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Abstract: Faster-than-Nyquist (FTN) signaling has attracted increasing interest in the past two
decades. However, when the fifth-generation (5G) communication low-density parity check (LDPC)
code is applied to FTN signaling with low Bahl–Cock–Jelinek–Raviv (BCJR) states of detection and
few turbo equalization iterations, an error floor near 10−5 is found, which does not exist in the
original LDPC used for orthogonal signaling. This can be eliminated through many detection and
decoding iterations, but this is unacceptable considering the increase in latency and storage. To
solve this problem, we propose an LDPC and Reed–Solomon (RS) concatenation code, shortening,
and perturbation scheme to lower the error floor. We propose a parallel encoder architecture for RS
component code and a concise algorithm to calculate its constant multiplier coefficients, leveraging
a traditional serial encoder, which can also be used for other parallelisms, rates, and lengths. The
simulation results show that the proposed concatenation and shortening scheme can lower the error
floor to about 10−7. The proposed scheme has an error correction capability for coded FTN signaling
and successfully lowers the error floor with the limitation of few turbo iterations and few BCJR states.

Keywords: LDPC; RS; error floor; perturbation decoder; FTN signaling

1. Introduction

Faster-than-Nyquist (FTN) signaling dates back to the 1970s and has attracted increas-
ing interest in the past two decades due to the lack of research into frequency resources
and bandwidth in digital communication, such as wireless communication, satellite com-
munication, and optical communication [1]. One common method to improve link capacity
and spectrum efficiency (SE) is to adopt high-order modulation in an orthogonal (Nyquist)
modulation scheme, for example, by using quadrature amplitude modulation (QAM), such
as 16-QAM, 64-QAM, or even 4096-QAM. However, high-order modulation formats often
require higher power and sensitivity on radio frequency (RF) devices. Moreover, a higher
modulation order is more likely to suffer from noise since constellation symbols converging
in 256-QAM compared to 16-QAM and requires improved linearity of RF devices, thus
being a challenge for symbol recovery and decisions. Another attractive method is to use
a lower modulation order but non-orthogonal modulation scheme, i.e., FTN signaling.
By accelerating the symbol speed of transmission with a faster-than-Nyquist speed of
no inter-symbol interference (ISI), controlled ISI and colored noise are introduced after
match filtering, and they can be eliminated in many ways, such as with a whitening filter,
orthogonal basis model (OBM), precoding, turbo equalizer, or Bahl–Cock–Jelinek–Raviv
(BCJR) detector [2]. In band-limited scenarios like high-speed optical, wireless, and satellite
communication, FTN signaling provides higher SE with the same modulation order at the
price of a higher symbol rate (higher sampling rate) and additional digital signal processing
to mitigate ISI [3].

In recent years, many ISI mitigation methods have been studied, including linear
equalization, decision feedback equalization (DFE), frequency domain equalization at the
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receiver side, and precoding and pre-equalization at the transmitter side. Although these
methods are relatively simple, their performance will degrade with severe ISI when ap-
plying the high-acceleration factor of FTN signaling. The BCJR algorithm performs trellis
searching to find survivors and make decisions for each bit. However, when dealing with
a high modulation order or long ISI taps, BCJR detection requires considerable memory
space to store a large number of states and routes in trellises, which increases exponentially
with ISI length. To solve this problem, reduced-state M-BCJR detection was studied in [2],
and the authors showed that only 3-state BCJR is required for FTN signaling with accelera-
tion factor τ = 0.5. In a coded system with iterative decoding, we can apply FTN signaling
as an internal ISI mechanism and use BCJR detection to generate soft decision bits, i.e., log
likelihood ratio (LLR), and exchange LLRs among the BCJR detector and soft channel
decoder, which is called turbo equalization. In this work, we applied the M-BCJR algorithm
together with LDPC-RS concatenation code to form a coded FTN signaling scheme and
mitigate ISI through turbo equalization.

LDPC code was first proposed by Gallager in 1962 [4]. Originally, the LDPC received
little attention due to limited theoretical knowledge and computer processing capacity.
Over the years, with the increasing improvement in relevant basic theories and the vigorous
development of computer science and technology, researchers have devoted increasing
effort to the study of LDPC code. LDPC code has become one of the most popular coding
technologies and has been widely used in various communication systems, such as wireless,
satellite, and fiber communication. With sufficient code length, LDPC code can approach
the Shannon limit [5] and be capable of error correction at a low signal-to-noise ratio (SNR).
Among soft decision-decoding methods, belief propagation (BP) is a promising decoding
scheme for the LDPC and for other codes that need soft decisions and iterative decoding.

