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Abstract: In recent decades, with the ever-growing scale of video data, near-duplicate videos continue
to emerge. Data quality issues caused by near-duplicate videos are becoming more and more
prominent, which has affected the application of normal videos. Although current studies on
near-duplicate video detection can help uncover data quality issues for videos, they still lack a
process of automatic merging for the video data represented by high-dimensional features, which
makes it difficult to automatically clean the near-duplicate videos to improve data quality for video
datasets. At present, there are few studies on near-duplicate video data cleaning. The existing
studies have the sensitive problems of video data orderliness and initial clustering centers under a
condition that prior distribution is unknown, which seriously affects the accuracy of near-duplicate
video data cleaning. To address the above issues, an automatic near-duplicate video data cleaning
method based on a consistent feature hash ring is proposed in this paper. First, a residual network
with convolutional block attention modules, a long short-term memory deep network, and an
attention model are integrated to construct an RCLA deep network with the multi-head attention
mechanism to extract spatiotemporal features of video data. Then, a consistent feature hash ring is
constructed, which can effectively alleviate the sensitivity of video data orderliness while providing a
condition of near-duplicate video merging. To reduce the sensitivity of the initial cluster centers to the
results of near-duplicate video cleansing, an optimized feature distance-means clustering algorithm
is constructed by utilizing a mountain peak function on a consistent feature hash ring, which can
implement automatic cleaning of near-duplicate video data. Finally, experiments are conducted based
on a commonly used dataset named CC_WEB_VIDEO and a coal mining video dataset. Compared
with some existing studies, simulation results demonstrate the performance of the proposed method.

Keywords: video cleaning; deep learning; consistent feature hash ring; feature distance means;
mountain peak function; multi-head attention mechanism; near-duplicate videos

1. Introduction

In recent years, with the innovative progress of video editing, 5G communication, and
other related technologies, the popularity of video-related applications and services has led
to the continuous expansion of the scale of video data, which shows a continuous exponen-
tial growth trend [1]. Take short videos as an example—the data from iiMedia Research
show that the scale of short video users in China has an obvious growth momentum, which
exceeded 700 million in 2020. These users deliver vivid and diverse information resources
through video creation, video sharing, and video recommendations to enrich daily lives by
using short video platforms.

In fact, as the scale of video data increases, many similar videos continue to emerge
after video editing, with a new version of the modified original reissued and other op-
erations for the videos, which are also referred to as near-duplicate videos (NDVs) [2].
In [3], near-duplicate videos are defined as identical or approximately identical videos
that are close to each other and hard to distinguish but are different in some detail. In
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general, near-duplicate videos are derived from the original video, which not only illegally
infringes upon the copyright of the video producer [4] but also affects the data quality of
video datasets. For example, Liu et al. [5] use 24 keywords to search for videos on common
websites of YouTube, Yahoo! Video, and Google Videos, and the results show that there
are a lot of near-duplicate videos on the aforementioned websites. In individual cases, the
redundancy can reach 93%. These near-duplicate videos will not only cause copyright
issues and affect normal applications of video surveillance, video recommendation, etc.
but also significantly reduce the data quality of video datasets, making the maintenance
and management of video data more and more challenging. At present, some salient
problems caused by near-duplicate videos have obtained increasing attention in academia
and industry.

From the perspective of video data quality [6], a great deal of attention is paid to the
overall quality of the video dataset, and stress on the degree of data consistency, data cor-
rectness, data completeness, and data minimization is satisfied in the information systems.
The emergence of near-duplicate videos will reduce the degree of data consistency and
minimization for video datasets. These near-duplicate videos can be taken to be a kind of
dirty data, which have wide coverage and rich and diverse forms. Concretely, regardless
of the stage of video collection, video integration, or video processing, it is possible to
generate near-duplicate videos. For instance, in the video collection stage, they can be
collected from different angles within the same scene; in the video integration stage, there
may be near-duplicate videos with different formats and video lengths from different data
sources; in the video processing stage, video copy, video editing, and other operations
will produce mass near-duplicate videos. Studies on near-duplicate video detection can
help us discover hidden near-duplicate videos in video datasets. Currently, various kinds
of methodologies have been proposed in the literature, and the implementation process
mainly includes feature extraction, feature signature, and signature index. In either of these
methodologies, feature extraction can be regarded as a key component of near-duplicate
video detection. From the perspective of video feature representation, near-duplicate video
detection methodologies can be categorized into hand-crafted feature-based methodology
and high-level feature-based methodology [7–9]. Nevertheless, near-duplicate video detec-
tion methodologies can only identify the near-duplicate videos in a video dataset [10,11]
that lacks a process of feature sorting and automatic merging for the video data represented
by high-dimensional features. Therefore, it is very challenging for them to automatically
clean up redundant near-duplicate videos to reduce video copyright infringement and
related issues caused by video copying, video editing, and other manual operations.

At present, data cleaning modeling techniques are important technical ways to effec-
tively reduce near-duplicate data and improve data quality. By using this kind of modeling
technique, near-duplicate data existing in the datasets can be automatically cleaned, so the
datasets meet data consistency, completeness, correctness, and minimization, and achieve
high data quality. At present, data cleaning modeling techniques have been studied more
deeply in big data cleaning [12], stream data cleaning [13], contextual data cleaning [14],
etc., which can effectively address the data quality issues at the instance layer and schema
layer. However, there is still a significant gap in research on near-duplicate video cleaning,
and there is a sensitive problem of video data orderliness and the initial clustering center
sensitive problem under a condition that prior distribution is unknown in the existing
studies, which seriously affects the accuracy of near-duplicate video cleaning.

