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Abstract: The centimetre-level accuracy of Ultra-wideband (UWB) has attracted significant attention
in indoor positioning. However, the precision of UWB positioning is severely compromised by
non-line-of-sight (NLOS) conditions that arise from complex indoor environments. On the other
hand, odometry is widely applicable to wheeled robots due to its reliable short-term accuracy and
high sampling frequency, but it suffers from long-term drift. This paper proposes a tightly coupled
fusion method with a Dynamic Unscented Kalman Filter (DUKF), which utilises odometry to identify
and mitigate NLOS effects on UWB measurements. Horizontal Dilution of Precision (HDOP) was
introduced to assess the impact of geometric distribution between robots and UWB anchors on UWB
positioning accuracy. By dynamically adjusting UKF parameters based on NLOS condition, HDOP
values, and robot motion status, the proposed method achieves excellent UWB positioning results in
a severe NLOS environment, which enables UWB positioning even when only one line-of-sight (LOS)
UWB anchor is available. Experimental results under severe NLOS conditions demonstrate that the
proposed system achieves a Root Mean Square Error (RMSE) of approximately 7.5 cm.

Keywords: UWB; odometer; UKF; sensor fusion; indoor position system

1. Introduction

Various industries increasingly demand higher accuracy indoor positioning with the
advancement of technologies such as smart devices or the Internet of Things (IoT). The
Global Navigation Satellite System (GNSS), represented by the Global Position System
(GPS), faces significant challenges due to signal blockage caused by buildings, render-
ing it unsuitable for indoor positioning. In recent years, research on Indoor Positioning
Systems (IPS) has primarily been categorised into two domains: RF-based technologies
such as UWB [1], WiFi [2], and Bluetooth [3–5], and non-RF technologies such as IMU [6],
Camera [7], and LiDAR [8].

RF-based IPS strikes a balance when considering cost and positioning accuracy. While
WiFi and Bluetooth offer low costs, these methods often rely on Received Signal Strength
(RSS) fingerprinting algorithms or path loss models for positioning purposes, resulting
in accuracy typically at the meter level [9,10]. Even with convolutional neural network
(CNN)-assisted WiFi fingerprinting algorithms, as described in [11], the final localisation
error reaches 7.6 m. Some researchers have also adopted other algorithms for accuracy
improvement. For example, literature [12] claims to have achieved decimetre-level po-
sitioning accuracy through the RSSI-assisted time difference of arrival (TDoA) method.
On the other hand, UWB provides higher accuracy at decimetres or even centimetres at a
comparable cost.

RF-based IPS generally offers a wider coverage range since signals can penetrate
obstacles or utilise multipath propagation under NLOS conditions indoors, enabling the
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fulfilment of large-scale localisation requirements as demonstrated by wall-penetrating
human tracking using WiFi mentioned in reference [13]. However, RF IPS may experience
significant positioning errors in complex indoor environments due to NLOS effects. The
NLOS errors caused by walls are mitigated in the literature [14], and the experimental data
in the paper show that factors such as the number of walls that the UWB signal passes
through and the material of the walls can lead to several decimetre errors in the UWB
range. Even after the mitigation algorithm in this paper, the NLOS error is still more than
ten centimetres.

Due to its wide bandwidth, UWB technology exhibits a high data transmission rate.
It commonly employs nanosecond-level pulse signals for communication, ensuring low
energy consumption and providing centimetre-level accuracy with high multipath res-
olution [15]. Consequently, UWB has emerged as a prominent research focus for future
endeavours in achieving precise indoor positioning. The prevailing positioning algorithms
employed in UWB encompass Time of Arrival (TOA), Time Difference of Arrival (TDOA),
and Angle of Arrival (AOA). These algorithms primarily measure the signal’s time of flight
(TOF) to determine the distance between the tag and fixed anchor points [16]. However, it
is crucial to acknowledge that even a minute error as small as one nanosecond can result in
an amplified ranging error of up to 30 cm due to multiplying TOF by the speed of light [17].
Moreover, obstacles such as walls, furniture, or moving individuals in indoor environments
may impede LOS communication within UWB systems, leading to NLOS errors. The NLOS
ranging error due to human shading is around 30 cm, while the NLOS error due to concrete
walls can be more than 1 m. Ranging values with NLOS errors lead to larger positioning
errors when calculating the coordinate points. Therefore, identifying and mitigating NLOS
errors represents a significant area of interest within UWB IPS research.

