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Abstract: The induction motors found in industrial and commercial applications are responsible
for most of the energy consumption in the world. These machines are widely used because of
their advantages like high efficiency, robustness, and practicality; nevertheless, the occurrence
of unexpected faults may affect their proper operation leading to unnecessary breakdowns with
economic repercussions. For that reason, the development of methodologies that ensure their proper
operation is very important, and in this sense, this paper presents an evaluation of signal entropy as
an alternative fault-related feature for detecting faults in induction motors and their kinematic chain.
The novelty and contribution lie in calculating a set of entropy-related features from vibration and
stator current signals measured from an induction motor operating under different fault conditions.
The aim of this work is to identify changes and trends in entropy-related features produced by
faulty conditions such as broken rotor bars, damage in bearings, misalignment, unbalance, as
well as different severities of uniform wear in gearboxes. The estimated entropy-related features
are compared to other classical features in order to determine the sensitivity and potentiality of
entropy in providing valuable information that could be useful in future work for developing a
complete methodology for identifying and classifying faults. The performed analysis is applied to
real experimental data acquired from a laboratory test bench and the obtained results depict that
entropy-related features can provide significant information related to particular faults in induction
motors and their kinematic chain.

Keywords: entropy analysis; fault detection; fault indicator; induction motors

1. Introduction

The industry has been constantly subjected to changes due to the emerging technol-
ogy up to its relatively new version known as Industry 4.0, and despite the technological
improvements with views towards efficient energy consumption, it still strongly depends
on the use of electrical and mechanical elements such as gearboxes (GBs), induction motors
(IMs), and their associated kinematic chains to propel most of their processes [1,2]. Some of
the most common applications of GBs and IMs are [3–5] conveyors, pumps, cranes, fans,
lifts, shredders, blowers, benders, and mixers, among others. The main characteristics of GB
and IM are their general robustness, variety of prices and models, power–speed adjustable
relationship, reliability, high-efficiency, easy maintenance, wide applicability, and hard
environmental resistance [6,7]. Certainly, the use of IMs allows for the maximization of
the productivity and reliability of the processes, but, in consequence, it must be kept in
optimal conditions to ensure its continuous working without undesirable and unexpected
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production breakdowns [8]. In fact, IMs remain the most used electromechanical equip-
ment and they may be found in approximately 80% of all industrial applications [9,10].
Accordingly, its wide use leads to the production of between 40% and 60% of the world’s
energy consumption according to the International Energy Agency and other research
works [4,5,11,12]. For that reason, it is mandatory to ensure the correct operation of the
IMs and their associated kinematic chain through adequately scheduled preventive mainte-
nance; otherwise, it could result in severe economic losses, equipment damage, or human
injuries [10]. In summary, the analysis and study of these machines are currently active
since there are some challenges that have not been previously addressed in reported works,
i.e., the detection and identification of faults regardless of the operating condition. For
that reason, the development of new approaches using novel and non-conventional fea-
tures is still required, to complement, or not, the existing methodologies for increasing the
performance in the diagnostic.

Regarding the reported methodologies in the literature for detecting and classifying
faults on IMs, there are two general strategies that can be identified: (1) classical method-
ologies and (2) Data-Driven-based Approaches (DDA). Most of the classical methodolo-
gies apply conventional techniques over measured signals in the time, frequency, and
time–frequency domains to visualize abnormal behaviors related to the occurrence of
faults [13,14]; the most used techniques are the Fast Fourier Transform (FFT), the Discrete
Wavelet Transform (DWT), and the Multiple Signal Classification (MUSIC), among others.
Although these techniques have demonstrated their effectiveness, some challenges and
limitations have not been completely addressed. Hence, limitations such as the strong
dependency on the spectral content and the overlapping of some fault-related frequencies
can increase the degree of difficulty in differentiating between different faulty conditions.
Accordingly, some challenges that have to be faced are the resolution requirements of
the spectral-based methods, the adequate selection of a mother function in DWT-based
methods, the selection of adequate decomposition levels in empirical mode decomposition,
or the expert knowledge required in advance due to the technique complexity, to mention
a few [15]. On the other hand, the data-driven-based approaches are strategies for decision
making based on the analysis and interpretation of data, and they take advantage of their
powerful capabilities for processing high amounts of data and grouping them as clusters,
such as the Principal Component Analysis (PCA), the Linear Discriminant Analysis (LDA),
k-Nearest Neighbors (kNN), and Dictionary Learning (DicL), among others [4,16,17]. Nev-
ertheless, the common drawbacks of these techniques comprise the need to use historical or
high volumes of collected data, where a low volume of data could yield misleading labeling,
the application of the techniques being limited to the data used for training, the propensity
to overfitting, data can be biased, in many cases there exists a requirement of additional data
pre-processing prior to apply the clustering mechanisms, and so on [18]. Some schemes
under the DDA are the Shallow Machine Learning (SML) approaches, which combine, in
general, the feature extraction, such as statistical features, frequency features, etc., with
some classifiers, like Fuzzy Logic (FL), Artificial Neural Networks (ANN), Support Vectors
Machine (SVM), and so on, for categorizing the faults [19,20]. The general weaknesses of
these techniques are the processing of a high number of features, the estimation of redun-
dant or correlated information in the feature calculation stage, the technique overfitting, the
adequate selection of the mechanisms for feature extraction, the classifier configuration, and
the optimal values of the techniques hyperparameters, to mention a few [21]. Additionally,
a subset of the SML approaches is the Deep Learning (DL) techniques, which are schemes
that take advantage of new reinforced structures based on neural networks such as Sparse
Auto-encoder (SAE), Convolutional Neural Networks (CNN), Self-organizing Maps (SOM),
Generative Adversarial Networks (GAN), Expandable Continuous Learning (ECL), and
Transfer Learning (TL), among others [22–26]. These structures are capable of learning
features, patterns, profiles, and clues with the aim of directly classifying the faults from the
signals in the time, frequency, and time–frequency domains, or from features computed
from any of these domains. Furthermore, recent research has led to some improvements;
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for example, GAN, ECL, and TL have integrated intelligent fault diagnosis by adding
data augmentation properties, extending the learning capability through elastic expansion
mechanisms that progressively introduce new network branches, or combining the transfer
learning to the DL techniques [24–26]. These intelligent approaches overcome limitations
of DL such as the incapability of processing a low volume of data samples, fusing diverse
information, augmenting the representation learning capability, anticipating the influence
of variability in working conditions, and speeding up the training processes. However,
the main disadvantages of the DL techniques are the expertise and knowledge required
to define the structure of the network, the selection of their optimal hyperparameters to
guarantee the best performance for the faults diagnostic, misleading diagnosis for multiple
or combined faults with similar response behavior, non-linearities, non-stationary behavior,
data quantity/quality/complexity, and noise addition [27]. In this sense, recent works have
also directed towards the use of non-conventional feature extraction, for example, metrics
related to the behavior of the signal energy, such as entropy.

Several works have been developed considering non-conventional indicators in appli-
cations related to the detection of abnormal conditions in industrial equipment, such as
the entropy calculation [28–31]. For example, in [32], twelve entropy-based features were
extracted from vibration signals in time, frequency, and time–frequency domains for detect-
ing problems in bearings, and a Z-score was used as a threshold of the features for showing
the fault. Under the same framework, a theoretical review was developed in [31], where
the entropy measurements related to the statistical mechanics, the information theory, and
the dynamical systems theory were analyzed to give some insights about its potential for
detecting bearing faults. The research in [33] presents a methodology for diagnosing faults
in bearings by decomposing the vibration signal through the Wavelet Packet Transform
(WPT) and, at the same time, it computes the Teager energy entropy ratio of the resonant
frequency sub-band. Likewise, in other work, an approach for monitoring the conditions of
rolling bearings in wind turbines is developed [34]. Firstly, the vibration signal is decom-
posed through the Variational Mode Decomposition (VMD). Next, the statistical features
are extracted, and a permutation entropy analysis is performed to analyze the time series
complexity, then feature selection is carried out and, finally, a multi-class-SVM performs
the classification task. In another example, six entropy-based features were extracted from
vibration signals to automatically diagnose the bevel gear wear [35]. In that work, an
analytic wavelet transform is applied to decompose the signal into sub-bands, and then
the entropy features are extracted and fed to a Least-Squares Support Vector Machine
(LS-SVM) classifier. Additionally, the Kruskal–Wallis test is carried out to generate statisti-
cally meaningful results. The work reported in [30] makes use of several entropy-based
methods for fault classification in bearings, and they are compared to provide assessments
and recommendations for future developments in new classification methodologies. On the
other hand, the research described in [36] proposes an intelligent fault diagnosis through
the Hierarchical Diversity Entropy (HDE) as a feature extraction tool and the Random
Forest (RF) classifier for detecting early bearing faults from signals with high noise levels
and weak fault symptoms. In another case, a methodology that proposes to combine a
Multiscale Weighted Permutation Entropy (MWPE) with a Twin Extreme Learning Machine
(TELM) for extracting enhanced features with non-stationary and non-linear characteristics
is developed in [37]. In another field, the work in [38] presents a hybrid methodology
between VMD, permutation entropy, and k-means clustering for selecting a low-resistance
grounding fault line. Here, the VMD serves to reduce the influence of harmonic content and
noise to facilitate feature extraction. From the previously analyzed works, it is important
to mention that entropy features have some pros and cons that are worth mentioning; for
example, as cons, the direct feature extraction from time domain signals could be ineffec-
tive depending on the noise level, and also the extraction of entropy features could be
enhanced through a multiscale or multiscale weighted approach [37,38]. In contrast, the
pros are that several novel methods to enhance classical fault detection can be developed
using entropy features; for example, they can address systems with non-linearities and



Electronics 2024, 13, 1524 4 of 28

non-stationary characteristics, even with non-linear time series complexity, but also they
provide consistency, strong robustness, and high calculation efficiency [28,29,31,36–38].
Regarding the field of rotative machinery, most of the reported works have focused their
efforts on studying the faults in bearing elements due to the frequency relation to the
entropy calculation, but other type of faults related to the kinematic chain of the motor
could be addressed, such as coupling misalignment, system unbalance, or gears wear in
gearboxes. In summary, any non-conventional features, like those based in the entropy that
helps to provide clues of the different conditions of a system, are still considered a field
of interest and their validation through correlation tests could be a relevant aspect for the
detection of faults in IMs and the associated kinematic chain.