In this paper, an automatic near-duplicate video cleaning method based on a con-
sistent feature hash ring (denoted as RCLA-HAOPFDMC) is proposed to address the
above-mentioned issues, which consists of three parts: high-dimensional feature extraction
of video data, consistent feature hash ring construction, and cluster cleaning modeling
based on a consistent feature hash ring. First, a residual network with convolutional
block attention modules, a long short-term memory (LSTM) deep network model, and
an attention model are integrated to extract temporal and spatial features from videos
by constructing a multi-head attention mechanism. Then, a consistent feature hash ring
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is constructed, which can effectively alleviate the sensitivity of video data orderliness
while providing a condition of near-duplicate video merging. Finally, to reduce the sen-
sitivity of the initial cluster centers to the results of near-duplicate video cleansing, an
optimized feature distance-means clustering algorithm is constructed by utilizing a moun-
tain peak function on a consistent feature hash ring to implement automatic cleaning of
near-duplicate videos. A commonly used dataset named CC_WEB_VIDEO [5] and a coal
mining video dataset [15] are used to confirm the practical effect of our proposed method.
The contributions are summarized as follows: (1) A novel consistent feature hash ring is
constructed, which can alleviate the sensitivity issue of video data orderliness while provid-
ing a condition of near-duplicate video merging. (2) An optimized feature distance-means
clustering algorithm is constructed by utilizing a mountain peak function on a consistent
feature hash ring to merge and clean up near-duplicate videos. (3) The method presented
in this paper is successful on the highly difficult CC_WEB_VIDEO and coal mining video
dataset where the coal mining video dataset has complex context scenes.

The following is the organizational structure of the remaining parts of this article.
In Section 2, a brief review of related works on near-duplicate video detection and data
cleaning is presented. An automatic near-duplicate video cleaning method based on a
consistent feature hash ring is proposed in Section 3. The experimental results that validate
the performance of the method are presented in Section 4. Finally, the paper is summarized
in Section 5.

2. Related Work

In this section, the previous near-duplicate video detection methodologies and im-
age/video cleaning methodologies are briefly reviewed. First, some hand-crafted feature-
based methodologies and high-dimensional feature-based methodologies for near-duplicate
video detection are examined; then, some data cleaning methodologies for image clean-
ing and video cleaning are reviewed. Finally, the shortcomings of the above-mentioned
methodologies are analyzed.

2.1. Near-Duplicate Video Detection Methodologies

In the past decade, hand-crafted features, such as SIFT, HOG, and MSER, have been
widely used for near-duplicate video detection. For example, the study in [16] adopts the
SIFT local feature to encode temporal information, generates temporal set SIFT features
by tracking SIFT, and combines local sensitive hash algorithms to detect near-duplicate
videos. Although SIFT features of a video frame can maintain invariance to rotation, scaling,
and illumination changes, as well as maintain a certain degree of affine transformation
and noise, some of the invariance of SIFT will be damaged to a certain extent during
strong camcording. Henderson et al. [17] adopt key point features from a Harris corner,
SURF, BRISK, FAST, and MSER descriptors to detect video frame duplication. This method
incorporates different local features to represent video frames but ignores the global features
and spatiotemporal features that video frames have. Zhang et al. [18] integrate Harris 3D
spatiotemporal feature and HOG/HOF global feature descriptors to detect near-duplicate
news web videos and apply the Jaccard coefficient to similarity metric; however, there exists
the issue of inefficient detection in this method. In [19], a new near-repeat video detection
system, Compound Eyes, is proposed, which combines seven hand-made features (such as
color consistency, color distribution, edge direction, motion direction, etc.) to improve the
efficiency of near-repeat video detection. However, this method is susceptible to feature
changes. The work in [3] adopts an unsupervised cluster algorithm based on temporal
and spatial key points to automatically identify and classify near-duplicate videos, but the
results of near-duplicate video detection are sensitive to initializing the cluster center.

In general, the combination of spatial and temporal features can more comprehen-
sively and accurately represent the spatiotemporal information contained in video data
than the representation of a single low-level feature; hence, the methodologies based on
spatiotemporal features can identify near-duplicate videos more accurately. However, the
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methodologies based on low-level features need to have prior knowledge, and the results
of near-duplicate video detection are easily affected by disturbances from illuminations,
occlusions, distortion, etc.

Recently, various deep network models have been utilized to detect near-duplicate
videos, and these models have much better representational capacity than the methodolo-
gies based on hand-crafted features. For instance, the study in [7] presents a survey on the
utilization of deep learning techniques and frameworks. Nie et al. [20] use a pre-trained
convolutional neural network model to extract high-dimensional features of videos, and a
simple but efficient multi-bit hash function is proposed to detect near-duplicate videos. This
is a supervised joint view hashing method, which can improve the performance of accuracy
and efficiency. However, the distribution of near-duplicate video data in the video dataset
is usually unknown in practical applications, so the application of the supervised joint
view hashing method is limited. In [21], the near-duplicate video is detected by combining
the two-stream network model of RGB and optical flow, multi-head attention, and the
Siamese network model. The limitation of this method is that it adopts a cosine distance
function to measure the similarity between every two videos, which results in relatively low
efficiency. Moreover, a neighborhood attention mechanism is integrated into an RNN-based
reconstruction scheme to capture the spatial-temporal features of videos, which is used to
detect near-duplicate videos [22]. The work in [23] uses a temporal segment network model
to detect near-duplicate video data. These above-mentioned models based on temporal
networks can detect near-duplicate videos by capturing the temporal features of videos.
In [24,25], a Parallel 3D ConvNet model and a spatiotemporal relationship neural network
model are adopted to extract spatiotemporal features to detect near-duplicate videos.

In summary, high-dimensional feature-based methodologies can achieve better perfor-
mance than hand-crafted feature-based methodologies: they can reduce the impacts of distur-
bances from illuminations, occlusions, and distortion on the model results. Near-duplicate
videos can be identified directly by either hash mapping or similarity metric, but the above-
mentioned methodologies lack a process to automatically merge data with high-dimensional
features, which makes it more difficult to clean up near-duplicate videos automatically.

2.2. Data Cleaning Methodologies

Data duplication may have the following reasons: data maintenance, manual input,
device errors, and so on [26]. Data cleaning modeling techniques are effective ways to
automatically clean and reduce near-duplicate data, which can effectively address the
shortcomings of near-duplicate video detection methodologies. Recently, the amount of
literature on the topic of data cleaning [27] has shown a rapid growth trend, and most of the
existing works are on concentrated stream data cleaning and spatiotemporal data cleaning.