Previous literature has generally categorised the handling of this issue into three cate-
gories. The first category involves identifying and mitigating NLOS effects by analysing
variations in distance measurements. In reference [18], equality-constrained Taylor series
robust least squares suppress NLOS residuals, achieving positioning accuracy of around
30 centimetres in complex environments. The second category focuses on channel impulse
responses (CIR), where the main principle is that under LOS conditions, the energy of the
first path arrival signal is significantly higher than that of other paths, while this differ-
ence decreases under NLOS conditions. AI algorithms have significantly assisted feature
extraction and classification for LOS/NLOS scenarios. Reference [19] utilises a support
vector machine (SVM) to achieve a recognition accuracy rate of 92% for NLOS identifica-
tion based on hundreds of real training data sets. Similarly, reference [20] demonstrates
that CNN algorithms can achieve over 90% accuracy in directly processing CIR data for
NLOS identification. Deep learning techniques [21] are also suitable for classifying UWB
channel conditions, as they automatically extract features from raw data without requiring
manual feature extraction [22,23]. The final category involves utilising other sensors to
identify and mitigate NLOS effects. Previous researchers have conducted extensive studies
on integrating IMU [24,25], cameraa [26], and LiDAR [27,28] with UWB technology for
indoor positioning systems. Those studies have some drawbacks. Either the algorithms are
complicated and computationally expensive, or the hardware costs are high. Therefore, this
paper aims to achieve centimetre-level positioning through a simple, low-cost algorithm
for the fusion of UWB and wheeled odometers.

Wheeled odometers are widely used in indoor AGVs (Automatic Guided Vehicles),
enabling independent calculation of the robot’s coordinates and motion status. It has a
low cost and a simple structure, making it easy to maintain. With the development of
optoelectronic technology, the accuracy of wheeled odometers has been greatly improved.
Based on the advantages of high accuracy in a short time, low cost, and wide application
of odometers, this paper identifies and mitigates UWB NLOS errors by fusion with wheel
odometry. The most prevalent fusion algorithms in multi-sensor systems encompass the
Kalman filter (KF) [29], the extended Kalman filter (EKF) [30,31], the unscented Kalman
filter (UKF) [32,33], and the particle filter (PF) [34]. KF is a fundamental fusion technique
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typically suitable for linear systems but exhibits subpar performance in nonlinear systems.
Extended algorithms such as EKF and UKF have been proposed to address nonlinear
systems. EKF approximates nonlinear systems using Taylor series expansion, which intro-
duces errors due to linearisation. UKF approximates nonlinear systems through unscented
transformation (UT) by Sigma points. When dealing with highly nonlinear problems, UKF
outperforms EKF. At the present stage, various research studies are being conducted on
UKF. For example, in the literature [35], an innovative orthogonality-based robust UKF
(IO-RUKF) is proposed to achieve better performance than UKF by introducing new robust
factors. Meanwhile, a new Cubature Kalman Filter (CKF) has also been proposed, claiming
to have a lower computational load than the UKF and a more stable and accurate ability to
process high-dimensional data [36]. PF has a broader range of applications as it simulates
the probability distribution of a system utilising a set of random particles and can handle
both linear and nonlinear systems. However, given that the system’s complexity increases
along with the number of particles involved, PF necessitates significant computational
resources and may be limited in its application on small, low-cost devices. Considering all
factors, we adopt UKF for fusing UWB and wheel odometry in this paper.

The traditional NLOS identification methods, especially the algorithms for CIR anal-
ysis, are usually complicated and computationally intensive. However, the algorithm
proposed in this paper only needs to analyse the outliers of the ranging values to achieve
the identification of NLOS, which is a simple and reliable algorithm. In the research on mit-
igating NLOS errors, many previous studies, such as experiments in literature [36,37], were
conducted in a milder NLOS environment. At the same time, the method proposed in this
paper is validated in a more demanding NLOS environment, and better centimetre-level
positioning can be obtained. The main contributions of this paper are as follows:

• Propose a simple method to identify and mitigate the NLOS effects on UWB-ranging
values, assisted by odometry data.