Therefore, the contribution of this work lies in evaluating the use of entropy features to
determine its discriminant properties for condition monitoring of faults that may unexpect-
edly occur in gearboxes, induction motors, and their related kinematic chain. To perform
the entropy signal analysis, this work proposes the calculation of six entropy parameters
such as spectral, permutation, sample, approximated, fuzzy, and Rényi entropy; these
features are estimated from different available physical magnitudes, like vibration signals
and stator current signatures, which are acquired during different experimental tests. Four
different severities of uniform wear are tested in the gearbox and in the induction motor
conditions like bearing defect, broken rotor bar, unbalance, and misalignment are evalu-
ated, and each of the aforementioned conditions is iteratively tested in the gearbox and the
induction motor under different operating conditions. The entropy features are extracted,
and further processing is performed to assess the operating condition of the IM and the
related kinematic chain. In a sense of a complement tool, the entropy features are analyzed
to demonstrate which of them provide meaningful and discriminant information that could
improve the efficiency of classical approaches; meaning that when entropy indicators are
used, they allow a more efficient discrimination of failure conditions. Additionally, the
validation of the features is essential, and verification mechanisms are also important; for
this reason, the Kruskal–Wallis test and the Fisher discriminant score could in a reliable
way enhance the proposed analysis. The obtained results show that entropy features have
advantages for the detection of faults, compared to other methods, which can be used to
improve the detection efficiency.

2. Theoretical Background

Entropy is a physical magnitude that has been widely studied in physics and ther-
modynamics. This magnitude is commonly associated with the degree of disorder in a
system; however, a most formal definition derives from the second law of thermodynamics
that establishes that every system evolves to its most probable configuration, as this is the
one with the most microstates, and it coincides with the one with the greatest entropy. In
this sense, entropy can be explained as a measure of the probability that a system reaches
a specific final state based on the number of different configurations that lead to such a
final state [35]. In other words, the more different configurations that lead to the same final
state, the higher the probability of reaching that state and the greater the entropy is. This
notion of entropy has been employed in the field of data analytics and signal processing to
determine the possible causes of a signal obtaining a specific trend, allowing us to explain
how two different phenomena are related to each other. The most used expression for
quantifying the entropy of a signal or dataset was introduced by Claude E. Shannon in
1948 [31,39], and it is shown in Equation (1).

H(X) = −
n

∑
i=1

p(xi)log(p(xi)) (1)

where H(X) is the Shannon entropy of the signal X; xi is the i-th element of the signal X;
and p(xi) is the probability that the value xi appears in the signal.
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Although the Shannon entropy is good for detecting irregularities in a signal, some
variants have been developed to increase the accuracy and performance of this feature. For
instance, when it is necessary to estimate the complexity of the data, the spectral entropy
(SpecEn) is a better feature. The spectral entropy needs to compute the spectrum of the
signal X using the Fourier transform and calculate the power of each frequency component
(p f ); thus, the spectral entropy is finally obtained using Equation (2).

SpecEn(X) = ∑
f

p f log

(
1
p f

)
(2)

Another variant of the Shannon entropy that works better in the quantification of un-
certainty and randomness in time series is the Rényi entropy (ReEn). This is a generalization
of the Shannon entropy that can be computed using Equation (3).

ReEn(X) =
α

1 − α

n

∑
i=1

log2
(

p(xi)
α) (3)

where p(xi) is the probability of the time series X = {x1, x2, . . . , xn}, and α ̸= 1 represents
the order of the feature. Regarding the parameter α, it is common to use values higher
than 2 to obtain smoother results. Moreover, if α = 1, then the Rényi entropy becomes the
Shannon entropy.

In some applications, it is also required to know the irregularity and unpredictability
of the time series, and the approximate entropy (ApEn) is the preferred tool for such a task.
This feature can assess the probability that a new pattern appears in the signal behavior,
and it can be expressed as shown in Equation (4).

ApEn(X) = ϕm(r)− ϕm+1(r) (4)

where ϕm(r) and ϕm+1(r) are the mean values of the logarithm pattern and they are
calculated according to Equation (5).

ϕm(r) =
1

N − m + 1

N−m+1

∑
i=1

ln
[

1
N − m + 1

num{d[x(i), x(j)] < r}
]

(5)

where m is the length of the pattern, r = 0.2SD (with SD as the standard deviation of the
signal) is the tolerance of the signal, N is the length of the signal, and num{d[x(i), x(j)] < r}
is the distance between the terms x(i) and x(j). To achieve better results in the literature, it
is recommended to use a value of m = 2 for the pattern length [29]. The ApEn presents
some immunity against interference and noise, but it is highly dependent on the signal
length, and small signals usually deliver unexpected results. Additionally, the estimation
regarding the complexity of the signal is not very accurate. Therefore, to overcome the
issues related to the ApEn, it was developed the sample entropy (SampEn) that can be
calculated using Equation (6).

SampEn = ln
(

Bm+1(r)
Bm(r)

)
(6)

where Bm(r) and Bm+1(r) are the mean values of the pattern count, and they can be
obtained through Equation (7).

Bm(r) =
1

N − m + 1

N−m+1

∑
i=1

[
1

N − m
num{d[x(i), x(j)] < r}

]
(7)
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where r is the tolerance of the signal, m is the embedding dimension, N is the signal length, and
num{d[x(i), x(j)] < r} is the distance between x(i) and x(j) with i = 1, 2, . . . , N − m + 1,
and i ̸= j.

Also, the fuzzy entropy (FuzEn) is an important feature that allows us to determine
the similarity between two signals [28]. In this sense, the similarity can be expressed by
Equation (8).

Sm
ij = e−ln (2)(

dm
ij
r )

n

(8)

where m is the embedding dimension, dm
ij is the distance between the samples xm

i and
xm

j , and r is the similarity tolerance. Also, the operator φm(N, r) must be defined as in
Equation (9).

φm(N, r) =
1

N − m

N−m

∑
i=1

1
N − m + 1

N−m

∑
j=1, j ̸=i

Sm
ij (9)

With N being the length of the signal, therefore, the FuzEn can be calculated as
Equation (10) depicts.

FuzEn(m, r, N) = ln φm(N, r)− ln φm+1(N, r) (10)

On its part, the permutation entropy (PermEn) also allows us to estimate the complex-
ity of a signal, with the difference that it uses a phase space reconstruction to compute
the complexity [30]. This is a particularly good approach for dealing with signals that
introduce non-linearities. The permutation entropy is calculated using Equation (11).

PermEn = −∑ p(π)log2 p(π) (11)

where p(π) is the relative frequency for each permutation.
Together, all these entropy variations can provide information regarding the anomalies

and disturbances in a signal and how these variations are related to a specific operating
condition in a system such as an induction motor.

3. Methodology

As mentioned above, it is still a field of interest in the development of new diagnosis
methodologies capable of distinguishing between different fault conditions that a machine
could present. In this sense, Figure 1 presents the general flow chart of the approach
proposed in this work, which is focused on an analysis of six different entropy features that
are estimated from raw signals coming from data banks of an induction motor with fault
conditions, with the main purpose of finding the discriminant properties for distinguishing
the conditions of the motor (faults). Thus, the proposed approach is developed through
five main stages: (i) physical systems, (ii) raw signals, (iii) feature calculation, (iv) feature
processing, and (v) analysis of discriminant properties.

3.1. Physical Systems

The entropy signal analysis developed in this work is considered to be a physical
system that is an experimental test bench based on a kinematic chain composed of a three-
phase IM, a 4:1 ratio gearbox (GB), and a DC generator acting as mechanical load (ML). In
this kinematic chain, the three-phase motor speed is controlled by a variable frequency drive
(VFD), and the experimental trials were run at four different supply electrical frequencies
of operation: 5 Hz, 15 Hz, 50 Hz, and 60 Hz. Next, in the kinematic chain, the motor is
mechanically coupled to the gearbox, which, in turn, is coupled to the DC generator. It
must be highlighted that the DC generator represents a low mechanical load, entailing
around 20% of the nominal load. The configuration of the low-level load is important
because it can produce a downloading effect, which causes misleading fault detection,
which is a challenge for the diagnostic in classic methodologies [40,41]. Thus, the entropy
analysis is explored as an alternative in fault analysis under unfavorable conditions of low
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load. On the other hand, the gearbox has a gear with uniform wear in all teeth, where four
conditions are considered: wear of 0% (healthy gear and no wear in the teeth), wear of 25%,
wear of 50%, and wear of 75%. Also, five different conditions are generated in the induction
machine: healthy condition (motor without any fault), motor with bearing defect, a broken
rotor bar, system unbalance, and coupling misalignment. It is important to mention that the
corresponding experimental trials of every fault condition were individually carried out.
The specific characteristics of the kinematic chain are explained in detail in the Section 4.
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Figure 1. General flow chart of the proposed methodology for analyzing the discriminant properties
of six different entropy features extracted from raw signals of induction motors with fault conditions.

