satisfying the
constraint ut + ue = 1. Depending on the vehicle user’s requirements, the values of these
weighting factors can be adjusted for decision-making.

The aim of optimizing this system is to keep system costs to an absolute minimum
while ensuring the load balancing of the MEC servers. The optimization problem is
formulated as follows:

min

(
1
N

N

∑
n=1

Un

)
(11)

s.t. tn ≤ tmax
n , ∀n ∈ V (12)

0 ≤ λnm ≤ 1, ∀n ∈ V, ∀m ∈ R (13)

0 < f MEC
n ≤ FMEC

m , 0 < f l
n ≤ Fl

n (14)

N

∑
n=1

λnmdn ≤
M

∑
m=1

Fm (15)

Constraint (12) ensures that the task completion latency is never greater than the max-
imum latency constraint tolerated by the task. Constraint (13) sets a limitation on the
offloading decision variable, ensuring that the rate of task offloading is between 0 and 1.
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Constraint (14) ensures that the computational power allocated by the system to the tasks
is positive. Finally, constraint (15) ensures that the volume of task data transferred from the
system to the MEC servers does not exceed the maximum load capacity of the system.

4. A Task-Offloading and Load-Balancing Decision Scheme Based on DRL

Owing to the high agility of vehicles, real-time offloading decisions need to be made
based on the current network environment [34]. The dynamically changing environment
of Telematics may lead to the uncertainty of system inputs and conditions, and the task-
offloading and resource allocation algorithms should take the time-varying environment
state into full consideration in order to make better decisions. Deep reinforcement learning
can continuously optimize its own model according to feedback from the environment to
adjust to the demands of multiple scenarios and tasks, and this algorithm is especially suit-
able for scenarios where the environment state is constantly changing; deep reinforcement
learning is able to adapt to such changes through real-time exploration to obtain the best
decision. Therefore, TOLB uses the TD3 algorithm to learn the environment model and
the task-offloading and resource allocation strategies and then applies the TOPSIS-based
server selection algorithm to select the low-load MEC servers to which the high-load MEC
servers can migrate the tasks. TOLB is able to allocate resources in real-time changing
environments, boosting the performance and robustness of the system, and TOLB also
monitors the load state of the MEC servers, which significantly optimizes the system in
terms of reduced latency, lower power consumption, and higher resource utilization.

4.1. MDP Model

An MDP is a sequential decision-making framework characterized by time-dependent
and state-dependent properties. This study introduces three key elements into the MDP model.

4.1.1. State

In VEC, the state space contains information about several key vehicle and MEC server
characteristics. The process of neural network training is significantly influenced by the
variability and uncertainty of the value range of different task types, impacting the stability
and convergence of the system. Therefore, we normalize the state values, defining the state
st of time slot t as follows:

st =

{
X(t)

L
,

T(t)
Dmax

,
F(t)

F

}
(16)

where X(t) = {x1(t), x2(t), . . . , xN(t)} denotes the position of each vehicle within time
slot t, and L is the communication coverage of the RSU. T(t) = {T1(t), T2(t), . . . , TN(t)}
indicates the task produced by each vehicle during time slot t, and Dmax denotes the
maximum value of the task data volume. F(t) = {F1(t), F2(t), . . . , FM(t)} denotes the
resource margin of each MEC server in time slot t, and F represents the maximum resource
capacity of the MEC server.

4.1.2. Action

The purpose of the agent is to have the state space mapped to the action space. To
maximize the immediate payoff, the intelligent entity selects an action depending on
the system state st during time slot t, determining the offload ratio of the task and the
computational power assigned to the offloaded subtask. The action at is denoted by

at =
{

λ(t), f l(t), f MEC(t)
}

(17)

where λ(t) = {λ1(t), . . . , λn(t), . . . , λN(t)} denotes the task offload rate for each
task during time slot t, f l(t) =

{
f l
1(t), . . . , f l

n(t), . . . , f l
N(t)

}
denotes the computing

power allocated by the system to the task to execute locally during time slot t, and
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f MEC(t) =
{

f MEC
1 (t), . . . , f MEC

n (t), . . . , f MEC
N (t)

}
represents the computing power assigned

by the system to run the task locally and on the MEC server during time slot t.