• Propose a DUKF fusion method that dynamically adjusts the UKF based on NLOS,
HDOP, and robot motion states to achieve more accurate localisation.

• Compared with previous studies, the experimental environment designed in this
paper is harsher for the fusion system of UWB and the odometer, which is better for
verifying the accuracy and robustness of the system.

The organisation of this paper is as follows: the second part introduces algorithms,
encompassing fusion algorithms and tightly coupled frameworks; the third part presents
experimental design and result analysis; the fourth part entails a discussion; and finally,
there are conclusions of this paper along with future research plans.

2. Methods

Some studies have used simpler, loosely coupled algorithms for the fusion of UWB
and other sensors, but such algorithms require each subsystem to compute the robot’s posi-
tion independently [29]. In a strong NLOS environment, accurate positioning information
becomes challenging due to limited LOS distance measurements from the UWB system.
The accuracy of IPS based on loose coupling will also be significantly affected by inaccurate
UWB positioning. Conversely, tightly coupled integration utilises raw measurement data
from both subsystems as inputs and employs fusion algorithms to calculate the system’s
coordinates and pose. Tightly coupled integration processes data early, improving com-
plexity and accuracy compared to loose coupling. In complex environments, tight coupling
accuracy is better than loose coupling [36]. The tight coupling algorithm adopted in this
paper is shown in Figure 1 below.
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The UWB system provides distance measurements from the robot to the four anchor
points, while the wheeled odometer calculates information about the robot’s motion and
position. The odometer position can be used to assist in calculating the HDOP value of the
UWB system and the distance to the four UWB anchor points. Specifically, HDOP is a ratio
factor that reflects the effect of the geometrical relationship between the position of the
anchor point and the tag in the UWB system and its accuracy. The final positioning error
is obtained by multiplying the base positioning error with the HDOP value. Ideally, the
HDOP value is small, but if the HDOP value is large, it means that the UWB system is not
well placed, which increases the error and reduces the accuracy. The distances calculated
from the UWB ranging values and the odometer positions can be used to identify and
mitigate the NLOS errors of the UWB. Finally, the DUKF algorithm proposed in this paper
can obtain optimised positioning information. The algorithm illustrated in Figure 1 consists
of three main parts: NLOS identification and mitigation, computation of HDOP values,
and DUKF fusion of all data to output robot coordinates. These three parts are explained
separately in the following.

2.1. NLOS Identification and Mitigation

When UWB is affected by NLOS, a positive error in the corresponding distance
measurement is introduced. Wheel odometry can provide high-frequency outputs of
the robot’s speed and direction, which can be used to determine the robot’s position.
Identification and mitigation of NLOS can be achieved by comparing the distance of the
odometer coordinates to the UWB anchor point and the corresponding measured distance
of the UWB.

abs(∆e) = abs(dOdometer − dUWB)

{
< Threshold1 → LOS
≥ Threshold1 → NLOS

(1)

In Equation (1), the difference (∆e) between the distance between the odometry-
provided position information and the fixed anchor points of UWB (dOdometer) and the
UWB measured range (dUWB) can be used to identify NLOS. Ideally, ∆e should be equal to
zero, but cumulative errors in odometry cause ∆e changes over time. Nevertheless, ranging
errors caused by NLOS can be several tens of centimetres or even meters, ∆e can still serve
as an effective basis for identifying NLOS.
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Relying solely on this method for NLOS identification is not accurate enough; therefore,
we apply the sliding window algorithm proposed in previous research [38] to ∆e. If sudden
changes or outliers occur within ∆e, it indicates that the current UWB distance measurement
is affected by NLOS. When the window size is k, NLOS can be determined by Equation (2).

Var(∆en−k, ∆en−k+1 . . . ∆en)

{
< Threshold2 → LOS
≥ Threshold2 → NLOS

(2)

If the UWB range value at a particular time is identified as containing NLOS by two
judgment conditions, then the range value is judged to have suffered from the effect of
NLOS error. By combining these two criteria for judgment, NLOS can be identified more
accurately. The impact of the NLOS error is much larger than the cumulative error of the
odometer. Thereby, identified range values from an anchor point containing NLOS errors
are replaced directly with distances between odometer positions and this anchor point.
This method improves accuracy in updating measurement values using UKF.