3.2. Raw Signals

The proposed analysis considers the processing of real signals that are acquired from
the experimental test bench described in the previous subsection. The experimentation is
carried out individually for each system condition; as a result, the corresponding measure-
ments consider a specific fault condition stored in a data bank for further offline processing.
Now, in the kinematic chain, two sensors are considered to carry out the signal measure-
ments, that is, a triaxial vibration sensor and a current sensor based on the Hall effect. Yet,
although vibrations in the kinematic chain are measured in the x, y, and z directions (axial,
radial, and tangential axes), only the vibrations measured in the perpendicular plane (vibra-
tions in the y-axis and the z-axis) of the kinematic chain rotating axis are considered in this
work; such consideration is because it has been proven that this plane may experience an
increase in vibrations when unexpected fault conditions appear in rotating machines [42,43].
On the other hand, only one stator current is considered to be analyzed because all the
studied conditions are affected in a similar way to all the phases, hence, the stator current
signature measured in the first line is taken into account. In the proposed analysis, the raw
signals of the data bank are directly processed on its time-domain representation without
the need for a space transform technique; the idea is to find out the usability of new features.
The specific details about the sensor characteristics used in this work and the sampling
frequencies considered for the data acquisition system are detailed in the Section 4.

3.3. Feature Calculation

Once the signals are measured and stored, the next step is to calculate a set of features
inherent in the signals. In this case, six different features based on the entropy metric are
addressed as counterparts of the classic methodologies that typically use statistical features.
Thus, as observed in Figure 1, the entropy features obtained using expressions (1) to (11)
are the following: SpecEn, PermEn, SampEn, ApEn, FuzEn, and ReEn. The feature calculation
is carried out by segmenting each signal in equal parts of one second and then the proposed



Electronics 2024, 13, 1524 8 of 28

entropy features are estimated from each segmented part. The main advantages of using
entropy features rely on the fact that they describe energy behavior properties of a measured
signal, instead of pure data distribution as is commonly performed by classical statistical
features. Moreover, entropy features also allow us to address systems with non-linearities
and non-stationary characteristics, even with non-linear time series complexity, but they
also provide consistency, strong robustness, and high calculation efficiency, as stated in
the Introduction.

3.4. Feature Processing

The feature processing considered for the entropy features calculated from the raw
signals is the data normalization. The normalization that is considered is based on the
well-known approach that leads to the transformation of a signal to zero mean and unit
variance, and the main purpose of normalizing the features is due to the need to visual-
ize the capabilities of entropy features in discriminating any condition in the data, like
patterns, profiles, and tendencies, among others. Additionally, it is important to consider
the conventional advantages of data normalization such as minimizing and correcting
duplicated data, avoiding data anomalies, optimizing the storage space, avoiding the
creation of undesired relationships and dependencies between data, reducing the time and
complexity in data revision, facilitating the data access and interpretation, and preventing
the undesired data erasing.

3.5. Analysis of Discriminant Properties

In the final stage of this proposal, the analysis of discriminant properties is carried out.
Such analysis is performed with the aim of determining the most significant fault-related
properties that are inherent to the calculation of entropy features. In this regard, the discrim-
inant properties of the entropy features are then analyzed through the Kruskal–Wallis (KW)
test and by calculating their Fisher discriminant score (FDS), which are a non-parametric
and parametric technique, respectively, which can be used to identify useless sample
features [44,45]. Thereby, the normalized entropy features are first analyzed using the
non-parametric KW test, and this test leads to the determination of whether a group of
data comes from the same population, since the probability distribution is not assumed.
Certainly, under a null hypothesis, the implementation of the KW test identifies whether
these data come from the same distribution and in condition monitoring strategies allows
us to analyze if there are statistically relevant differences between two or more categories.
Hence, for C classes with n samples (per class), the test is carried out as follows [35,46]:

• Step I: all samples (N) for all C classes are sorted and then a rank is assigned in
ascending order by ignoring the class to which the samples belong;

• Step II: find the sum of all Ri ranks for each individual class with ni samples;
• Step III: compute the KW statistic (SKW) by applying Equation (12);
• Step IV: the significance of the resulting SKW values for all C classes are assessed

through the Chi-square test (χ2); thus, the SKW values are statistically significant if
SKW is equal or larger than χ2.

Once the KW test is performed, the p-value can be also estimated as a quantitative
metric to determine if any of the differences between the medians are statistically significant;
consequently, it has been determined that higher p-values are associated with statistically
significant differences.

SKW =
12

N(N + 1)

C

∑
i=1

R2
i

ni
− 3(N − 1) (12)

On the other hand, the FDS is a statistical technique carried out to determine the sepa-
rability between individuals (samples) that belong to different populations (classes); FDS is
used in condition monitoring strategies to analyze and choose features that provide signifi-
cant discriminant information [47]. Ideally, the FDS is theoretically applied to two-class
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problems but it has been generalized to multi-class problems; thereby, for C classes with n
samples per class, the analysis through FDS considers the computation of the between-class
(Sb) and within-class (Sw) scatter matrices following Equations (13) and (14) [48], where
µ fi

and µ are the mean of the kth class and the overall mean of all samples for all classes,
respectively. On the other hand, xk

fi
represents each ith sample of the kth class. Accordingly,

the estimation of Sb and Sw is aiming to quantify the separability between classes and to
measure the compactness of data points in the same class, respectively. Hence, the FDS
is achieved as a ratio (FDSr) between Sb and Sw, which measures the linear separation
between two different classes, as specified in (15) [49,50]. Therefore, values of FSr higher
than 1 are related to features that provide relevant discriminant information to separate
the classes under analysis, whereas values of FSr smaller than 1 can lead to overlapping
problems when two classes are intended to be separated.

Sb =
C

∑
k=1

nk

(
µ fi

− µ
)(

µ fi
− µ

)T
(13)

Sw =
C

∑
k=1

nk

∑
i=1

(
xk

fi
− µ fi

)(
xk

fi
− µ fi

)T
(14)

FSr =
Sb

Sw
(15)

Finally, as it is observed in the block diagram of Figure 1, the proposed approach
is repeated for each one of the operating frequencies that represent the supply electrical
frequency of operation of the kinematic chain (5 Hz, 15 Hz, 50 Hz, and 60 Hz). Recently, the
proposal of new methodologies applied to the diagnosis of faults may deal with different
data distributions that are usually generated by different operating conditions like loads
and speeds.

4. Experimental Setup

The analysis of signal entropy performed in this work is applied to a real dataset that
is acquired from an experimental laboratory test bench, which is composed of three main
elements: an IM, a GB, and a ML. The test bench is shown in Figure 2, the IM is a 2.49 kW,
220 V-three-phase motor with one pair of poles (model WEG 00236ET3E145T-W22), and it
is mechanically linked to a 4:1 ratio GB (BALDOR GCF4X01AA) through a rigid coupling;
the GB is, in turn, coupled to a DC generator (BALDOR CDP3604), which is used as the
ML. Also, a VFD (model WEG-CFW08) is used to feed and control the rotating speed of the
IM output shaft.

The dataset comprised vibration signals and stator current signatures; in this regard,
the vibrations of the whole kinematic chain are acquired using a triaxial accelerome-
ter LIS3L02AS4 that is located on the top of the GB; meanwhile, the stator currents are
measured through a set of three Hall-effect sensors from Tamura Corporation (model
L08P050D15) that are placed in the power supply lines between the VDF and the IM. All
signals are acquired by a self-designed Data Acquisition System (DAS), which is based
on Field Programmable Gate Array (FPGA) technology, the proprietary DAS has a 12-bit
analog-to-digital serial-output converter (model ADS 7841) to read the available mea-
surements. Thus, the vibration signals and stator currents are acquired with sampling
frequencies equal to 3 k samples/s and 4 k samples/s, respectively.

Regarding the evaluated conditions, four conditions are tested in the GB; meanwhile,
five conditions are tested in the IM. Table 1 summarizes the details of each studied condition.
Each one of the conditions under study is iteratively tested in the GB and the IM by
replacing the healthy elements with the damaged ones; additionally, different supply
electrical frequencies of operation are used in the VFD to analyze the behavior of the whole
kinematic chain at different rotating speeds, and the supply frequencies are 5 Hz, 15 Hz,
50 Hz, and 60 Hz. The acquisition of vibrations and stator currents is carried out during
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the 100 s in the steady-state regime of the IM; thus, a total of 300 k and 400 k samples are
acquired and stored in a personal computer for further processing, respectively.
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Table 1. Description of the different studied conditions tested in the GB and the IM.

Element under
Evaluation

Studied
Condition

Assigned
Label Description Picture

G
ea

rb
ox

(G
B)

GB with 0% of wear GB0
The 4:1 GB is healthy, and the driven

(72 teeth) and driver (18 teeth) gears are
in perfect condition.
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Table 1. Cont.

Element under
Evaluation

Studied
Condition

Assigned
Label Description Picture

In
du

ct
io

n
m

ot
or

(I
M

)

Healthy IM HLT The IM is healthy, and all the elements
of the IM are in perfect condition.
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5. Results and Discussions

The goal of this work is to perform an analysis of signal entropy to identify changes
and trends in entropy-related features produced by the occurrence of faults; in this sense,
the proposed analysis is implemented under GNU Octave. Hence, the different faulty
conditions, according to Table 1, are tested in a kinematic chain. Despite both elements,
with GBs and IMs installed in the same kinematic chain, each one of the studied conditions
is experimentally tested individually under the four different supply electrical frequencies
of operation managed through the VFD.