4.1.3. Reward

On the basis of the current action at, the agent obtains a reward via the environment.
The optimization goal of this system is to minimize the cost of the system; thus, the lower
the weighted sum of the execution delay and energy consumption of the execution task,
the better the action decision. The reward function is represented by

r = −
T−1

∑
t=0

U(t) (18)

4.2. TD3-Based Task-Offloading and Resource Allocation Algorithm

Considering that the IoV environment changes all the time, in an effort to find the
optimal task-offloading and resource allocation decision in the complex and changing
environment, TOLB has designed a task-offloading and resource allocation algorithm based
on TD3, the architecture of which is displayed in Figure 2.

Electronics 2024, 13, x FOR PEER REVIEW 9 of 19 
 

 

 

Figure 2. TD3-based task-offloading and resource allocation algorithm network model. 

The TD3 algorithm has three components, including the primary network, the target 

network, and the experience pool. The primary network is built from two critic networks 

and one actor network. The TD3 agent in the VEC system maps the state space, which 

consists of information about the main features of the vehicle and the MEC server, to the 

action space. The actor network generates exploration strategies, and the two critic net-

works evaluate the strategies. The primary network’s inputs are the initial state of the 

system, the state of the training process, and a summary of the training actions stored in 

the replay buffer. The outputs are actions consisting of the offload ratio of the task and the 

computational power to perform the task. The target network facilitates the training pro-

cess of the primary network and calculates the target value. The replay buffer, on the other 

hand, records the states, actions, and rewards experienced by the TD3 agent during the 

learning process for the actor network to be trained. The TD3 agent is able to obtain action 

strategies with increasingly beFer reward values through the trial and error of continuous 

interaction between the agent and the system environment and to aFain the optimization 

goal of minimizing the average cost of the system. The running process of the TD3-based 

task-offloading and resource allocation algorithm is presented below. 

Figure 2. TD3-based task-offloading and resource allocation algorithm network model.



Electronics 2024, 13, 1511 9 of 18

The TD3 algorithm has three components, including the primary network, the target
network, and the experience pool. The primary network is built from two critic networks
and one actor network. The TD3 agent in the VEC system maps the state space, which
consists of information about the main features of the vehicle and the MEC server, to
the action space. The actor network generates exploration strategies, and the two critic
networks evaluate the strategies. The primary network’s inputs are the initial state of the
system, the state of the training process, and a summary of the training actions stored in
the replay buffer. The outputs are actions consisting of the offload ratio of the task and
the computational power to perform the task. The target network facilitates the training
process of the primary network and calculates the target value. The replay buffer, on
the other hand, records the states, actions, and rewards experienced by the TD3 agent
during the learning process for the actor network to be trained. The TD3 agent is able to
obtain action strategies with increasingly better reward values through the trial and error
of continuous interaction between the agent and the system environment and to attain the
optimization goal of minimizing the average cost of the system. The running process of the
TD3-based task-offloading and resource allocation algorithm is presented below.

First, three networks, the critic network Qθ1 , the critic network Qθ2 , and the actor
network πϕ, are initialized with randomized parameters θ1, θ2, and ϕ. Next, the three
target networks are initialized accordingly for the above three networks. Subsequently, the
parameters of the target network are taken from the primary network such that θ′1 = θ1
, θ′2 = θ2, and ϕ′ = ϕ, while the replay buffer B, which stores the experience of various
actions, is initialized.

Each state st in the set selects an action at on the basis of the current policy and noise.
To execute the action, the vehicle offloads a partial task to the MEC server, then the vehicle
computes the partial task that is processed locally, and the MEC server computes the
offloaded partial task. The TD3 agent observes the next state st+1 and receives an instant
reward rt. (st, at, rt, st+1) is then placed in B for training. Once the number of training
experiences in B reaches a certain threshold, a batch of data of size H will be randomly
selected from B. at+1 is computed at state st+1 according to Equation (19), and the Q-target
value is obtained according to Equation (20). The formula is denoted by

a′ = clip
(

π
(
s′
)
+ clip(ε,−c, c), alow, ahigh

)
(19)

Qtarget = r + γmini=1,2Qϕi

(
s′, a′

)
(20)

where clip(ε,−c, c) restricts ε to the range between −c and c, and π represents the target
actor network.