2.2. HDOP

Similar to GPS, the accuracy of UWB systems is influenced by the distribution of
anchor points and their geometric relationship with the tag. In this paper, which focuses
on two-dimensional plane positioning using a wheeled robot, HDOP can be utilised to
quantify measurement accuracy at specific locations.

If there are n fixed anchors in the UWB system, the anchor point coordinates are (xi,
yi) i ∈ {0,1,2,. . ., n− 1}, while the tag coordinates are (x, y), with a distance of di between
them. The unit line-of-sight vector (ai, bi) for anchor point i can be obtained from Equation
(3) below.

ai =
xi − x

di
, bi =

yi − y
di

(3)

H =


a0 b0
a1 b1

. . . . . .
an−1 bn−1

 (4)

The unit line-of-sight vectors of all anchors can form the observation matrix H
(Equations (4)), and the covariance matrix Q is represented by Equation (5). As HDOP is
the horizontal component of the Q matrix, it can be expressed by Equation (6).

Q =
(

HT H
)−1

(5)

HDOP =
√

Q11 + Q22 (6)

In order to prevent UWB NLOS errors from affecting the accuracy of HDOP, the
robot’s position calculated by the odometer is used instead of the tag position when
calculating HDOP.

2.3. UKF

UKF is an extension of KF, mainly used to deal with nonlinear systems. Unlike EKF’s
method of linearising nonlinear systems, UKF is an approximate nonlinear system based on
the UT of Sigma points, avoiding complex Jacobian matrix calculations [39] and the errors
introduced by linearisation. According to the literature [32], the accuracy of EKF can reach
the first order of the Taylor series, while the accuracy of UKF can reach the third order of
the Taylor series. The following equation describes the standard UKF calculation process.

Step 1: Set the initial value of UKF:

X̂0 = E(X0) (7)
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P0 = E
[
(X− X0)(X− X0)

T
]

(8)

The X̂0 is the initial state estimation vector, P0 is the initial covariance matrix.
Step 2: Calculate Sigma points:

X(0)
k = x̂k (9)

X(i)
k = x̂k + (−1)i

√
(n + λ)Pki

f or i = 1, 2, . . . , 2n (10)

The corresponding weights are:

W(m)
0 =

λ

n + λ
(11)

W(c)
0 =

λ

n + λ
+
(

1− α2 + β
)

(12)

W(m)
i = W(c)

i =
1

2(n + λ)
f or i = 1, . . . , 2n (13)

λ = α2(n + κ)− n (14)

where n is the dimension of the state vector, α, β, and κ are used to adjust the distribution
and weight of Sigma points.

Step 3: Sigma point propagation:

X(i)
k = f

(
X(i)

k−1, uk

)
(15)

Sigma points spread through the state transition function f, uk is the control input.
Step 4: Predictions:
The predicted values of the state vector (x̂−k ) and covariance matrix (P−k ) can be

calculated using Sigma points:

x̂−k =
2n

∑
i=0

w(i)
m X(i)

k (16)

P−k =
2n

∑
i=0

w(i)
c

[
X(i)

k − x̂−k
][

X(i)
k − x̂−k

]T
+ Q (17)

where w(i)
m represents the weight of the mean, w(i)

c represents the weight of covariance, and
Q is the process noise covariance.

Step 5: Update:
Sigma points propagate through observational models.

Z(i)
k = h

(
X(i)

k

)
(18)

h is the observational model.
Calculate the prediction and covariance of the observations:

ŷk =
2n

∑
i=0

w(i)
m Z(i)

k (19)

Sk =
2n

∑
i=0

w(i)
c

[
Z(i)

k − ŷk

][
Z(i)

k − ŷk

]T
+ R (20)
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R is the observed noise covariance.
Calculate the Kalman gain:

Kk = PxyS−1
k (21)

Pxy =
2n

∑
i=0

w(i)
c

[
X(i)

k − x̂−k
][

Z(i)
k − ŷk

]T
(22)

Update state vector and covariance.

x̂k = x̂−k + Kk(yk − ŷk) (23)

Pk = P−k − KkSkKT
k (24)

Following the iterative process described above, UKF can effectively handle systems
with strong nonlinear characteristics. The parameters α, κ, β, Q, and R in the given equation
play a crucial role in determining the performance of UKF. Among these parameters, α
controls the diffusion level of Sigma points and is typically assigned a small value such
as 1× 10−3. κ is used to adjust the weight distribution of Sigma points and is usually set
to 0 in practical experiments. Additionally, a parameter β influences the characteristics of
state distribution when calculating the mean weight; for Gaussian distributed states, β is
commonly set to 2.