5.1. Entropy Analysis for Detecting Faults in the GB

According to the explanation of the second stage of the methodology and the diagram
observed in Figure 2, the two vibration signals subject to further processing are the Vy and
the Vz, and the stator’s current signature is C1. Thus, the six entropy features previously
mentioned are computed from each one of these signals according to the explanation of the
third stage of the proposed methodology. Hence, as a result, three characteristic feature
matrices are obtained, which are Vy, Vz, and C1; each feature matrix has a dimension of 6×
100 where the columns represent the six entropy features and the rows belong to each one
of the segmented parts of Vy, Vz, and C1, respectively. In addition, the characteristic features
matrices are obtained to generate a consecutive set of samples (100 samples) for each one
of the entropy features; accordingly, due to the four different supply electrical frequencies
of operation used to carry out the experimentation for each condition twelve characteristic
feature matrices are computed; for example, for the gearbox in healthy condition (GB0),
the matrices obtained are VGB0@5Hz

y , VGB0@5Hz
z , CGB0@5Hz

1 , VGB0@15Hz
y , VGB0@15Hz

z , CGB0@15Hz
1 ,
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VGB0@50Hz
y , VGB0@50Hz

z , CGB0@50Hz
1 , VGB0@60Hz

y , VGB0@60Hz
z , and CGB0@60Hz

1 . Once all the feature
matrices are computed for all the considered conditions, the feature normalization is carried
out by normalizing each entropy feature to zero mean and unit variance; this procedure
plays a key role in condition monitoring strategies since it leads to improving the model
performance and allows to ensure convergence. Figure 3a shows the qualitative visual
representation of the SampEn feature without normalization that is estimated directly from
the Vz signal for all conditions of uniform wear (GB0, GB25, GB50, and GB75). On the
other hand, Figure 3b also shows the SampEn feature after applying the normalization
procedure. As observed, the amplitude scale of the vertical axis in Figure 3b is significantly
higher than the amplitude scale of the vertical axis in Figure 3a. This particular difference
between amplitude scales in vertical axes may produce a significant increase in terms
of accuracy and performance when normalized features are used to produce the fault
assessment. The normalization procedure is applied to all feature matrices for all studied
conditions and normalized feature matrices are then obtained (NVy, NVz, and NC1);
for example, for the GB0 condition, the normalized matrices obtained are NVGB0@5Hz

y ,
NVGB0@5Hz

z , and NCGB0@5Hz
1 , when the kinematic chain operates at 5 Hz for the signals Vy,

Vz, and C1, respectively.
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Figure 3. Qualitative representation of the SampEn feature estimated from the Vz signal for all
evaluated conditions in the gearbox (GB0, GB25, GB50, and GB75) when the kinematic chain operates
at 60 Hz: (a) SampEn without normalization and (b) SamEn normalized to mean zero and unit variance.

Afterward, the normalized entropy features are then analyzed using two different
approaches with the aim of determining their capabilities for being included in diagnosis
strategies applied to the detection and identification of faults in kinematic chains. Thus, the
KW test and the FDS are applied over the previously normalized features; hence, the KW
test is first applied to each entropy feature for all studied conditions in the GB. Thereby,
Equation (12) is used to carry out the KW test, for the conditions tested in the GB the
number of classes is defined as C = 4, with a total number of samples N = 400 for all
classes with ni = 100 samples per class.

Specifically, for each available signal and each operating condition, the KW test is
individually applied to each entropy feature of the normalized feature matrices NVy, NVz,
and NC1, i.e., the KW test leads to achieving twelve numerical p-values for only one
entropy feature for the signals Vy, Vz, and C1 for all GB conditions. This test is carried out
to determine whether a group of data points (samples) comes from the same population.
In this regard, the quantitative metric known as p-value may depict the level of distinction
between the assessed conditions (classes); in particular, p-values smaller than 0.05 mean
that there exist statistically significant differences between analyzed classes. Consequently,
Table 2 summarizes the p-values achieved during the KW test applied to the corresponding
normalized entropy features estimated from signals Vy, Vz, and C1 for the conditions GB0,
GB25, GB50, and GB75 that are tested in the GB for all the supply electrical frequencies of
operation 5 Hz, 15 Hz, 50 Hz, and 60 Hz. As appreciated in Table 2, most of the entropy
features for the signals Vy, Vz, and C1 produce p-values smaller than 0.05 demonstrating that
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these features have significant information to differentiate between the analyzed conditions.
Specifically, most of the p-values obtained during the test are represented on a scale that
varies from 1 × 10−13 to 1 × 10−81, which theoretically can be taken into account as zero.

Table 2. Quantitative p-value achieved during the KW test applied to the entropy features estimated
from signals Vy, Vz, and C1 for the conditions GB0, GB25, GB50, and GB75 tested in the GB.

Entropy
Features

Physical
Magnitude

Supply Electrical Frequencies of Operation

5 Hz 15 Hz 50 Hz 60 Hz

SpecEn
Vy 0 0 0 0
Vz 0 0 0 0
C 0 0 0 0

PermEn
Vy 0 0 0 0
Vz 0 0 0 0
C 0 0 0 0

SampEn
Vy 0 0 0 0
Vz 0 0 0 0
C 0 0 0 0

ApEn
Vy 0 0 0 0
Vz 0 0 0 0
C 0 0 0 0

FuzzEn
Vy 0 0 0 0
Vz 0 0 0 0
C 0 0 0 0

ReEn
Vy 0.00536 0.0716 0.0462 0.00522
Vz 0.441 0.00230 0.0269 0.0218
C 0.318 0.448 0.217 0.664

The KW test also allows to obtain boxplots with the aim of comparing the data
distribution of the classes under analysis; Figure 4a–c show the boxplots for the FuzzEn
feature computed from the signals Vy, Vz, and C1 for all conditions tested in the GB when
the kinematic chain operates at 60 Hz, respectively. The corresponding p-values computed
for these boxplots are 7.10 × 10−67, 9.17 × 10−81, and 1.92 × 10−22, respectively, and the
labels in the horizontal axes directly indicate the conditions tested in the GB. On the other
side, the horizontal red line inside the boxes represents the median of the tested conditions,
whereas the red symbols ‘+’ are samples detected as outliers. Accordingly, based on the KW
test, it can be assumed that the FuzzEn feature provides statistically significant information
to discriminate between assessed conditions in the GB, and this assertion is supported
by the achieved p-values, which are smaller than 0.05. In fact, the FuzzEn estimated from
the signal Vz is the most representative because the medians of all classes (horizontal red
lines inside the boxes) are vertically separated from each other, avoiding the overlapping
between the considered conditions. In its counterpart, the FuzzEn estimated from signals
Vy and C1 also produce p-values smaller than 0.05, but their corresponding boxplots show
a slight overlapping; that is, in Figure 4a, medians of conditions GB25 and GB50 appear
horizontally aligned and in Figure 4c there is not a considerable separation between the
medians of all conditions. Finally, the quantitative representation of the FuzzEn feature
estimated from signals Vy, Vz, and C1 when the kinematic chain operates at 60 Hz is shown
in Figure 5a–c, respectively. These quantitative values belong to the normalized FuzzEn
for the four conditions (100 samples per condition). As appreciated, there exists a clear
difference between the values of FuzzEn in Figure 5b for each assessed condition, whereas
the values of FuzzEn in Figure 5a only present different amplitudes for the GB0, GB25, and
GB50 conditions, and the values of FuzzEn in Figure 5c do not show considerable changes
between all conditions.
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Figure 4. Boxplots achieved for the FuzzEn feature for the GB0, GB25, GB50, and GB75 conditions
tested in the GB when the kinematic chain operates at 60 Hz; the boxplots for FuzzEn belong to the
signals: (a) Vy, (b) Vz, and (c) C1.
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Figure 5. Quantitative representation of the estimated fuzzy entropy when evaluating the conditions
of 0%, 25%, 50%, and 75% of uniform wear in the GB with an operating frequency of 60 Hz, the fuzzy
entropy is estimated for (a) Vy, (b) Vz, and (c) C1.

Following the proposed method, the entropy features are also analyzed through the
FDS approach to determine their discriminant properties for distinguishing between classes.
Hence, for each one of the three signals and each supply electrical frequency of operation
in the VFD, the analysis based on FDS is individually carried out over each entropy feature
as follows:

(i) An entropy feature from the normalized feature matrices NVy, NVz, and NC1 is
selected, such as, for example, the FuzzEn.

(ii) When analyzing the studied conditions in the GB, firstly, the samples of the FuzzEn
feature from the GB0 condition are compared to the samples of the FuzzEn feature
from the GB25 condition by using (13)–(15). As a result, a discriminant ratio (FSr) is
computed, which measures the linear separation between the GB0 and GB25 conditions.

(iii) The previous step is repeated for the same entropy feature (i.e., FuzzEn) until all
faulty conditions (GB25, GB50, and GB75) are iteratively faced with the healthy
condition (GB0).

(iv) Another entropy feature is selected and steps (II) and (III) are performed; over the
new entropy feature, the procedure is applied to all available entropy features.