In the area of stream data cleaning, for instance, reference [28] proposes a stream data
cleaning method named SCREEN, which can clean up the steam data by finding the repair
sequence with the smallest difference from input, construct an online cleaning model, and
calculate the local optimal of the data point. However, this method does not guarantee
that near-duplicate data are exactly adjacent to each other in the same sliding window.
The work in [29] proposes a streaming big data system, which is based on an efficient,
compact, and distributed data structure to maintain the necessary state for repairing data.
Additionally, it improves cleaning accuracy by supporting rule dynamics and utilizing
sliding window operations. The limitation of this method is that the fixed size of the sliding
window has a significant impact on the cleaning results. In [30], a sliding window and
K-means cluster algorithm are adopted to clean stream data, but the result of this method
is sensitive to the initialization of cluster centers.

To sum up, although methodologies of stream data cleaning can clean up the stream
data effectively, there are limitations in that the results of models are sensitive to the
fixed-size sliding window and the pre-defined initialized clustering center.

In time series data cleaning, for example, Ranjan et al. [31] unitize a k-nearest neighbor
algorithm and a sliding window prediction approach to clean time series data on a set of
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nonvolatile and volatile time series. This method can optimize the width of the sliding
window to enhance the performance, but to optimize parameters that affect performance, a
general scheme needs to be developed. In [32], a top-N keyword query processing method
is proposed, which is based on real-time entity parsing to clear datasets with duplicate
tuples. The limitation of this method is that the selection of keywords has a salient impact
on the results. The study in [33] proposes an approach of real-time data cleaning and
standardization, which clarifies the workflows of data cleaning and data reliability, and it
can be adapted to clean up near-duplicate time series data. However, this approach is not
enough to describe the details of real-time data cleaning.

Through the studies of time series data cleaning, it is found that there is a prevalence
of erroneous data in the industrial field; hence, the studies mainly focus on cleaning
the erroneous data and less on cleaning near-duplicate data. In the existing studies, k-
nearest neighbor and top-K algorithms are widely adopted to clean near-duplicate time
series data since they do not rely on prior knowledge of the distribution of time series
data. Nevertheless, the presetting of the k parameters has a significant impact on the
cleaning results.

In spatiotemporal data cleaning, taking reference [34] as an example, a probabilistic
system named Current Clean is presented, which uses a spatiotemporal probabilistic model
and a set of inferences to identify and clean stale data in the database. This probabilistic
system is applied to data cleaning with spatiotemporal features in relational databases, but
it is difficult to apply to unstructured data cleaning with high-dimensional spatiotemporal
features. To address this issue, the study in [15] proposes a method to clean up near-
duplicate videos by using locality-sensitive hashing and a sorted neighborhood algorithm.
However, in this method, it is challenging to use SIFT and SURF hand-crafted features
accurately to portray video features, and the use of a sorted neighborhood algorithm causes
a more prominent orderliness-sensitive problem of video data. The authors of [35] achieve
an improvement in the quality of the image dataset by automatically clearing minority
images using a convolutional neural network model. However, the completeness of image
datasets may be destroyed when cleaning images of the minority classes. Fu et al. [36]
propose a near-duplicate video cleaning method based on the VGG-16 deep network model
and feature distance-means clustering fusion to improve the data quality of video datasets,
which takes less account of the temporal feature representation of videos and suffers
from the initial cluster center sensitive problem under a condition that prior distribution
is unknown. Moreover, a novel content based on the video segmentation identification
scheme is proposed to reduce the mass of near-duplicate video clips [37]. H. Chen et al. [38]
utilize the similarity measurement to clean the duplicate annotations of video data in the
MSR-VTT dataset.

In summary, there are few studies on data cleaning for unstructured data with spa-
tiotemporal features, such as video and audio data, due to less consideration from the
perspective of data quality. Recently, the studies on near-duplicate video cleaning mainly
have the following issues: (1) It is more difficult to be able to arrange all near-duplicate
videos near sorting algorithms, so the accuracy of cleaning is more sensitive to the data
orderliness. (2) Utilizing the idea of clustering, video data with the most significant features
can be retained in all near-duplicate data and the rest deleted, but the setting of initial clus-
tering centers is more sensitive to cleaning results under a condition that prior distribution
is unknown.

To address these two issues, we consider constructing a novel consistent feature hash
ring based on optimizing video feature extraction to map video data to low-dimensional
space, which is used to reduce data orderliness sensitivity issues caused by data sorting
and provide a condition of near-duplicate video merging. On this basis, an optimized
feature distance-means clustering algorithm is constructed, which merges a mountain peak
function on a consistent feature hash ring to overcome the initial clustering center sensitive
problem under the condition that the prior distribution is unknown.
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3. The Proposed Method

This section describes how to utilize the proposed novel automatic near-duplicate
video cleaning method based on a consistent feature hash ring, which can automatically
clean up near-duplicate videos to improve the data quality of video datasets. It is important
to note here that the concepts of the data quality of video datasets and video quality are
different. Normally, video quality is concerned with the clarity of videos and involves
performance metrics such as resolution and frames per second. The data quality of the
video dataset is concerned with the degree to which the video dataset satisfies data consis-
tency, data completeness, data correctness, and data minimization. The goal is to remove
redundant near-duplicate videos from video datasets by the method proposed in this paper
so that the video datasets consistently maintain high data quality.

To achieve this goal, three main stages need to be accomplished: feature representa-
tions of video data, identification of near-duplicate videos, and deletion of near-duplicate
videos. It should be noted that if all identified near-duplicate videos are removed, the data
completeness and data correctness of video datasets will be affected. If only some of the
near-duplicate videos are removed, the data consistency and data minimization of video
datasets will be affected. Therefore, it is a difficult challenge to retain video data with the
most salient features to ensure the data completeness and data correctness of video datasets
while removing the rest near-duplicate video data to ensure data consistency and data
minimization of video datasets.