In the fusion IPS of the UWB and odometer, Q and R affect the degree of dependence
of the fusion system on the two subsystems. Especially in practical applications, the two
subsystems will change due to environmental factors or changes in the robot’s state. Setting
Q and R to a fixed value will seriously affect the performance of UKF. In this paper, the Q
and R of UKF were dynamically adjusted by considering the NLOS and HDOP values of
UWB and the motion state of the robot.

3. Experimental Design and Results
3.1. Experimental Equipment and Environment

The UWB experiment employs the DW1000 chips (Figure 2a) module from Decawave,
which utilises the two-way ranging (TWR) method to measure the distance between the tag
and anchor. Based on real measurements, it has been determined that this module operates
at a sampling frequency of 3 Hz, providing a ranging accuracy within 10 cm under LOS con-
ditions. The wheel odometry relies on turtlebot2’s built-in odometer (Figure 2b), operating
at a sampling frequency of 20 Hz. Systematic and random errors are two primary sources of
error in wheel odometry. Systematic errors arising from slight differences in wheel diameter
and friction coefficient variations led to accumulated drift during positioning experiments.
The random error resulted from wheel slippage and uneven surfaces during movement.
The experimental trials were conducted on the sixth floor of UTS building 11, as shown in
Figure 2c. The test site featured rough and even carpeting on the ground surface, effectively
mitigating random errors associated with motion for the wheel odometry system. The
UWB system is running on a Windows computer, and the odometer is running on Ubuntu
on another computer. The two sets of data are time synchronised by the system time to
validate the fusion algorithm proposed in this paper.
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reference path.

The experimental map and robot trajectory are depicted in Figure 2d. The four yellow
boxes in this figure correspond to the positions of UWB anchors (Anchor 0, 1, 2, 3) with
coordinates (8.7, 5.1), (8.91, 7.4), (24.8, 6.13), and (24.8, 8.99), and the height of the anchors
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are all 1.87 m. The orange solid line represents the reference path of the robot’s movement,
and the red dots indicate its initial and final position. The robot starts from its initial
position and moves to a U-turn point represented by a purple dot before returning to its
starting point again. A UWB tag is installed on the robot; however, due to obstructions
caused by walls during robot motion, some anchor measurements may experience NLOS
errors. Within the region outlined by red dashed lines in the figure, the signal from Anchor
1 is obstructed by a cabinet, whereas walls block signals from Anchors 2 and 3. As such,
only Anchor 0 remains within the LOS state in this area. Three LOS anchors exist at both
corridor ends, indicated by green dashed lines. In the middle corridor enclosed within
the blue dashed lines region, Anchors 0 and 2 remain within the LOS state while walls
block signals from Anchors 1 and 3. The UWB system necessitates adaptive switching
between environments with one, two, and three LOS anchors in this experimental setup.
This environment significantly challenges the accuracy and stability of the proposed DUKF.
The different LOS regions are numbered from left to right, as shown in Figure 2d. Table 1
below clearly shows which anchors are in LOS in different areas.

Table 1. LOS anchors in different areas.