Thereby, Table 3 summarizes the FSr scores achieved by applying the FDS analysis to
each normalized entropy feature estimated from the signals Vy, Vz and C1 for the operating
supply frequencies 5 Hz and 15 Hz, whereas Table 4 summarizes the FSr scores for the
operating supply frequencies 50 Hz and 60 Hz. Theoretically, values of FSr higher than 1
are associated with features that provide significant discriminant information to separate
the classes under analysis; that is, entropy features that produce FSr > 1 ensures the
separability of classes. Thus, for the normalized values of FuzzEn features presented in
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Figure 5a, the FSr scores are 26.65, 41.89, and 0.06 when facing GB0 vs. GB25, GB0 vs. GB50,
and GB0 vs. GB75, respectively; these FSr scores mean that the FuzzEn estimated from Vy
signal has the capability to distinguish the GB0 condition from GB25 and GB50 conditions,
but not from the GB75 condition. On the other hand, for the normalized FuzzEn feature of
Figure 5b, the computed FSr scores are 46.41, 971.21, and 23,643.02; these values describe
a high capability of the FuzzEn feature estimated from the Vz signal for separating any of
the faulty conditions (GB25, GB50, and GB75) from the healthy one (GB0). Likewise, the
FSr scores for the normalized FuzzEn feature, estimated from the C1 signal, and shown
in Figure 5c are 0.52, 0.00, and 0.03, respectively. Hence, these values depict a lack of
meaningful information to separate the healthy condition from the faulty ones.

Table 3. Quantitative Fisher score values achieved for the evaluation of the gearbox conditions (5 Hz
and 15 Hz).

Supply Electrical Frequencies of Operation

5 Hz 15 Hz

Entropy
Features

Physical
Magnitude 0% vs. 25% 0% vs. 50% 0% vs. 75% 0% vs. 25% 0% vs. 50% 0% vs. 75%

SpecEn
Vy 0.13 513.29 0.05 1.08 0.68 0.68
Vz 0.00 20.07 0.00 13.05 349.14 0.12
C 0.21 213.38 115.88 0.01 0.00 0.00

PermEn
Vy 0.00 0.00 0.18 0.03 0.38 0.02
Vz 0.00 13.67 0.33 0.04 113.63 0.45
C 0.01 0.22 0.00 0.13 0.04 0.01

SampEn
Vy 0.00 0.10 1.20 2.41 0.00 2.26
Vz 0.00 0.08 0.00 0.03 88.19 0.31
C 0.02 0.01 0.04 0.00 0.00 0.24

ApEn
Vy 0.61 13.71 0.23 0.01 0.20 16.00
Vz 0.01 6.80 0.14 0.03 190.27 0.10
C 0.02 0.01 0.08 0.00 0.00 0.17

FuzzEn
Vy 21.05 1480.97 31.14 1.50 20,259.24 381.99
Vz 0.01 0.91 10.34 856.53 12,493.92 3160.64
C 0.02 0.07 0.00 0.02 0.10 12.86

ReEn
Vy 0.00 0.00 0.00 0.00 0.00 0.00
Vz 0.00 0.00 0.00 0.00 0.00 0.00
C 0.00 0.00 0.00 0.00 0.00 0.00

Table 4. Quantitative Fisher score values achieved for the evaluation of the gearbox conditions (50 Hz
and 60 Hz).

Supply Electrical Frequencies of Operation

50 Hz 60 Hz

Entropy
Features

Physical
Magnitude 0% vs. 25% 0% vs. 50% 0% vs. 75% 0% vs. 25% 0% vs. 50% 0% vs. 75%

SpecEn
Vy 113.05 73.85 12.61 0.07 5.82 4.66
Vz 72.75 187.76 0.79 0.00 2.04 30.72
C 20,062.81 5.38 0.22 3460.57 246.86 3.67

PermEn
Vy 173.48 6.91 481.62 6.42 0.61 0.71
Vz 11.03 18.68 3.20 0.00 0.00 8.24
C 1096.29 1.73 0.04 466.80 63.29 0.29

SampEn
Vy 0.53 0.00 1.78 0.13 0.43 0.03
Vz 7.25 10.61 44.39 0.42 19.83 21.16
C 42.42 0.00 0.00 21.13 0.57 0.00
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Table 4. Cont.

Supply Electrical Frequencies of Operation

50 Hz 60 Hz

Entropy
Features

Physical
Magnitude 0% vs. 25% 0% vs. 50% 0% vs. 75% 0% vs. 25% 0% vs. 50% 0% vs. 75%

ApEn
Vy 22.30 2.44 4.83 30.91 29.19 1.87
Vz 131.91 0.32 1844.60 1.17 116.48 384.40
C 46.03 0.00 0.00 43.97 1.05 0.00

FuzzEn
Vy 0.63 1.68 1.07 26.65 41.89 0.06
Vz 33,901.59 1138.96 66,594.98 46.41 971.21 23,643.02
C 0.02 3.07 196.82 0.52 0.00 0.03

ReEn
Vy 0.00 0.00 0.00 0.00 0.00 0.00
Vz 0.00 0.00 0.00 0.00 0.00 0.00
C 0.00 0.00 0.00 0.00 0.00 0.00

In addition, to complement the proposed signal entropy analysis for the assessment
of uniform wear in the GB, Figure 6a–c present the boxplots for the normalized SpecEn
feature estimated from the signals Vy, Vz, and C1. The KW test applied to these normalized
values leads to obtaining p-values equal to 4.64 × 10−71, 2.52 × 10−69, and 5.01 × 10−80

for each corresponding signal when the kinematic chain operates at 60 Hz. Likewise, the
most relevant FSr scores are computed for the C1 signal with values about 3460.57, 246.86,
and 3.67 when facing GB0 vs. GB25, GB0 vs. GB50, and GB0 vs. GB75, correspondingly.
Also, another important FSr score is calculated for the Vz signal when comparing GB0
vs. GB75 conditions, and such an FSr score is equal to 30.72. Therefore, it should be
highlighted that there exists a relationship between higher values in the FSr score and the
vertical separation of medians in the boxplots. On the other side, it is also probable that a
specific feature computed from a particular signal does not provide sufficient information
for distinguishing between different conditions, but another feature may provide enough
information to carry out the class separation. In this regard, Figure 7a–c present the boxplots
obtained for the normalized ApEn feature estimated from the signals Vy, Vz, and C1 when
the kinematic chain operates at 60 Hz, separately; their associated p-values are 6.74 × 10−79,
1.74 × 10−78, and 3.10 × 10−66. As well, the computed FSr scores for the Vy signal are 30.91,
1.17, and 43.97, and, for the Vz signal they are 29.19, 116.48, and 1.05. In the case of the C1
signal, the corresponding scores are 1.87, 384.40, and 0.00 when the healthy condition is
faced with each faulty condition. It is worth mentioning that the ApEn feature provides
meaningful information for assessing different severities of uniform wear in the GB.
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Figure 6. Boxplots of the estimated SpecEn feature when evaluating the GB0, GB25, GB50, and GB75
are tested in the GB with 60 Hz as operating frequency, the SpecEn is computed from signals: (a) Vy,
(b) Vz, and (c) C1.
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Figure 7. Boxplots of the estimated ApEn feature when evaluating the GB0, GB25, GB50, and GB75
are tested in the GB and the kinematic chain operates at 60 Hz; the ApEn is computed from signals
(a) Vy, (b) Vz, and (c) C1.

Additionally, during the entropy signal analysis for detecting uniform wear in a GB, it
can be noticed that the consideration of a single feature may not contain enough discrimi-
nant information to separate all the assessed conditions; in this regard, the combination of
different entropy features may increase the capabilities of condition monitoring strategies
to perform the fault assessment. Hence, to validate this assertion, the combination of three
entropy features is tested and evaluated under the FDS analysis; that is, due to each tested
condition characterized by 18 entropy features (6 entropy features per signal, Vy, Vz, and C1
as summarized in the Table 5), there are C18

3 = 816 possible combinations to be analyzed
using Equations (13)–(15). Also, during this analysis, the GB0 condition is individually
faced against the GB25, GB50, and GB75 conditions for each operating condition of the
kinematic chain (5 Hz, 15 Hz, 50 Hz, and 60 Hz), the resulting FSr scores are ranked in
descending order and the first three ranked FSr values are considered the most relevant.
Table 6 summarizes the first three ranked FSr values: as observed, any of the resulting
combinations produce FSr > 11, which ensures the separability of classes; the smallest FSr
scores are computed when GB0 is faced with GB25 when the kinematic chain operates at
5 Hz. Meanwhile, the highest FSr scores are computed also when GB0 is faced with GB25
when the kinematic chain operates at 50 Hz.

Table 5. Identifiers assigned to each considered entropy feature for each signal under analysis Vy, Vz,
and C1.

Entropy Feature
Signals under Analysis

Vy Vz C1

SpecEn 1 7 13

PermEn 2 8 14

SampEn 3 9 15

ApEn 4 10 16

FuzzEn 5 11 17

RenyiEn 6 12 18

In order to validate that the combination of entropy features may improve the capa-
bility of condition monitoring strategies to perform the fault assessment, the t-distributed
stochastic neighbor embedding (t-SNE) is used to obtain the visual representation of the
best-ranked features (last row in Table 6) into a two-dimensional (2D) space. As a result,
Figure 8a, Figure 8b, Figure 8c, and Figure 8d show the 2D visual representation of the data
distribution for the best-ranked features resulting from evaluating all possible combinations
(C18

3 = 816) by the FDS when the kinematic chain operates at 5 Hz, 15 Hz, 50 Hz, and
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60 Hz, respectively. It should be highlighted that all conditions of uniform wear (GB0,
GB25, GB50, and GB75) tested in the GB appear separated from each other for any of the
supply electrical frequencies of operation; thus, the use of entropy features estimated from
vibration signals and stator current signatures can lead to the accurate assessment of faults
in rotating machines like GBs.

Table 6. Quantitative Fisher score values obtained when combinations of three entropy features are
considered during the evaluation of the gearbox conditions at all operating frequencies.