At present, considering the time cost of near-duplicate video cleaning, the key insight
of existing studies is to overcome the above challenges by exploiting data ordering and
clustering to retain video data with the most salient features and remove the rest of near-
duplicate videos. However, the sensitivities of cleaning effect on data orderliness and the
initial cluster center setting are major issues. Inspired by the distributed big data storage
processing, a consistent feature hash ring is constructed in this paper. The advantage
of utilizing a consistent feature hash ring is to reduce the impact of data sorting on the
cleaning results by mapping video data with high-dimensional features to a feature hash
ring while providing a condition for removing near-duplicate videos. Figure 1 outlines
our approach, which consists of three parts: high-dimensional feature extraction of videos,
construction of a consistent feature hash ring, and cleaning near-duplicate videos based on
a consistent feature hash ring. Each of these sections is explained next.
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In general, the proposed method is based on high-dimensional feature extraction from
video data, drawing on the ideas of load balancing and high scalability in big data storage
to construct a novel consistent feature hash ring. On this basis, optimizing the FD-Means
clustering algorithm to automatic cleaning of near-duplicate video data is achieved.

3.1. High-Dimensional Feature Extraction of Videos

The feature representation of video data is an important stage in the data cleaning
process of videos. Currently, several convolutional neural network models have been
adopted in the study of image and video data cleaning for feature representation of image
or video data, such as AlexNet [35], GoogleNet [35], VGG-16 [36], and ResNet50 [39]. Due
to the spatiotemporal features of video data, it is not enough to rely on the above-mentioned
convolutional neural network models for spatial feature representations of videos, and the
extracted video features are less likely to highlight the spatiotemporal features of salient
regions in video data, which will affect the accurate representation of video semantics. To
overcome such a limitation, a residual network with convolutional block attention modules
is adopted first to extract spatial features of video data. The channel attention and spatial
attention modules in these convolutional block attention modules can effectively improve
the representation capability of spatial features in the saliency region of video data. Then,
the above network and a long short-time memory model are integrated to extract the
spatiotemporal features of video data. Finally, to highlight the role of key information in
video data on the video semantic representations, an attention model based on the above
network models Is Introduced along three independent dimensions of channel, space, and
time series to construct a video spatiotemporal feature extraction model with multi-head
attention mechanism, which is named RCLA (Resnet-CBAM-LSTM-multi-head attention)
model in this paper. The concrete architecture of the RCLA model is shown in Figure 2.
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Considering the scale of data used for training and testing in this paper, several video
data training samples are first selected to input a residual network with convolutional
block attention modules. Let the size of the above video data be w × h × c × l where
w × h represents the size of a video frame, c represents the number of channels per frame,
and l represents the number of frames of the video data [40]. Before training the 34-layer
residual network, set the values of w and h to 224, and the value of c to 3. In addition,
first, fix the 7 × 7 convolutional kernel with stride 2 in the convolution layer; then, fix the
pooling window with stride 2 in the pooling layer 3 × 3 to implement the convolutional
operation and max-pooling process. During the above process, use a BatchNorm2d method
to normalize the input data and use a rectified linear units (ReLU) activation function to
alleviate the problem of gradient dispersion. Thus, a feature map F of size 56 × 56 × 3
for a video frame can be obtained. Then, input F into the middle part of the residual
network with 34 layers. This part is composed of 4 blocks, which respectively include 3, 4,
6, and 3 residual blocks, and each residual block contains a convolutional block attention
module (CBAM) [41]. In this module, the details of spatial features in a video frame can
be profiled by constructing a channel attention map Mc and a spatial attention map Ms.
Specifically, the spatial information of feature map F is aggregated by first performing
maximum pooling and average pooling operations on F, respectively, and this spatial
information is input into a multilayer perceptron (MLP) network model with 2 layers that
share the wights W0 ∈ Rc/r×c and W1 ∈ Rc×c/r (r is the reduction ratio, r is set to 16 in this
paper), respectively, so that the channel attention map Mc can be obtained by Equation (1)
and an intermediate feature map F’ is computed by Equation (2):

MC(F) = σ
(

W1(W0(Fc
avg)) + W1(W0(Fc

max))
)

(1)

F
′
= MC(F)⊗ F (2)

where σ(·) denotes the sigmoid function; the meanings of Fc
avg and Fc

max are average-pooled
features and max-pooled features, respectively; and “⊗” is used for element-by-element
multiplication.

Then, the average pooling and maximum pooling operations are performed on F
′

to generate features Fs
avg ∈ R1×h×w and Fs

max ∈ R1×h×w, respectively. On this basis, the
spatial attention map Ms is calculated by Equation (3), and the final refined feature map F

′′

can be obtained by Equation (4) as follows:

MS

(
F
′
)
= σ

(
conv

(
[Fs

avg ⊗ Fs
max]

))
(3)

F
′′
= MS

(
F
′
)
⊗ F

′
(4)

where conv(·) denotes a convolution operation.
Through the above-mentioned different residual blocks with convolutional block

attention modules, the feature vectors frc of size [512, 1] can be obtained to represent the
spatial features exhibited by video frames.

Then, the spatial features frc are input into the long short-term memory network
(LSTM) to further extract the temporal features of video data. Considering the size of
datasets used in this paper, a one-layer LSTM with N (we set N = 16 in this paper) hidden
layer nodes is employed, which consists of an input gate, a forget gate, and and output
gate. The hidden state hls

t at t moment is calculated as shown in Equation (5):

hls
t = LSTM

(
frc, Wls, hls

t−1; θls

)
(5)

where LSTM(·) denotes the formalized function of an LSTM network model; Wls denotes a
parameter matrix learned during training of the LSTM network model; hls

t−1 denotes the
hidden state at t − 1 moment; and θls denotes the hyperparameters of an LSTM network
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model. Through the output layer of an LSTM network model, the spatiotemporal features
fst of size 5 × 16 × 1 can be obtained to represent video data.

To focus on the visual features of different video frames to highlight the semantic
contents of video data, an attention module based on the above models is introduced, as
shown in Equation (6):

f = Att ( hls
t , fst ; WAtt

)
(6)

where Att(·) denotes a standard additive attention function; WAtt denotes the weight
vectors in an attention module; f denotes the semantic features of video data obtained by
using the multi-head attention mechanism, and the size is 16 × 1.