Simultaneously, the Q-values are evaluated. The critic network update operation is
described as follows:

θi = argmin
1
N ∑

(
Qtarget −Qθi(st ,at)

)2
(21)

The strategy for the TD3 actor network utilizes a delayed update approach, whereby
the actor network is updated after step k, and ϕ is updated through a deterministic policy
gradient, as expressed below:

∇ϕ J(ϕ) =
1
N ∑∇at Qθ1(st, sa)

∣∣∣a=πϕ(s)∇ϕ πϕ(s) (22)

Eventually, the target network is updated through a soft update method described as

θ′i = ζθi + (1− ζ)θ′i (23)

ϕ′i = ζϕi + (1− ζ)ϕ′i (24)

where the soft update factor is denoted by ζ.
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Algorithm 1 outlines our proposed TD3-based task-offloading and resource
allocation algorithm.

Algorithm 1 TD3-based task-offloading and resource allocation algorithm

Input:
Output:

1: Initialize the network parameters θi(i = 1, 2) and ϕ randomly.
2: To initialize the parameters of target networks, press θ′i ← θi(i = 1, 2) and ϕ′ ← ϕ

3: To initialize the replay buffer B
4: for each episode do
5: for each time slot do
6: Define the current round’s noise Nt and initialize the first state st.
7: Select an action at on the basis of the current policy and action noise ε.
8: Perform the action at and gain reward rt and the next state st+1.
9: Save (st, at, rt, st+1) in the replay buffer B.
10: Batches of data are randomly selected from the replay buffer B.
11: According to Equation (19), we obtain at+1.
12: According to Equation (20), we obtain Qtarget.
13: Updating critics θi(i = 1, 2) through Equation (21).
14: If the delayed update condition is satisfied.
15: Update ϕ through Equation (22);
16: Update the target network through Equations (23) and (24).
17: end for
18: end for

4.3. TOPSIS-Based Server Selection Algorithm

When the offload task arrives at MEC server m, if MEC server m has sufficient re-
sources, the task can be executed immediately. Otherwise, the system will select appropriate
low-load servers for task migration, and the tasks will be handled by the low-load MEC
servers in the way of edge collaboration, with the computation output returned to MEC
server m to fulfill the load balancing of the MEC servers.

TOLB uses a TOPSIS-based server selection algorithm to pick low-load servers for
task migration processing. This selection process involves a comprehensive multi-indicator
evaluation, where the TOLB evaluation model first considers the server’s available resource
margin and distance as evaluation indicators. It then applies AHP to assign different
weights based on the importance of each evaluation indicator in the system. Finally, the
TOPSIS technique is adopted to calculate the comprehensive evaluation scores of each MEC
server, and the MEC server with the highest comprehensive evaluation score is the best
selection. The TOPSIS-based server selection algorithm comprises the following steps.

When MEC server m is under a high load, each of the other servers in the system
becomes an option, with the distance between these servers and the available resource
margin used as evaluation metrics, with their matrix defined by B =

{
bij
}

2×(M−1). A
shorter distance between other servers and m and a larger available resource margin of the
other servers are indicators of a better option. The bigger and better and smaller and better
indicators can be normalized using Equations (25) and (26) to obtain the normalization
matrix C =

{
cij
}

2×(M−1).

cij =
bij −

(
bij
)

min(
bij
)

max −
(
bij
)

min

(25)

cij =

(
bij
)

max − bij(
bij
)

max −
(
bij
)

min

(26)
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Considering the task’s latency sensitivity and the MEC server’s load, the available
resources are prioritized among the evaluation metrics, and their importance is increased.
The metric weight vector W = (ω1, ω2)

T is computed using AHP.
The weights W = (ω1, ω2)

T obtained via AHP are then multiplied by the normaliza-
tion matrix C to derive a weighted normalization matrix.

D =
{

dij
}
=
(
ωicij

)
2×(M−1) (27)

The optimal and worst samples are determined according to the following formulas:

D+ =
{

maxdij
}
=
[
d+1 , d+2

]
(28)

D− =
{

mindij
}
=
[
d−1 , d−2

]
(29)

The Euclidean distances between every sample and the highest and lowest samples
are calculated using Equations (30) and (31).