Supply Electrical Frequencies of Operation

5 Hz 15 Hz 50 Hz 60 Hz

FSr
Combined

Features FSr
Combined

Features FSr
Combined

Features FSr
Combined
Features

Fa
ce

d
co

nd
it

io
ns GB0 vs. GB25

13 5, 13, 17 363 5, 7, 11 39,594 11, 13, 14 3119 2, 13, 14
12 5, 13, 14 341 7, 8, 11 37,972 11, 13, 16 3115 12, 13, 14
11 5, 13, 16 340 4, 7, 11 37,176 11, 13, 15 3003 2, 12, 13

GB0 vs. GB50
1509 1, 5, 13 27,166 5, 11, 12 1037 1, 7, 11 777 11, 12, 13
1339 1, 5, 8 26,691 5, 6, 11 862 7, 11, 14 771 1, 11, 13
1339 1, 5, 17 26,618 4, 5, 11 862 1, 8, 11 769 2, 11, 13

GB0 vs. GB75
152 5, 11, 13 2975 4, 5, 11 22,278 1, 10, 11 11,637 9, 11, 12
142 5, 13, 17 2891 5, 11, 15 22,207 10, 11, 12 11,514 11, 12, 13
142 5, 13, 16 2882 5, 11, 16 20,742 1, 11, 12 10,910 11, 12, 15

Best-ranked
features

4, 5, 6, 7, 8,
11, 12, 15, 16

1, 5, 8, 11, 13,
14, 16,17

1, 7, 8, 10, 11,
12, 13, 4, 15, 16

1, 2, 9, 11, 12,
13, 14, 15
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Figure 8. Resulting projection achieved by applying the t-distributed stochastic neighbor embedding
(t-SNE) to the ranked entropy features when the GB0 condition is faced with GB25, GB50 and GB75
for the kinematic chain operating at (a) 5 Hz, (b) 15 Hz, (c) 50 Hz and (d) 60 Hz.
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5.2. Entropy Analysis for Detecting Faults in the IM

Successively, as mentioned in the Section 3, the proposed entropy signal analysis is
also applied to another dataset, which is also composed of vibration signals and stator
current signatures, but, acquired during the evaluation of different faulty conditions such
as HLT, BD, BRB, UNB, and MIS in an IM linked to a kinematic chain that operates at four
different supply electrical frequencies of operation such as 5 Hz, 15 Hz, 50 Hz, and 60 Hz.
The entropy analysis is applied to the same three signals Vy, Vz, and C1; thus, these signals
are equally segmented, and then the proposed set of entropy features from each segmented
part is estimated. As a result, similarly to the analysis in the GB, three characteristic feature
matrices are obtained, Vy, Vz, and C1, with a dimension of 6× 100. Now, in this case, for the
IM under the BRB condition, the following twelve matrices—VBRB@5Hz

y , VBRB@5Hz
z , CBRB@5Hz

1 ,
VBRB@15Hz

y , VBRB@15Hz
z , CBRB@15Hz

1 , VBRB@50Hz
y , VBRB@50Hz

z , CBRB@50Hz
1 , VBRB@60Hz

y , VBRB@60Hz
z , and

CBRB@60Hz
1 —are obtained for all frequencies. Afterward, the normalization procedure is

carried out and the normalized feature matrices are generated, NVy, NVz and NC1, where
entropy features have zero mean and unit variance, i.e., for the BRB condition, the matrices
NVBRB@5Hz

y , NVBRB@5Hz
z , and NCBRB@5Hz

1 are obtained when the kinematic chain operates at
5 Hz.

Once the normalization of all the feature matrices is performed, the KW test is carried
out using Equation (12); thereby, for the conditions tested in the IM, the number of classes
is defined as C = 5, with a total number of samples N = 500, for all classes with ni = 100
samples per class. Table 7 summarizes the resulting p-values; as observed, most of the
p-values are smaller than 0.05, which describes statistically significant differences between
the analyzed classes. In fact, most of the achieved p-values are represented on a scale that
varies from 1 × 10−9 to 1 × 10−97; ideally, these values can be understood as zero. On
the other hand, Figure 9a–c show the resulting boxplots achieved for the SpecEn feature
estimated from Vy, the ApEn feature estimated from Vz, and the FuzzEn feature estimated
from C1, respectively, when the kinematic chain operates at 50 Hz. As appreciated, each
one of the entropy features provides statistically significant information to separate specific
conditions; that is, SpecEn can separate the HLT condition from BD, BRB, and UNB, but
produce a slight overlapping with the MIS condition. Meanwhile, the ApEn has the
capability of separating the HLT condition from BD, UNB, and MIS but not from the BRB
condition. At last, the FuzzEn also separates the HLT condition from BD, UNB, and MIS;
meanwhile, a slight overlapping is produced with the BRB condition.
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Figure 9. Boxplots obtained when evaluating the HLT, BD, BRB, UNB, and MIS conditions are
evaluated in the IM and the kinematic chain operates at 50 Hz; the boxplots belong to (a) SpeEn
feature estimated from Vy, (b) ApEn feature estimated from Vz, and (c) FuzzEn feature estimated
from C1.
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Table 7. Quantitative p-value accomplished by applying the KW test to the entropy features estimated
from signals Vy, Vz, and C1 for the conditions BD, BRB, UNB, and MIS, evaluated in the IM for all
operating frequencies.

Entropy
Features

Physical
Magnitude

Supply Electrical Frequencies of Operation

5 Hz 15 Hz 50 Hz 60 Hz

SpecEn
Vy 0 0 0 0
Vz 0 0 0 0
C 0 0 0 0

PermEn
Vy 0 0 0 0
Vz 0 0 0 0
C 0 0 0 0

SampEn
Vy 0 0 0 0
Vz 0 0 0 0
C 0 0 0 0

ApEn
Vy 0 0 0 0
Vz 0 0 0 0
C 0 0 0 0

FuzzEn
Vy 0 0 0 0
Vz 0 0 0 0
C 0 0 0 0

ReEn
Vy 0.762 0.452 0 0
Vz 0.00588 0.0931 0.00877 0.0799
C 0.199 0.395 0.227 0.891

Successively, the FDS analysis is performed by using Equations (13)–(15), with the
aim of evaluating the discriminant properties of each normalized entropy feature and
distinguishing between the conditions tested in the IM. Hence, Table 8 summarizes the
FSr scores achieved when the HLT condition is faced with each faulty condition and the
supply electrical frequencies of operation used in the kinematic chain are 5 Hz and 15 Hz.
Meanwhile, Table 9 summarizes the FSr scores obtained when the kinematic chain operates
at 50 Hz and 60 Hz. As appreciated in Table 8, only a few entropy features for some specific
signals lead to the production of FSr scores higher than 1 for the operating frequency of
5 Hz, whereas for 15 Hz, most of the FSr scores are higher than 1; thereby, it could be
possible to obtain misclassifications when FSr scores smaller than 1 are produced. On the
other hand, as depicted in Table 9, the values of FSr scores are higher than 1 for almost
all the entropy features for the three signals, and FSr > 1 may ensure the separability
of assessed conditions. As previously stated, a specific entropy feature may not provide
sufficient information to separate the healthy condition from the faulty ones. In this
sense, C18

3 = 816 possible combinations of three entropy features are also evaluated using
Equations (13)–(15), accordingly; during the analysis, the HLT condition is faced with
the BD, BRB, UNB, and MIS conditions for each operating supplying frequency of the
kinematic chain (5 Hz, 15 Hz, 50 Hz, and 60 Hz). Table 10 summarizes the first three ranked
FSr values, as appreciated, and only the FSr scores achieved when the HLT condition is
faced with the MIS condition (operating at 5 Hz) produce FSr < 1, whereas the reaming
FSr scores lead to FSr > 1. Finally, the t-SNE is used to obtain the visual representation of
the best-ranked features (last row in Table 10) in a 2D space; thus, Figure 10a–d show the
data distributions for the best-ranked features when the kinematic chain operates at 5 Hz,
15 Hz, 50 Hz, and 60 Hz, respectively. It must be emphasized that all tested conditions in
the IM (HLT, BD, BRB, UNB, and MIS) appear separated from each other for the operating
frequencies of 50 Hz and 60 Hz (Figure 10c,d). Meanwhile, in Figure 10b, all the faulty
conditions are separated from the HLT one when the kinematic chain operates at 15 Hz;
nevertheless, an unexpected overlapping is produced between BD and UNB conditions.
Unfortunately, in Figure 10a, the HLT, BD, UNB, and MIS conditions appear to overlap
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between them when the kinematic chain operates at 5 Hz, and only the BRB condition
tries to be separated from the other conditions. Therefore, it is worth mentioning that the
use of entropy features estimated from vibration signals and stator current signatures can
lead to the accurate diagnosis of faults like BD, BRB, UNB, and MIS in IMs; however, the
assessment of faults in IMs through entropy features can be sensitive to the rotating speed,
specifically, at high operating frequencies (50 Hz and 60 Hz), an accurate assessment of
faults is performed, but some limitations are presented during the fault diagnosis at an
extremely low operating frequency (5 Hz).
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entropy features when the HLT condition in the IMs is faced with BD, BRB, UND, and MIS for the
kinematic chain operating at (a) 5 Hz, (b) 15 Hz, (c) 50 Hz, and (d) 60 Hz.

Table 8. Quantitative Fisher score values achieved for the experimentation of different faulty condi-
tions in the IM when the kinematic chain operates at 5 Hz and 15 Hz.

Supply Electrical Frequencies of Operation

5 Hz 15 Hz

Entropy
Features

Physical
Magnitude

HLT
vs.
BD

HLT
vs.

BRB

HLT
vs.

UNB

HLT
vs.

MIS

HLT
vs.
BD

HLT
vs.