When training the RCLA model, the goal is to minimize the learning loss of each deep
neural network model. Considering the cascade relationship between each of the above
neural network models, the output of the above attention module as the input of a loss
function is used to perform optimization of an RCLA model, and the above-mentioned loss
function is constructed as shown in Equations (7) and (8):

ys = argmin(
∥∥∥yi − yj

video-seed

∥∥∥2

2
) s.t. i ∈ [1, Nv] , j ∈ [1, Nv−C] (7)

L(y′ i, yi) = −
16

∑
i=1

y′ i × log(sim(yi, ys))) (8)

where yi denotes a feature vector of the ith video data in a video dataset with Nv video
data, yj

video-seed denotes a feature vector of the jth seed video in the above video dataset,
Nv−C denotes the total number of preset seed videos, y′i denotes the label corresponding to
yi, and sim(·) denotes a function of the similarity measurement.

3.2. The Construction of a Consistent Feature Hash Ring

To efficiently identify near-duplicate video data with high-dimensional features and
reduce the impact of high-dimensional feature sorting on near-duplicate video data clean-
ing, a consistent feature hash ring is constructed, which is inspired by the use of distributed
hash tables to address the problems of load balancing and high scalability in big data
storage, as shown in Figure 3.
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Assuming that a hash function can be used to map the high-dimensional features of
all video data to a set of hash values, and the largest hash value is less than 2N , then a
consistent feature hash ring is a virtual ring constructed through this set of hash values,
and the range of hash value space of this ring is [0, 2N − 1] (hash value is a 32-bit unsigned
integer, and N = 11 is set in this paper). An entire spatial distribution of the consistent
feature hash ring is organized in a clockwise direction. The hash value at the top of this
ring as the starting point is 0, and the hash value at the first point on the left of 0 is 2N − 1,
and the hash value at the first point on the right of 0 is 1. By analogy, all the hash values
are distributed from small to large clockwise until they return to the starting point.

When constructing a consistent feature hash ring, a hash function is designed as shown
in Equation (9), which can be used to calculate the hash values corresponding to each video
and map all video data to the consistent feature hash ring.

hash(fi) = [binary(fi) + 1] mod (2N − 1) (9)

where binary(·) denotes a binary encoding function and fi denotes a high-dimensional
feature vector of the i-th video data.

By utilizing the binary function as shown in Equation (10), the high-dimensional
features of all video data can be mapped to compact binary codes, which can not only
decrease the dimensions of video features but also perform metric operations in the low-
dimensional space.

binary(fi) = MD5(∥tanh(fi)∥1) (10)

where MD5(·) denotes an encryption function; and tanh(·) is an activation function.
Specifically, a tanh(·) activation function is utilized to perform a nonlinear variation of

the video data with a high-dimensional feature. On this basis, to improve the sparsity of the
hash distribution on the consistent feature hash ring, a ↕1 norm is used to calculate a value
to represent video data. Subsequently, this value is encrypted with the MD5 encryption
algorithm and converted into a fixed-length binary code as a hash value of the video data
(the length of a binary code is set to 16 in this paper). Finally, a linear detection method is
used when storing multiple hash values to avoid the same hash addresses being preempted
by different hash values, i.e., an address is assigned by adding 1 to the back, and the
modulus of the maximum value on a consistent feature hash ring is taken as the upper
bound of the address range until there is a free address. Here, the modulo operation is to
ensure that the location found is in the effective space of 2N − 1. Thus, the i-th video data
can be mapped as video hash feature points xi on a consistent feature hash ring in the form
of two-dimensional coordinates (hash(fi), fi).

3.3. FD-Means Clustering Cleaning Optimization Algorithm with Fused Mountain Peak Function

The efficiency and accuracy of the partitioning clustering algorithm are closely related
to the selection of the initial clustering center. The FD-Means clustering algorithm [36]
randomly selects several initial cluster centers for multiple clustering and finally selects
the optimal clustering centers as the initial clustering centers. However, it requires a
large amount of calculation, and poor effect leads to the volatility of clustering results.
To address this issue, a mountain peak function is fused with the FD-Means clustering
algorithm to optimize the selection of the initial clustering centers to automatically clean
the near duplicate video data accurately.

Specifically, assuming that a set of video features S f =
{
∥f1∥2,∥f2∥2, · · · ,∥fi∥2, · · · ,∥fNv∥2

}
where fi denotes a vertical ordinate of xi and Nv denotes the total number of video
data. To select several initial clustering centers of video data, all the data samples on the
consistent feature hash ring are first divided into a finite grid, and all the cross points of a
K × K grid can be used as the candidate centroids of the clustering centers, as shown in
Equations (11) and (12):

Tinterval =
max(S f )− min(S f )

Nv
(11)
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Pic
C = min(S f ) + ic × Tinterval (12)

where Tinterval denotes the partition interval of a grid; ic denotes an index of the i-th cluster
center Vic

C , and ic ∈ [1, K]; Pic
C denotes the value of the i-th cluster center Vic

C in a grid.
Moreover, K can be determined by inequality (K − 1)2 < Tinterval ≤ K2.

Subsequently, the points with higher density in grid space are found by constructing a
mountain peak function for each cross point to calculate its peak value HVC . For example, a
peak value of the i-th cluster center Vic

C is calculated as shown in Equation (13):

Hi
VC

=
Nv

∑
i=1

exp(−
(Pic

C − ∥fi∥2)
2

2σ2 ) (13)

where σ is a constant value.
On this basis, the video hash feature points corresponding to the cross points of K

maximum peak values are selected sequentially as the initialized clustering centers on a
consistent feature hash ring, denoted as VC = {VC−1, VC−2, · · · , VC−K}.

Since the FD-Means clustering algorithm seldom considers the curse of dimensionality
when using Euclidean distance to measure the similarities between video features, a new
similarity measurement function is constructed, as shown in Equation (14):

DistVFP(fi, fj) = α ×
∣∣FD(fi, fj)

∣∣+ ∣∣hash(fi)− hash(fj)
∣∣ (14)

where α denotes a weight factor; and FD(fi, fj) denotes the Euclidean distance between
any i-th and j-th video hash feature points, as shown in Equation (15):

FD(fi, fj) =


∥f1 − f1∥2∥f1 − f2∥2 · · · ∥f1 − fm∥2
∥f2 − f1∥2∥f2 − f2∥2 · · · ∥f2 − fm∥2
...

...
. . .