Area 1 2 3 4 5 6

LOS Anchors 0 and 1 0 0 and 1 0, 1, and 2 0 and 2 0, 2, and 3

3.2. Experiment Results

Figure 3 below shows the trajectory plot using raw data from UWB and odometry.
The red dots represent the coordinates of the tags calculated using the least squares method
from the raw UWB data containing the NLOS errors. It shows the significant impact of
NLOS errors on the UWB system’. Due to NLOS errors, the overall trajectory deviates
from the reference path. The NLOS also increases measurement noise, resulting in more
dispersed localisation points. In this scenario, the accuracy and precision of the UWB
system are poor. The maximum error exceeds 6 m, and the RMSE surpasses 80 cm, making
it difficult to meet indoor positioning requirements.
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On the other hand, the green trajectory represents the original path plotted using
odometry data. It can be observed that initially, at the early stages of motion, the green
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trajectory closely aligns with the reference path. However, as the distance travelled and the
number of turns increase for odometry measurements, there is a gradual deviation from
the reference path. This deviation reaches a maximum value of 1.093 m when it reaches
the U-turn point. The average error and RMSE for odometry are over 20 cm. Although
odometry also suffers from cumulative errors, it can still serve as an auxiliary means to
identify which anchor point’s ranging value in the UWB system has been affected by NLOS
errors, as shown in Figure 4.
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The raw ranging values (dn_UWB, n = 0, 1, 2, 3) of the four UWB anchors are depicted
in Figure 4 with four blue lines. It can be observed that the ranging value of Anchor 0
remains smooth and mostly unaffected by NLOS conditions. However, the remaining
three anchors experience varying degrees of influence from NLOS during robot movement,
leading to significant fluctuations in measured distances. Both Anchor 1 and Anchor 3
even lose data when the signal is blocked by a multi-wall. The data enclosed within the red
box corresponds to situations where sudden pedestrian presence pauses robot movement
temporarily. Furthermore, when the robot resumes its motion, NLOS occur as pedestrians
pass through Anchors 0 and 1; this can also be observed from the fluctuating data in
Figure 4.

The green line in the diagram represents the distance between the anchor point
and the robot coordinates provided by the odometer (dn_Odometer, n = 0, 1, 2, 3). The
orange line in the figure represents the difference (en) between dn_Odometer and dn_UWB.
It can be observed from the graph that when UWB is affected by NLOS, en exhibits a
significant increase with pronounced fluctuations. By considering the absolute value of en
and employing the previously studied sliding window method, NLOS can be accurately
identified. Under NLOS conditions, en much smaller compared to NLOS errors. Therefore,
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this study mitigates NLOS effects by substituting dn_UWB contains NLOS errors with
corresponding dn_Odometer values.

According to the robot’s position provided by the odometry, the HDOP value of the
UWB system can be calculated. The UWB data after NLOS mitigation is used as observation
input for UKF, with a noise covariance matrix R = diag[r0, r1, r2, r3]. According to the
values of en and HDOP dynamically adjusts R in UKF. The corresponding rn for range
measurements with NLOS errors can be calculated by Equation (25).

rn =
abs(en)

var
× HDOP (25)

where var is the threshold in the sliding window identification NLOS algorithm, which
changes according to different environments.

The state vector of the UKF system is X = [x,y,θ], where (x,y) represents the coordinates
of the robot and θ is the heading angle. For this experiment, different Q values are set based
on the robot’s motion state. The robot’s coordinates and heading angle remain constant
when stationary, so the Q = diag [0, 0, 0]. During straight-line movement, the odometer
coordinates are affected by more noise, and the heading angle is not affected as significantly.
It is better to increase the values of x and y in Q and keep the values of θ at a small number,
so set Q = diag [0.01, 0.01, 0.0001]. On the contrary, if the robot is in a turn, Q is set to diag
[0.0001, 0.0001, 0.01]. By employing this fusion algorithm called DUKF, the fused trajectory
of the system is shown in Figure 5.
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Figure 5. Result of DUKF (magenta) and areas with pedestrian interference (red box).

The magenta line in Figure 5 represents the robot trajectory output through the DUKF
algorithm, demonstrating its proximity to the reference path. Fusion with DUKF has
significantly enhanced positioning accuracy compared to UWB and odometry, as evidenced
by specific data in Table 2.

Table 2. PositionError.

UWB-Only Odometer DUKF

Max (m) 6.708 1.093 0.342
Mean (m) 1.484 0.221 0.085
RMSE (m) 0.835 0.296 0.075

Figure 5 demonstrates the effective mitigation of harsh NLOS interference on the
UWB system by the DUKF algorithm, resulting in optimised positioning accuracy and
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precision. A comparison with the odometer raw trajectory in Figure 3 shows a notable
reduction in cumulative errors related to total mileage and direction of motion. The
data presented in Table 2 indicates that under strong NLOS conditions, UWB positioning
accuracy has degraded to unacceptable levels. The overall accuracy of the odometers
exceeds expectations and can achieve an RMSE of around 0.3 m over long run times.