BRB

HLT
vs.

UNB

HLT
vs.

MIS

SpecEn
Vy 0.04 0.03 0.00 0.00 0.09 23.79 2.62 0.49
Vz 0.07 0.02 0.00 0.00 0.03 1.53 0.01 24.07
C 0.39 0.12 0.47 0.28 0.00 0.01 0.00 2.05

PermEn
Vy 0.01 0.00 0.01 0.00 0.00 1.32 0.00 0.30
Vz 0.00 0.01 0.00 0.00 0.01 2.64 0.00 0.36
C 0.00 0.00 0.03 0.00 0.01 0.01 0.03 0.19
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Table 8. Cont.

Supply Electrical Frequencies of Operation

5 Hz 15 Hz

Entropy
Features

Physical
Magnitude

HLT
vs.
BD

HLT
vs.

BRB

HLT
vs.

UNB

HLT
vs.

MIS

HLT
vs.
BD

HLT
vs.

BRB

HLT
vs.

UNB

HLT
vs.

MIS

SampEn
Vy 0.04 0.02 0.00 0.02 0.00 0.00 0.01 0.00
Vz 0.00 0.62 0.01 0.00 0.09 0.00 0.00 0.03
C 0.00 0.00 0.42 0.01 0.00 0.12 0.00 0.00

ApEn
Vy 0.03 0.13 0.00 0.02 0.00 0.24 0.01 0.01
Vz 0.00 3.87 0.24 0.01 0.11 0.00 0.01 0.09
C 0.00 0.00 0.34 0.00 0.00 0.10 0.00 0.00

FuzzEn
Vy 0.81 4.30 0.08 0.10 0.17 390.51 0.00 0.00
Vz 0.84 24.87 0.28 0.09 23.30 253.30 73.93 47.41
C 0.00 0.00 0.85 0.00 0.00 1.35 0.00 0.04

ReEn
Vy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Vz 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 9. Quantitative Fisher score values achieved for the experimentation of different faulty condi-
tions in the IMs when the kinematic chain operates at 50 Hz and 60 Hz.

Supply Electrical Frequencies of Operation

50 Hz 60 Hz

Entropy
Features

Physical
Magnitude

HLT
vs.
BD

HLT
vs.

BRB

HLT
vs.

UNB

HLT
vs.

MIS

HLT
vs.
BD

HLT
vs.

BRB

HLT
vs.

UNB

HLT
vs.

MIS

SpecEn
Vy 41.67 214.54 350.44 0.00 3.68 15.01 0.92 20.53
Vz 0.00 108.23 75.44 14.62 0.98 27.19 1.98 2.48
C 0.00 0.00 0.00 312.18 0.81 0.00 0.01 366.36

PermEn
Vy 34.97 56.67 56.82 53.03 0.49 0.02 0.00 0.00
Vz 12.16 29.87 7.80 19.29 0.01 0.00 0.39 7.94
C 0.00 0.11 0.00 49.79 1.32 0.07 0.01 75.69

SampEn
Vy 2.29 1.49 1.34 1.13 1.19 0.55 0.00 0.03
Vz 0.01 0.00 13.47 0.74 2.56 17.94 0.00 0.00
C 0.00 0.00 0.00 0.16 0.00 0.00 0.00 0.34

ApEn
Vy 0.01 0.41 0.89 1.82 32.68 15.08 0.10 0.00
Vz 22.96 0.00 1.51 78.88 2.54 69.22 0.00 102.33
C 15.92 0.01 0.33 0.35 0.00 2.10 0.00 0.28

FuzzEn
Vy 498.44 80.17 717.47 0.00 17.41 0.25 148.49 342.87
Vz 16.41 0.13 719.71 61,932.78 21.66 23.48 2.07 4.54
C 0.00 0.01 0.01 0.07 0.00 0.00 0.00 0.62

ReEn
Vy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Vz 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 10. Quantitative Fisher score values achieved when combinations of three entropy features are
considered during the evaluation of different faulty conditions in the IMs for all operating frequencies.

Supply Electrical Frequencies of Operation

5 Hz 15 Hz 50 Hz 60 Hz

FSr
Combined

Features FSr
Combined

Features FSr
Combined

Features FSr
Combined
Features

Fa
ce

d
co

nd
it

io
ns

HLT vs. BD
2.03 5, 11, 13 15 11, 12, 15 283 2, 5, 10 46 4, 5, 11
1.39 5, 11, 17 15 9, 11, 12 280 2, 5, 17 45 1, 4, 5
1.38 5, 7, 11 15 8, 11, 12 278 2, 5, 12 44 4, 5, 9

HLT vs. BRB
20.26 5, 11, 13 496 5, 8, 11 221 1, 5, 7 110 4, 5, 11
20.19 5, 10, 11 458 5, 11, 15 213 2, 5, 7 108 1, 4, 5
19.05 5, 11, 17 446 5, 11, 16 208 1, 2, 7 105 4, 5, 9

HLT vs. UNB
1.23 11, 13, 17 32 4, 8, 11 1392 1, 5, 11 110 1, 5, 12
1.12 13, 15, 17 31 3, 8, 11 1186 2, 5, 11 108 1, 5, 7
1.05 13, 16, 17 30 2, 8, 11 1086 5, 9, 11 105 5, 7, 12

HLT vs. MIS
0.40 5, 11, 13 52 5, 7, 11 18,882 11, 12, 14 713 5, 13, 14
0.30 3, 5, 13 51 7, 11, 13 18,677 11, 12, 16 698 5, 10, 13
0.29 5, 13, 17 51 4, 7, 11 18,642 11, 12, 15 673 1, 5, 13

Best-ranked
features

2, 3, 4, 5, 7, 8, 9,
11, 12, 13, 15, 16

3, 5, 7, 10, 11,
13, 15, 16, 17

1, 2, 5, 7, 9, 10, 11,
12, 14, 15, 16, 17

1, 4, 5, 7, 9, 10,
11, 12, 13, 14

5.3. Comparison versus Classical Approaches

Finally, a comparison with classical approaches is performed to highlight that entropy
features provide meaningful information to carry out the detection of faults in GBs and
IMs; in this regard, the estimation of frequency spectra through the FFT has represented
a suitable diagnosis tool for detecting the occurrence of faults in rotating machinery. For
example, the detection of problems associated with rotor bars in IMs is commonly addressed
due to the unbalance of the air-gap magnetic flux leading to the generation of a fault-
related frequency component around the supply frequency ( fs) in the frequency spectrum
at fbrb = (1 ± 2ks) fs, k + 1, 2, 3, . . .. Nevertheless, the detection of faults based on the
analysis of frequency spectra requires prior knowledge and expertise since the calculation
of fault-related frequency components depends on additional variables such as the per-unit
slip (s = (ns − nr)/ns), which, in turn, is in terms of the synchronous (ns) and rotating
rotor speed (nr). Figure 11 shows the obtained frequency spectra by applying the FFT
technique to the stator current signatures acquired when the IM is tested under the HLT
and BRB conditions at 50 Hz as the supply electrical frequency of operation, as observed,
the spectrum associated with the BRB condition produces the fbrb components appearing
at 49.4 Hz and 50.59 Hz for a slip of around 1.5%. Although faults like BRBs introduce
modifications in specific fault-related frequency components, the accuracy of the diagnosis
depends on the technician’s knowledge. Hence, the analysis of changes and trends through
the estimation of entropy features represents a suitable option to achieve the occurrence of
any fault in rotating machinery like IMs or GBs.

On the other hand, DDA can be successfully applied for detecting and identifying
faults in rotating machines; however, the performance achieved by these approaches
depends on two main stages where a set of fault-related features is estimated and then
subjected to a reduction procedure. That is, the statistical features such as RMS value,
Standard Deviation, Kurtosis, Skewness, Shape Factor, and Latitude factor are commonly
computed from raw signals aiming to model trends and changes; meanwhile, dimensional-
ity reduction techniques such as PCA and/or LDA are used to compress and transform an
original dataset into a 2D feature space. Consequently, to validate that the entropy features
studied in this work provide significant information for fault diagnosis methodologies, the
aforementioned statistical features have been computed from the raw signals Vy, Vz and
C1 for all tested conditions (GB0, GB25, GB50, and GB75) in the GB under all operating
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frequencies (5 Hz, 15 Hz, 50 Hz, and 60 Hz), and then are subjected to a reduction procedure
using the LDA technique. Figure 12a shows the resulting 2D projection where it is possible
to observe four main clusters representing the assessed conditions in the GB; unfortunately,
the statistical features lead to overlapping between all faulty conditions. Additionally, to
compare the performance between statistical features and entropy features, the entropy
features studied in this work are also subjected to the reduction procedure by means of the
LDA technique. Figure 12b presents the resulting 2D projection where an improvement be-
tween the separability of all considered conditions is obtained. It should be mentioned that
for both sets of features (statistical and entropy), the reduction procedure has been applied
to all samples of all studied conditions under all tested frequencies. Thereby, the obtained
results support the use of entropy features as a part of condition monitoring methodologies
for the detection and identification of faults that can occur in rotating elements like GBs
and IMs.

Electronics 2024, 13, x FOR PEER REVIEW 24 of 29 
 

 

the diagnosis depends on the technician’s knowledge. Hence, the analysis of changes and 
trends through the estimation of entropy features represents a suitable option to achieve 
the occurrence of any fault in rotating machinery like IMs or GBs. 

 
Figure 11. Frequency spectra obtained by applying the FFT technique over the acquired stator cur-
rent signature when the conditions of HLT and BRB are tested in the IM and the supply frequency 
is fixed at 50 Hz. 