E+
j =

√√√√ 2

∑
i=1

(
dij − d+i

)2

(30)

E−j =

√√√√ 2

∑
i=1

(
dij − d−i

)2

(31)

Equation (32) is utilized to obtain the ratings for each evaluator.

Si =
E−i

E−i + E+
i

i = 1, 2, . . . , M− 1 (32)

Based on the magnitude of Si, each evaluation object is ranked, with a larger value
indicating closer proximity to the ideal condition. Ultimately, the server with the highest
value is taken as the migration object. Algorithm 2 demonstrates the implementation of the
TOPSIS-based server selection algorithm.

Algorithm 2 TOPSIS-based server selection algorithm

Input: MEC server location, total resources, computing power
Output: MEC servers with the highest overall evaluation value

1: Form evaluation objects and indicators into a 2× (M− 1) matrix.
2: Harmonize the types of evaluation indicators and the positive orientation of indicators.
3: Normalize matrices that have been normalized using Equations (25) and (26).
4: Determine indicator weights using hierarchical analysis.
5: Multiply the normalization matrix by the resulting weights via Equation (27) to obtain the

weighted normalization matrix.
6: Calculate the optimal and worst samples according to Equations (28) and (29).
7: By using Equations (30) and (31), calculate the Euclidean distances from each sample to the

best and worst samples.
8: Calculate the score of each evaluation object according to Equation (32).
9: Select the highest-rated evaluator.

5. Performance Simulation and Result Analysis

This section begins with a brief overview of the simulation experimental environment
of this paper, followed by a brief description of the parameter settings of the experiment,
and concludes with an experimental comparison and performance evaluation of the TOLB
scheme and other baseline methods proposed in this section.
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5.1. Experimental Environment and Parameter Settings

The described experiment utilized Python 3.9.7 and TensorFlow 2.6.0 to simulate a
VEC environment with multiple vehicles and servers. The simulation experiments were
conducted on a server that is equipped as follows: an Intel Core i5-8300H processor, 8 GB
RAM, and an NVIDIA GTX1050. Table 1 details the simulation parameters applied in the
experiments, some of which reference the environmental parameter settings in [34].

Table 1. System environment and related parameters of TOLB.

Explanation Parameter Quantity

RSU coverage L 100 m
Speed of vehicles v 20 Km/h

Wireless channel bandwidth Bn,m 20 MHz
Channel gain hn,m 2

Gaussian white noise power N0 −174 dBm
Vehicle transmission power ρn 1 w

Maximum computing power of vehicle Fl
n 0.5 GHz

Maximum computing power of VEC server FMEC
m 5 GHz

Task size dn [100, 200]
Latency weight ut 0.5

Energy consumption weighting ue 0.5

5.2. Analysis of Results

This study evaluated the performance of TOLB by testing the following different
offloading schemes against TOLB.

1. TD3-based task offloading and resource allocation (TD3-TR). In the TD3-TR scheme,
edge collaboration is not considered, and the task-offloading and computational
resource allocation policies are derived from the continuous interaction between
TD3 intelligence and the environment.

2. DDPG-based task-offloading and resource allocation (DDPG-TR) scheme. In the
DDPG-TR scheme, the task-offloading and computational resource allocation policy
is decided by DDPG intelligence.

3. All Edge Offloading (AEO). In the AEO scheme, all tasks generated by vehicle users
are offloaded to the MEC server for handling.

4. All Random Offloading (ARO) scheme. In the ARO scheme, the tasks generated by
the vehicle users are partially offloaded to the MEC server for handling, and the
task-offloading ratio is randomly generated within a given range.

Figure 3 demonstrates the effect of varying learning rates on the TOLB system’s av-
erage cost. In DRL, the learning rate critically influences convergence; very high rates
can destabilize the algorithm and hinder convergence, whereas very low rates slow con-
vergence, potentially leading to suboptimal solutions. Typically, the actor and critic net-
works have identical learning rates. At a learning rate of 1 × 10−4, the system’s average
cost stabilizes over iterations but converges more gradually, which is attributed to the
slow neural network updates necessitated by the lower learning rate. A learning rate of
1 × 10−3 achieves faster convergence and attains the global optimum. However, a rate
of 1 × 10−2, while leading to rapid convergence, fails to reach the optimum achieved at
1 × 10−3, suggesting that very high rates may bypass the global optimum, thus compro-
mising algorithm performance. Therefore, a learning rate of L = 1 × 10−3 was used for all
the subsequent experiments in this paper.