...∥∥fq − f1
∥∥

2

∥∥fq − f2
∥∥

2 · · ·
∥∥fq − fm

∥∥
2

 (15)

where q and m denote the dimensions of two feature vectors.
When updating an FD-Means cluster center, the sum of distances between a video

hash feature point and other video hash feature points in a cluster is first calculated, and the
video hash feature point with the smallest sum of distances is selected as a cluster center
through iteration, as shown in Equation (16):

Dist(xi, d) = ∑
j∈d−xi

DistVFP(fi, fj) , s.t. xi ∈ d

V∗
C−i = argminDist(xi, d

) (16)

where d denotes a cluster; and Vic∗
C denotes a new cluster center after the initial cluster

center of d is updated.
When updating a cluster, the distance between the video hash feature points of the

non-cluster centers and all the cluster centers is first calculated. In the K-Means clustering
algorithm, all points of non-cluster are divided into the nearest clusters according to the
nearest neighbor principle. Unlike the K-Means clustering algorithm, the optimized FD-
Means clustering algorithm compares the distances between the video hash feature points
of non-cluster centers and all cluster centers. If the minimum distance is not less than
the given threshold δ, the video hash feature points are used as the cluster centers of new
clusters; otherwise, according to the nearest neighbor principle, they are grouped into the
nearest clusters, and the automatic clustering of video hash feature points on a consistent
hash ring is finally achieved, as shown in Equations (17) and (18):

min DistC(xi, VC; δ) = Dist(xi, VC)− δ (17)
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d∗ =
{

d ∪ xi, s.t. min DistC(xi, VC; δ) < 0
xi, otherwise

(18)

where d∗ denotes an updated cluster.
In the automatic cleaning of near-duplicate video data, all the near-duplicate videos

obtained by clustering cannot be eliminated to ensure the data consistency, complete-
ness, correctness, and minimization of a video set. Therefore, a representative video can
be retained from the near-duplicate videos, and other near-duplicate video data can be
automatically deleted to improve the video data quality.

At present, the traditional image or video data de-duplication methods tend to retain
the first detected data and remove other near-duplicate data in an ordered sequence, but
such methods are randomized at different settings of sequence length, which will lead to
fluctuations in the results of data cleaning. Hence, a video in a cluster cannot be arbitrarily
selected as a seed video or representative video to be reserved. In this paper, the video data
corresponding to the cluster centers are the representative video data to be retained, and
others in the clusters are deleted, as shown in Equation (19):

D∗ = F(VC) (19)

where F(·) denotes a mapping function between a set VC of cluster centers and a set V of
the corresponding video data and the mapping relationship is expressed as F : VC → V ,
D∗ denotes that the original video dataset is updated after the mapping function F(·).

Through the above processes, the automatic cleaning of near-duplicate video data is
finally achieved.

4. Experimental Evaluation

The extensive experiments on a commonly used dataset named CC_WEB_VIDEO
and a coal mining video dataset are conducted to evaluate the performance of RCLA-
HAOPFDMC (the proposed method in this paper) and compare them with other rep-
resentative advanced methods, such as the CBAM-Resnet [42] and BS-VGG16 [36]. All
experiments were conducted on the same machine, which had 8-Inter Xeon processors
with 2.10 GHz and a graphics card NVIDIA Corporation GP102 with 16 G memory; the
programs were implemented based on Python version 3.6.5 and PyTorch version 0.4.0.
Next, we provide a detailed explanation of the experiment and results.

4.1. Dataset and Evaluation Criteria

In this paper, the CC_WEB_VIDEO and coal mining video datasets are used to carry
out the comparative experiment of the proposed method. The CC_WEB_VIDEO dataset
contains 24 scenes and a total of 13,129 video data. This paper randomly selects 63 videos
from scenes (“The Lion Sleeps Tonight”, “Evolution of Dance”, “Folding Shirt”, “Cat
Massage”, and “ok go-here it goes again” scenes) to verify the effectiveness of the proposed
method. The coal mining video dataset includes 125 video data with 10 scenes, which are
all used to test the performance of the method presented in this paper.

We use common metrics such as accuracy, precision, recall, and F1-score to evaluate
video data cleaning in order to evaluate the performance of the method proposed in this
paper. The expression is as follows:

precision =
TP

TP + FP
(20)

Recall =
TP

TP + FN
(21)

Accuracy =
TP + TN

TP + TN + FP + FN
(22)
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F1 − score =
2 × precision × recall

precision + recall
(23)

where TP is the number of true positive samples; FN is the number of false negative samples;
FP is the number of false positive samples; and TN is the number of true negative samples.

4.2. Experimental Results and Analysis

For the CC_WEB_VIDEO and coal mining video datasets, when training the RCLA
model, the initialization of weights and bias variables is randomly generated. Moreover,
the overfitting problem is solved by the dropout function and parameter-sharing methods,
and the loss function is optimized by the Adam algorithm. Figures 4 and 5 show the weight
variable changes and training losses in CC_WEB_VIDEO and coal mine video datasets. It
can be seen from Figures 4 and 5 that the designed loss function in this paper is converged
and that the different weights in the full connection layer of the RCLA model change in the
range of −0.003 to 0.003. Moreover, Figure 4 shows that the range of different deviation
values is −0.2 to 0.2 and Figure 5 shows the range of −0.24 to 0.2. The above experimental
results show that there are no overfitting issues during the training and validation process
of the experiment.
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Since the number of hidden layers in the LSTM network model and attention size in
the attention module have a great impact on the performance of the proposed method,
the CC_WEB_VIDEO public dataset is used to evaluate the performance indicators of
different numbers of hidden layers and attention size. The experimental results are shown
in Tables 1 and 2.

Table 1. The experimental results of different parameter settings for the number of hidden layers in
the LSTM network model.

The Number of
Hidden Layers Precision Recall F1-Score Accuracy

4 0.5577 0.611 0.583 0.7
8 0.9375 0.9375 0.9375 0.95
16 0.9375 0.944 0.941 0.975
32 0.8375 0.8 0.818 0.925

Table 2. The experimental results of different parameter settings for attention size.