The DUKF algorithm significantly improved positioning accuracy, with an RMSE
of 0.075 m and a mean error of 0.085 m, achieving the UWB system’s claim for a 10 cm
positioning error under LOS conditions. The result demonstrated that the DUKF algorithm
can achieve robust and highly accurate positioning in complex indoor environments.

4. Discussion

The data in Table 2 also reveals that DUKF still exhibits a maximum positioning error
of 30 cm on the left side of the trajectory when the robot makes a right-angle turn to return
to the ending point. In this area, there is only one valid LOS anchor point for UWB, and
the odometry system also experiences a significant decrease in motion accuracy over long
distances. Consequently, both subsystems’ observations and predictions contain substantial
errors, indicating reduced accuracy in the final segment of the trajectory as the robot moves
along the Y-axis during its return journey. The red boxes marked trajectory in Figure 5
represent a scenario explained in Figure 4 where the sudden appearance of pedestrians
caused robot stoppage, and NLOS occurred for Anchors 0 and 1. Only Anchor2 remained
in the LOS state for the UWB system during this time. It can be observed that the position
result of DUKF was a brief deviation from the reference path at this moment, but as soon
as the pedestrian obstruction disappeared, it gradually approached closer to the reference
path again. Based on these two scenarios above, it can be concluded that even when
applying the DUKF algorithm, at least one LOS UWB anchor point is necessary to ensure
the system’s positioning accuracy.

Table 3 below summarises recent research on combining UWB with other sensors to
form an IPS. The comparison reveals the advantages of the fusion system in this research.

Table 3. Comparison with other methods.

Reference Sensors Hardware Cost LOS/NLOS Accuracy (cm)

[40] Visual, Inertial, and UWB High Moderate NLOS RMSE: Over 20
[41] UWB, IMU Low Mild NLOS RMSE: 7.58
[42] UWB, IMU Low LOS RMSE: 4.0
[37] UWB, IMU, Odometer, LiDAR High Mild NLOS RMSE: 7–9
[43] LiDAR, UWB High LOS RMSE: 14
[44] UWB, IMU Low Mild NLOS Mean error: 12
[45] Visual, UWB High LOS RMSE: 20

DUKF UWB, Odometer Low Harsh NLOS RMSE: 7.5

In Table 3, it is evident that certain studies have achieved high positioning accuracy in
UWB fusion systems, as demonstrated by references [37,41,42], all of which have accom-
plished positioning accuracy within 10 cm. However, these experiments were conducted
primarily in LOS or mildly NLOS environments. For example, in literature [37], the NLOS
of the UWB system is generated by the occlusion of the sparse plants in the greenhouse,
and from the experimental results, it can also be seen that the system can achieve a posi-
tioning accuracy of about 15 cm when only using UWB, which also proves that UWB has a
relatively mild effect on NLOS. Conversely, alternative sensors such as vision and LiDAR
escalate hardware costs and fail to provide higher positioning accuracy comparable to
UWB-only IPS. Consequently, some studies indicate decreased positioning accuracy when
these sensors are integrated. For instance, references [40,45] reveal that a UWB system
fused with visual sensors achieves an approximate positioning accuracy of 20 cm. Thus,
the strength of this study lies in utilising cost-effective sensors to achieve centimetre-level
positioning accuracy even under harsh NLOS conditions.
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5. Conclusions

The present research proposes a tightly coupled architecture-based DUKF algorithm
fusion of UWB and wheel odometry to form an IPS. This method offers the advantages of
cost-effectiveness, high accuracy, and robustness without analysing UWB’s CIR characteris-
tics or establishing error models, making it suitable for diverse indoor environments. The
design of this validation experiment is highly rigorous, considering not only the NLOS state
of some UWB anchors caused by wall obstructions but also interferences from a sudden
human presence on both the odometry and UWB systems. The experimental scenarios
meticulously consider real-life environmental factors, including a scenario with only one
LOS anchor point. In this intricate and dynamic experimental setting, the proposed DUKF
system achieved an impressive RMSE of only 0.075 m and an average error of 0.085 m,
achieving stable robot localisation at centimetre-level accuracy. Future research plans will
integrate sensors such as cameras or LiDAR into the system to enable mapping, obstacle
recognition, collision avoidance, and path planning while concurrently maintaining precise
positioning accuracy at the centimetre level.
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