Figure 4 depicts the changes in the average cost of the system across different schemes.
The figure shows that the average system costs of AEO and ARO remain constant as the
number of iterations increases due to the unchanging task-offloading pattern. TD3-TR
and TOLB outperform DDPG-TR in terms of convergence. This is because TD3-TR and
TOLB employ the TD3 algorithm, which is an Upgraded version of the DDPG algorithm,
to generate task-offloading and resource allocation decisions. TOLB considers edge server
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loads and uses edge collaboration to execute tasks on the MEC server. TOLB uses edge
collaboration to execute tasks, and in the case of overloaded MEC servers, tasks can be
moved to other MEC servers for handling, reducing the task delay and hence the average
cost of the system, while TD3-TR cannot avoid the delay caused by the high load on MEC
servers. TD3-TR cannot avoid the large waiting latency due to the high load on MEC
servers. The experiments confirm the effectiveness of the TOLB system, where the average
cost of the system with the TOLB scheme is reduced by 7.2%, 11.4%, 52.7%, and 61.1%
compared to TD3-TR, DDPG-TR, AEO, and ARO, respectively.
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Figure 5 illustrates how the average cost of the system changes as the number of
vehicles increases in different schemes. The figure shows that the average system cost
increases as the number of vehicles increases in all five scenarios. At the beginning of the
rise in vehicle number, due to the lack of good offloading strategies, the average cost of
the system with AEO and ARO is higher than that of other strategies, and the average cost
of the system with AEO is lower than that of ARO. With increasing numbers of vehicles,
there are more and more tasks that need to be offloaded from the system, and the resources
of the MEC servers become increasingly strained. TOLB can solve the problem of server
resource constraints through edge collaboration, which solves the problem of insufficient
server resources, so the upward trajectory of the average cost of the system in TOLB is
slower than that of TD3-TR and DDPG-TR, and the average cost of the system in TOLB is
the smallest.



Electronics 2024, 13, 1511 14 of 18

Electronics 2024, 13, x FOR PEER REVIEW 15 of 19 
 

 

resources of the MEC servers become increasingly strained. TOLB can solve the problem 

of server resource constraints through edge collaboration, which solves the problem of 

insufficient server resources, so the upward trajectory of the average cost of the system in 

TOLB is slower than that of TD3-TR and DDPG-TR, and the average cost of the system in 

TOLB is the smallest. 

 

Figure 5. The average cost of the system with different numbers of vehicles. 

Figure 6 illustrates how the average cost of the system evolves with increasing task 

data volume under various schemes. As the amount of data grows, the average system 

cost of the five schemes also increases. This is because larger data sizes demand more 

computing resources and are more difficult to handle, leading to greater increases in la-

tency and energy consumption. Among all the schemes, TOLB exhibits the smallest aver-

age cost of the system because it allocates system resources by ensuring the optimal of-

floading of the running tasks. In contrast, the average cost of the system with TD3-TR and 

DDPG-TR becomes worse as the task volume becomes larger because they do not consider 

factors such as resource constraints and load balancing, which leads to irrational resource 

allocation. AEO and ARO do not consider task offloading and resource allocation, and 

therefore, the average cost of the system with AEO and ARO is consistently higher than 

that of the other schemes, and it increases as the task volume changes, rising sharply. The 

figure clearly shows that the average cost of the system with TOLB is beFer than with 

TD3-TR, DDPG-TR, AEO, and ARO under different average task size scales. 

 

Figure 6. The average cost of the system with different average task data sizes. 

Figure 5. The average cost of the system with different numbers of vehicles.