Attention Size Precision Recall F1-Score Accuracy

4 0.7944 0.86 0.826 0.9
8 0.8375 0.9 0.868 0.925
16 0.8819 0.944 0.912 0.95
32 0.9375 0.978 0.941 0.975
64 0.85 0.9 0.874 0.925
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It can be seen from Table 2 that it is more hidden layers do not result in higher
performance indicators. In the above experiments, the performance indicators are the
highest when the number of hidden layers is set to 16. It is considered that because of the
limited scale of video data used in the experiments when the number of hidden layers is
small, it is challenging to ensure the accuracy of video feature representation. Therefore,
all indicators are significantly lower when the number of hidden layers is 4. If there are
many hidden layers, the number of nodes in the RCLA model is large, which makes it easy
to fall into the local optimization. For example, when the number of hidden layers is 32,
all indicators are relatively low. Besides, when the parameter of attention size is set to a
small value, the method proposed in this paper focuses on portraying the local features
of a small region in a video keyframe. Since the near-duplicate video data have similar
but different visual features in the same local area, amplifying the difference in feature
representation will affect the performance of this proposed method. When the attention
size is large, there is a confusion problem with near-duplicate video recognition causing
incorrect video data cleaning. In addition, as shown in Figure 6, although the number of
hidden layers and attention size are set to be different, the loss function converges during
training, indicating no overfitting. Finally, according to the experimental results in Tables 1
and 2, the number of hidden layers and the attention size in LSTM are set to 16 and 32 in
the proposed method.

Electronics 2024, 13, x FOR PEER REVIEW 16 of 21 
 

 

incorrect video data cleaning. In addition, as shown in Figure 6, although the number of 
hidden layers and attention size are set to be different, the loss function converges during 
training, indicating no overfitting. Finally, according to the experimental results in Tables 
1 and 2, the number of hidden layers and the attention size in LSTM are set to 16 and 32 
in the proposed method. 

  

Figure 6. The visualization of loss variation under different parameter settings during training. 

In addition, to evaluate the performance of the RCLA model for feature representa-
tion of video data, the softmax function is used to achieve the comparison of different 
feature representation models through the detection of near-duplicate video data. The ex-
perimental results are shown in Table 3. 

Table 3. The experimental results of different parameter settings for attention size on 
CC_WEB_VIDEO dataset. 

Models 
CC_WEB_VIDEO Dataset 

Precision Recall F1-Score Accuracy 
Spatiotemporal 

Keypoint [3] 0.61 0.96 0.75 0.64 

BS-VGG16 [36] 0.79 0.92 0.85 0.85 
LBoW [43] 0.63 0.85 0.72 0.66 

MLE-MRD [39] 0.82 0.91 0.86 0.87 
CBAM-Resnet [42] 0.77 0.92 0.84 0.88 

3D-CNN [24] 0.88 0.76 0.84 0.93 
RCLA 0.93 0.94 0.94 0.95 

It can be seen from Tables 3 and 4 that the hand-crafted feature extraction models of 
spatiotemporal key points and LBoW have limited capabilities to represent the video fea-
tures in the near-duplicate video detection task. Hence, all indicators are low. After intro-
ducing the CBAM module in each residual block, the ability of video spatial feature ex-
traction is improved using the channel and spatial attention mechanisms. Therefore, all 
indicators are improved compared with the hand-crafted feature extraction models. Since 
the video data have the spatiotemporal feature, not only the LSTM deep neural network 
in the RCLA model is used to extract the temporal feature of the video data, but also the 
standard attention mechanism is used to enhance the feature representation of the local 
regions of the near-duplicate video data. Thus, the near-duplicate video can be accurately 
identified, and the indicators are generally high, but the recall indicator is lower than that 
of the spatiotemporal keypoint model. It is considered that the spatiotemporal keypoint 
model can extract the spatiotemporal feature of video data, and the number of detection 
results is enormous, where the number of correct near-duplicate video data is also 

Figure 6. The visualization of loss variation under different parameter settings during training.

In addition, to evaluate the performance of the RCLA model for feature representation
of video data, the softmax function is used to achieve the comparison of different feature
representation models through the detection of near-duplicate video data. The experimental
results are shown in Table 3.

Table 3. The experimental results of different parameter settings for attention size on
CC_WEB_VIDEO dataset.

Models
CC_WEB_VIDEO Dataset

Precision Recall F1-Score Accuracy

Spatiotemporal
Keypoint [3] 0.61 0.96 0.75 0.64

BS-VGG16 [36] 0.79 0.92 0.85 0.85
LBoW [43] 0.63 0.85 0.72 0.66

MLE-MRD [39] 0.82 0.91 0.86 0.87
CBAM-Resnet [42] 0.77 0.92 0.84 0.88

3D-CNN [24] 0.88 0.76 0.84 0.93
RCLA 0.93 0.94 0.94 0.95

It can be seen from Tables 3 and 4 that the hand-crafted feature extraction models
of spatiotemporal key points and LBoW have limited capabilities to represent the video
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features in the near-duplicate video detection task. Hence, all indicators are low. After
introducing the CBAM module in each residual block, the ability of video spatial feature
extraction is improved using the channel and spatial attention mechanisms. Therefore, all
indicators are improved compared with the hand-crafted feature extraction models. Since
the video data have the spatiotemporal feature, not only the LSTM deep neural network
in the RCLA model is used to extract the temporal feature of the video data, but also the
standard attention mechanism is used to enhance the feature representation of the local
regions of the near-duplicate video data. Thus, the near-duplicate video can be accurately
identified, and the indicators are generally high, but the recall indicator is lower than that
of the spatiotemporal keypoint model. It is considered that the spatiotemporal keypoint
model can extract the spatiotemporal feature of video data, and the number of detection
results is enormous, where the number of correct near-duplicate video data is also massive.
Hence, the recall indicator of the spatiotemporal keypoint model is high, but the precision
and accuracy indicators are low. On this basis, taking the coal mine video dataset as an
example, this paper visually shows the clustering results of 10 types of near-duplicate video
data, as shown in Figure 7.

Table 4. The experimental results of different parameter settings for attention size on coal mine
video dataset.