On the other hand, DDA can be successfully applied for detecting and identifying 
faults in rotating machines; however, the performance achieved by these approaches de-
pends on two main stages where a set of fault-related features is estimated and then sub-
jected to a reduction procedure. That is, the statistical features such as RMS value, Stand-
ard Deviation, Kurtosis, Skewness, Shape Factor, and Latitude factor are commonly com-
puted from raw signals aiming to model trends and changes; meanwhile, dimensionality 
reduction techniques such as PCA and/or LDA are used to compress and transform an 
original dataset into a 2D feature space. Consequently, to validate that the entropy fea-
tures studied in this work provide significant information for fault diagnosis methodolo-
gies, the aforementioned statistical features have been computed from the raw signals 𝑉 , 𝑉  and 𝐶  for all tested conditions (GB0, GB25, GB50, and GB75) in the GB under all oper-
ating frequencies (5 Hz, 15 Hz, 50 Hz, and 60 Hz), and then are subjected to a reduction 
procedure using the LDA technique. Figure 12a shows the resulting 2D projection where 
it is possible to observe four main clusters representing the assessed conditions in the GB; 
unfortunately, the statistical features lead to overlapping between all faulty conditions. 
Additionally, to compare the performance between statistical features and entropy fea-
tures, the entropy features studied in this work are also subjected to the reduction proce-
dure by means of the LDA technique. Figure 12b presents the resulting 2D projection 
where an improvement between the separability of all considered conditions is obtained. 
It should be mentioned that for both sets of features (statistical and entropy), the reduction 
procedure has been applied to all samples of all studied conditions under all tested fre-
quencies. Thereby, the obtained results support the use of entropy features as a part of 
condition monitoring methodologies for the detection and identification of faults that can 
occur in rotating elements like GBs and IMs. 

Fequency (Hz)

HLT
BRB

fbrb fbrb

fs

Figure 11. Frequency spectra obtained by applying the FFT technique over the acquired stator current
signature when the conditions of HLT and BRB are tested in the IM and the supply frequency is fixed
at 50 Hz.

Electronics 2024, 13, x FOR PEER REVIEW 25 of 29 
 

 

  
(a) (b) 

Figure 12. Resulting 2D projection obtained by applying the LDA technique to (a) statistical and (b) 
entropy features proposed in this work, both estimated from signals 𝑉 , 𝑉 , and 𝐶 . In the resulting 
projection, all evaluated frequencies have been considered (5 Hz, 15 Hz, 50 Hz, and 60 Hz). 

Finally, Table 11 presents the most important highlights obtained during the compar-
ison between the classical frequency analysis (performed by the FFT) and by comparing 
DDA in front of the entropy analysis performed in this work. In fact, it can be emphasized 
that the most critical issue is associated with prior knowledge and expertise for detecting 
those fault-related frequency components in a frequency spectrum; meanwhile, the use of 
entropy features and dimensionality reduction techniques, such as LDA, leads to improve 
the diagnosis outcome. On the other hand, Table 12 summarizes the highlights of the com-
parison between the entropy features analysis versus classical statistical features, both 
used in a DDA using the LDA technique, and the estimation of statistical time domain 
features is a suitable option to characterize trends and changes in time domain signals 
with an appropriate trade-off between simplicity and quickly responses; however, the ob-
tained results demonstrate that entropy features significantly improve the assessment of 
faults regardless of the operating condition. 

Table 11. Summary of the highlights found of the analyzed entropy features versus classical fre-
quency analysis through the FFT. 

Approach 

Fault Detection in IMs 
Two Conditions: 

HLT and BRB 
Advantages Disadvantages 

Classical approach 
FFT analysis 

• Low computational burden. 
• Simple formulation. 

• Prior knowledge is required. 
• High dependency of spectral frequency content. 
• Fauts with similar frequency behavior yield 

misleading fault detection. 
• Resolution restriction in the sampling fre-

quency. 

Data-driven ap-
proach 

Entropy features 
and LDA 

• Entropy features provide wide energy 
behavior of the signal. 

• Most of the indicators provide useful 
information. 

• Could be helpful for signals with non-
linearities and non-stationary behavior. 

• The general results have clear cluster 
separation. 

• Complex computation and medium computa-
tional burden. 

Feature 1

Fe
at

ur
e 

2

GB0 GB25 GB50 GB75

Feature 1

Fe
at

ur
e 

2

GB0 GB25 GB50 GB75

Figure 12. Resulting 2D projection obtained by applying the LDA technique to (a) statistical and
(b) entropy features proposed in this work, both estimated from signals Vy, Vz, and C1. In the resulting
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Finally, Table 11 presents the most important highlights obtained during the compari-
son between the classical frequency analysis (performed by the FFT) and by comparing
DDA in front of the entropy analysis performed in this work. In fact, it can be emphasized
that the most critical issue is associated with prior knowledge and expertise for detecting
those fault-related frequency components in a frequency spectrum; meanwhile, the use of
entropy features and dimensionality reduction techniques, such as LDA, leads to improve
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the diagnosis outcome. On the other hand, Table 12 summarizes the highlights of the
comparison between the entropy features analysis versus classical statistical features, both
used in a DDA using the LDA technique, and the estimation of statistical time domain
features is a suitable option to characterize trends and changes in time domain signals with
an appropriate trade-off between simplicity and quickly responses; however, the obtained
results demonstrate that entropy features significantly improve the assessment of faults
regardless of the operating condition.

Table 11. Summary of the highlights found of the analyzed entropy features versus classical frequency
analysis through the FFT.

Approach

Fault Detection in IMs
Two Conditions:

HLT and BRB

Advantages Disadvantages

Classical approach
FFT analysis

• Low computational burden.
• Simple formulation.

• Prior knowledge is required.
• High dependency of spectral frequency content.
• Fauts with similar frequency behavior yield

misleading fault detection.
• Resolution restriction in the sampling frequency.

Data-driven approach
Entropy features and LDA

• Entropy features provide wide
energy behavior of the signal.

• Most of the indicators provide
useful information.

• Could be helpful for signals with
non-linearities and non-stationary
behavior.

• The general results have clear
cluster separation.

• Complex computation and medium
computational burden.

Table 12. Summary of the highlights found of the analyzed entropy features versus statistical features,
both used in the same data-driven approach with LDA.

Approach

Fault Detection in GBs
Four Conditions:

GB0, GB25, GB50, and GB75

Advantages Disadvantages

Data-driven approach
Statistical features and LDA

• Statistical features are ease of computing
work and require a low computational
burden.

• Statistical features provide wide behavior
in geometry, asymmetry, shape, central
tendencies, trends, and dispersion.

• Most of the indicators provide
redundant information.

• Sensible to non-linearities and
non-stationary behavior.

• The general results have clusters
overlapping.

Data-driven approach
Entropy features and LDA

• Entropy features provide wide energy
behavior of the signal.

• Most of the indicators provide useful
information.

• Could be helpful for signals with
non-linearities and non-stationary behavior.

• The general results have clear cluster
separation.

• Complex computation and medium
computational burden.

6. Conclusions

In this work, an analysis of entropy-based features was performed with the objective
of identifying changes and trends produced by the unexpected occurrence of faults in a
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kinematic chain. Certainly, the proposed analysis is applied to vibration signals and stator
current signatures acquired from real laboratory experiments, where different severities
of uniform wear are tested in a GB and five different faulty conditions are tested in an
IM. There are some important aspects that must be highlighted: the first one is that
the calculation of the six proposed entropy features from available vibrations and stator
currents leads to a high-performance characterization to assess the occurrence of faults
in both GB and IM linked in a kinematic chain that operates at different supply electrical
frequencies of operation. Indeed, each different condition under study produces different
amplitude values during the calculation of entropy features; thus, any variation obtained in
regard to the healthy condition is produced due to the occurrence of an undesirable faulty
condition. The second aspect to be highlighted is that, in the analysis of entropy features
using the KW test and the FDS technique, both approaches allow us to determine whether
the proposed entropy features have statistically significant information for distinguishing
between different conditions (classes). Certainly, through boxplots resulting from the
KW test, it can be inferred when data points of the analyzed conditions can be separated
from each other where the separation between classes is related to the vertical separation
that appears between medians in the boxplots. On the other hand, it is demonstrated
that overlapping problems are avoided when the values of FSr scores are higher than
1; additionally, it has been proved that the combination of entropy features contributes
to a better separation between assessed conditions. The final aspect is that the use of
entropy features provides significant information to perform the fault assessment for the
detection of different severities of uniform wear in a GB regardless of the rotating frequency;
on the contrary, when entropy features are applied to the diagnosis of faults in IMs, it
may be possible to produce accurate detection of faults whether the IM operates at high
supply frequencies but a lack of discriminant capabilities is present at extremely low
operating frequencies. Thus, from the experimental tests, it can be concluded that entropy
features have the advantage of providing wide energy behavior into a measured signal
and, therefore, most of the indicators analyzed provided useful discriminatory information
of the conditions; thus, the feature values were robust and consistent. This way, a question
appears: why and when should the entropy-based features be used? The answer is that
they can be applied in systems under unfavorable conditions like low values of the load
(where most of the proposed approaches present difficulties for the diagnosis), also with
different types of faults, not necessarily related to the bearing defects, like unbalance,
misalignment, broken rotor barks, and gear wear. Thereby, entropy features represent
a suitable option to be implemented as a part of condition monitoring strategies for the
detection and identification of faults in different elements involved in a kinematic chain
such as GBs and IMs. Future work should consider the combination of techniques in which
entropy-based features can be exploited for diagnosing faults in non-stationary signals
for combined faults, or even under unfavorable noise conditions combined with variable
operating conditions.
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