Figure 6 illustrates how the average cost of the system evolves with increasing task
data volume under various schemes. As the amount of data grows, the average system
cost of the five schemes also increases. This is because larger data sizes demand more
computing resources and are more difficult to handle, leading to greater increases in latency
and energy consumption. Among all the schemes, TOLB exhibits the smallest average cost
of the system because it allocates system resources by ensuring the optimal offloading of
the running tasks. In contrast, the average cost of the system with TD3-TR and DDPG-TR
becomes worse as the task volume becomes larger because they do not consider factors such
as resource constraints and load balancing, which leads to irrational resource allocation.
AEO and ARO do not consider task offloading and resource allocation, and therefore, the
average cost of the system with AEO and ARO is consistently higher than that of the other
schemes, and it increases as the task volume changes, rising sharply. The figure clearly
shows that the average cost of the system with TOLB is better than with TD3-TR, DDPG-TR,
AEO, and ARO under different average task size scales.
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Figure 7 presents a comparison of the average cost of the system for different numbers
of tasks. Among the five scenarios, with a consistent increase in the average system
cost, TOLB shows the best performance. When there are few tasks, there are sufficient
resources in the system, so the average cost of the system between TOLB, TD3-TR, and
DDPG-TR is not significant. As the number of tasks gradually grows, the communication
and computation resources within the VEC system are subsequently strained, and TD3-TR,
DDPG-TR, AEO, and ARO are unable to resolve the competition for communication and
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computation resources due to the rising number of tasks, resulting in an increase in the
task waiting delay and an increase in the average cost of the system.
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Figure 8 depicts how the average cost of the system changes with the number of
MEC servers for the different scenarios. The figure shows that as the number of MEC
servers increases, the average cost of the system decreases for all five scenarios. This is
because, with the increase in the number of MEC servers, the vehicles are allocated more
computational resources, so the difference in the average cost of the system between TOLB
and TD3-TR and DDPG-TR is not much when the number of MEC servers becomes more.
AEO and ARO also have a decrease in the average cost of the system due to the increase in
computational resources. And since AEO offloads all the tasks to the MEC servers, the task
execution latency of AEO is smaller than the task execution latency of ARO, which results
in the average cost of the system with AEO being lower than the average cost of the system
with ARO.
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Figure 9 illustrates the comparison of the average cost of the system with the five
schemes with different MEC server computing power. This figure shows that AEO leads to
the largest average cost of the system and the slowest rate of average system cost reduction,
which is due to the fact that task offloading using TOLB, TD3-TR, DDPG-TR, and ARO
considers the partial offloading of tasks, and the vehicle and MEC servers process the tasks
together, so the tasks will be executed with less latency, and the average cost of the system
will be reduced. TOLB and TD3-TR use more advanced algorithms, so the average system
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cost of TOLB and TD3-TR is lower than the average cost of the system with DDPG-TR.
TOLB considers the load balancing of MEC servers, so TOLB performs better than TD3-TR
when the MEC computational power is low. And when the MEC server computational
power is high enough, TOLB and TD3-TR perform as well as TD3-TR, which shows that the
load level of the edge servers in a VEC system has a strong influence on the performance of
the system.
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6. Summary

In this paper, we examine a multi-vehicle and multi-server environment under VEC
and propose a deep reinforcement learning-based computational offloading and load-
balancing decision-making scheme. This scheme enhances system stability by optimizing
the offloading strategy of tasks while maintaining the server load balance. Specifically, this
paper first models the dynamic interaction between the vehicle and the VEC server as an
MDP and defines the weighted sum of the delay and energy consumption from executing
the task as the system cost; then, the optimal policy is determined using the TD3-based
task-offloading and resource allocation algorithm; and finally, the server load problem is
considered, and for highly loaded servers that need to be processed for task migration, the
optimal edge server collaboration object is selected using the TOPSIS-based server selection
algorithm to achieve the minimization of the system cost under server load balancing.
Simulation experiments demonstrate that the proposed TOLB scheme significantly reduces
the task processing delay and energy consumption, decreases the likelihood of VEC server
load imbalance, and enhances system performance. However, this scheme only considers
task offloading while the vehicle is within the current RSU communication range and
ignores the situation where the vehicle enters the next RSU communication range during
task offloading and computation. Therefore, the situation where the vehicle enters the
next RSU communication area during the data transfer and waits for the return of the
computation results will be considered in future research.
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