Models
The Coal Mine Video Dataset

Precision Recall F1-Score Accuracy

Spatiotemporal
Keypoint [3] 0.57 0.85 0.68 0.61

BS-VGG16 [36] 0.72 0.83 0.77 0.79
LBoW [43] 0.60 0.92 0.73 0.72

MLE-MRD [39] 0.85 0.84 0.84 0.87
CBAM-Resnet [42] 0.79 0.86 0.82 0.84

3D-CNN [24] 0.91 0.89 0.90 0.90
RCLA 0.93 0.94 0.93 0.92
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The performance of the proposed method (RCLA-HAOPFDMC) is verified in com-
parison with the existing studies on near-duplicate video data cleaning. The comparison
methods are all reproduced through experiments, except that some key parameters are set
to the values from those papers, and all other parameters are set to default values. The
experimental results are shown in Table 5.
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Table 5. The experimental comparison of the different methods.

Methods Cluster Cleaning
CC_WEB_VIDEO Dataset The Coal Mine Video

Dataset

Acc Rec F1-Score Acc Rec F1-Score

Spatiotemporal
Keypoint [3]

K-Means 0.4527 0.451 0.451 0.466 0.5333 0.497
FD-Means 0.4776 0.538 0.506 0.666 0.5333 0.592

FD-Means fused with
the peak function 0.522 0.835 0.612 0.857 0.6 0.706

LBoW [43]

K-Means 0.453 0.472 0.462 0.5 0.5333 0.516
FD-Means 0.587 0.615 0.601 0.733 0.733 0.733

FD-Means fused with
the peak function 0.572 0.813 0.632 0.833 0.5 0.625

BS-VGG16 [36]

K-Means 0.275 0.615 0.436 0.465 0.362 0.382
FD-Means 0.650 0.929 0.76 0.667 0.833 0.74

FD-Means fused with
the peak function 0.49 0.967 0.633 0.5 0.4 0.444

MLE-MRD [39]

K-Means 0.53 0.62 0.57 0.57 0.65 0.61
FD-Means 0.72 0.79 0.75 0.69 0.76 0.72

FD-Means fused with
the peak function 0.76 0.82 0.79 0.75 0.86 0.80

CBAM-Resnet
[42]

K-Means 0.423 0.56 0.481 0.5333 0.666 0.592
FD-Means 0.587 0.615 0.601 0.733 0.733 0.733

FD-Means fused with
the peak function 0.825 0.681 0.779 0.777 0.7 0.736

3D-CNN [24]

K-Means 0.75 0.75 0.75 0.71 0.91 0.80
FD-Means 0.80 0.69 0.74 0.87 0.70 0.77

FD-Means fused with
the peak function 0.875 0.7 0.778 0.936 0.723 0.816

RCLA-
HAOPFDMC

K-Means 0.672 0.67 0.671 0.733 0.733 0.733
FD-Means 0.901 0.802 0.848 0.864 0.9333 0.897

FD-Means fused with
the peak function 0.914 0.801 0.854 0.872 0.9333 0.902

This paper compares the proposed method with the existing studies and different
clustering cleaning models, as shown in Table 5. First, it can be seen from Table 5 that the
performance indicators of the near-duplicate video cleaning methods based on hand-crafted
feature extraction are relatively low, such as spatiotemporal keypoint and LBoW models,
which is due to the limited ability of hand-crafted features to represent video features.
However, both aforementioned methods require less time, especially the spatiotemporal
keypoint model, which solely extracts keypoint features from video frames, thus consuming
less time than the LBoW model. Second, the BS-VGG16 model only extracts the spatial
features of the video data, and the CBAM-Resnet model introduces the channel and spatial
attention mechanisms in the spatial feature extraction. Since the depth of the BS-VGG16
model is only 16 layers, and the residual network depth in the CBAM Resnet model is
31 layers, the time consumed by the BS-VGG16 model is less than that of the MLE-MRD
model, while the time consumed by the MLE-MRD model is less than that of the CBAM
Resnet model. The 3D-CNN model, due to the lack of attention mechanism introduction,
has the time consumed between BS-VGG16 and CBAM Resnet. On this basis, the ACNNBN-
LSTM model can extract the spatiotemporal features of the video data, and the RCLA-
HAOPFDMC method, based on the spatiotemporal feature extraction to introduce the
standard attention mechanism, can more accurately depict the features of near-duplicate
video data to help clean the near-duplicate video data accurately and automatically. In
addition, by comparing the experimental results of the K-Means, FD-Means, and FD-
Means fused with the peak function clustering algorithms, the performance indicators
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after near-duplicate video cleaning using the K-Means algorithm are low, which is caused
by the randomness of the initial clustering center setting. When the FD-Means algorithm
is used for near-duplicate video cleaning, the influence of the K value in the K-Means
algorithm on the experimental results can be reduced. Thus, the performance indicators are
relatively high. This paper constructs a consistent feature hash ring to decrease the impact
of data ordering on near-duplicate data cleaning. On this basis, the fusion of the FD-Means
algorithm and peak function can further reduce the influence of the random initial cluster
center setting on the near-duplicate video cleaning. Therefore, the performance indicators
of the proposed method (RCLA-HAOPFDMC) in this paper are higher than those of the
existing methods. However, this method requires more computing resources and longer
computation time. Finally, the results of near-duplicate video data cleaning are shown in
Figure 8.
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5. Conclusions

In this paper, an automatic near-duplicate video data cleaning method based on a
consistent feature hash ring is proposed, which can be utilized to improve data quality for
video datasets. In this method, a novel consistent feature hash ring is constructed to alleviate
the sensitivity of video data orderliness. On this basis, an optimized feature distance-means
clustering algorithm fusing the mountain peak function on a consistent feature hash ring is
used to automatically clean the near-duplicate video data. The experiment results obtained
for the CC_WEB_VIDEO and coal mining video datasets demonstrate the advantages of
the proposed method, which can achieve automatic cleaning for near-duplicate video data.
However, the method proposed in this paper is not an end-to-end deep neural network
model that needs to be trained separately in the feature extraction and clustering stages. In
addition, the computation of cleaning on the consistent feature hash ring is large. In the
future, how to construct an end-to-end near-duplicate video data cleaning method will be
explored. Moreover, it is of great interest to introduce the swarm intelligence optimization
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algorithms in the future to improve the accuracy of near-duplicate video data cleaning by
optimizing the parameter selection.
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