A typical bit error rate (BER) curve of channel coding resembles a waterfall, i.e., the
BER drops sharply when the signal-to-noise ratio (SNR) increases. However, an error floor
phenomenon can be found with many LDPC codes; when SNR increases, the BER does not
decrease, or the curve flattens. According to [6], the error floor [7] is caused by sub-optimal
iterative decoding [8], near-code words [9], and absorbing and trapping sets [10]. In some
situations, the error floor can not be eliminated, and there are some methods to lower the
error floor, for example, designing a large-girth parity matrix to optimize the code structure;
using concatenation code, such as RS-LDPC [11] or DVB BCH-LDPC code [12] that utilizes
RS or BCH as the outer code and the LDPC as the inner code; or manually introducing low-
magnitude noise to message-passing decoders to lower the error floor. For some conditions,
such noise can actually improve decoding performance [13]. This improvement, based
on the effect of noise, is called stochastic resonance. We can refer to the introduction of
such noise as perturbation. Perturbation decoders have exceptional performance and very
low resource costs [14] and may prove superior to the existing techniques [15] in computer
memory and data storage applications [16]. Details about stochastic resonance can be
found in [17]. Note that the error floor may occur in a particular code and may not occur in
another, and it is hard to predict whether it will occur. For example, the 5G LDPC (7680,
3840) code used in this study has no error floor in orthogonal (Nyquist) systems. However,
when utilizing FTN signaling, we found an error floor in a rate-1/2 LDPC code masked
from the 5G base graph “BG2”. This is probably caused by the decoder’s non-linearity, too
few turbo iterations, improper loop gain or code rate, or a weakness in the masked base
matrix structure. Since this phenomenon exists and is unpredictable, we require a method
to lower the error floor that may occur in the demand region of the BER for practical
situations. In this work, we utilized two of the above methods: LDPC-RS concatenated
code and a perturbation BP decoder to lower the error floor.

Reed–Solomon (RS) code was invented by Reed and Solomon [18]. RS code has
undergone decades of development and has been used in wireless, satellite, and optical
communications due to its maximum distance separable (MDS) feature. A hard decision
decoder is often utilized for high-speed or concatenated code due to its simple structure and
high throughput. In this study, we used soft decision LDPC code due to its excellent error
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correction ability concatenated with hard decision RS code because of its high decoding
speed and definite error correction ability.

Our contribution in this paper can be summarized in two points: (1) To combat
the error floor, we propose one possible solution, the use of the LDPC-RS concatenation
and shortening scheme. We introduce perturbation into the BP decoder to enhance its
performance. (2) We propose a 4-parallel encoder architecture for RS component code and
a concise algorithm to calculate its constant multiplier coefficients, leveraging a traditional
serial encoder, which can also be used for calculating other parallelisms, code rates, and
lengths. The simulation results show that the proposed concatenation and shortening
scheme can lower the error floor of the original single LDPC code, and with perturbation in
the BP decoder, the error floor can be eliminated below 10−7 for different LDPC maximum
decoding iterations. The proposed scheme has an error correction ability for BCJR detection
with few states and few iterations of turbo equalization FTN signaling and successfully
lowers the error floor.

The outline of this paper is as follows: Section 2 reviews preliminaries of FTN signaling
with the OBM, BCJR detection, turbo equalization, LDPC, and RS codes, as well as our
simulations with 5G LDPC code and an error floor. Section 3 details the structure of the
proposed LDPC-RS concatenation code, RS parallel RS encoder and algorithm for parallel
encoding coefficient calculation, and the perturbation BP decoder to lower the error floor.
Section 4 describes the performed simulations and analysis. Section 5 concludes the paper.

2. FTN Signaling with Turbo Equalization
2.1. FTN Signaling with OBM

The concept of FTN signaling was introduced by Mazo [19] in 1975. In FTN signaling,
binary sinc(t/T) pulses can be transmitted faster than typical orthogonal (Nyquist) pulses
without decreasing the square of minimum Euclidean distance between symbols, thus
theoretically not affecting the bit error rate (BER) of demodulation. The binary baseband
modulation of FTN signaling is linear and based on pulse shaping as follows:

s(t) =
√

Eb/T ∑
n

anh(t− nτT), (1)

where Eb is the average symbol energy, an represents±1, h(t) is a T-orthogonal unit energy-
shaping pulse filter such as sinc or root-raised-cosine (rRC), the symbol interval of an is τT,
the acceleration factor is τ ≤ 1, and n is the symbol index. Regarding Nyquist signaling,
τ = 1.

We use discrete-time ISI and the additive white Gaussian noise (AWGN) channel
model in [2] as the following chain of signal processing.

Data {an} at nτT → linear modulation and pulse shaping by h(t) at rate 1/τT →
AWGN→matched filter→ sample at nτT → discrete-time post filter B(z)→ frame reverse
→ channel observation y.

This chain produces a minimum phase sequence of channel observation y and can
be applied to turbo equalization as detailed in the next subsection. Furthermore, the or-
thogonal basis model (OBM) receiver uses a sequence of wider band orthogonal pulses to
express h(t) as follows:

h(t) =
K

∑
k=−K

ckϕ(t− kτT), (2)

ck =
∫

h(t)ϕ(t− kτT) dt. (3)

It is worth mentioning that basis function ϕ(t) is τT-orthogonal, and the matched
filter is matched to ϕ(t) rather than h(t); thus, the noise it outputs is white, which solves
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the colored noise problem in other receivers. The signal processing chain can be modeled
as discrete-time system v such that

y = a ∗ v + w, (4)

where a = {an}, ∗ means convolution, and w is a vector of independent identical distribu-
tion (i.i.d.) white Gaussian noise.

Regarding τ = 0.703, we use v = [0.553, 0.793, −0.084, −0.171, 0.154, −0.064, 0.006,
0.010, −0.012, 0.015, −0.016, 0.013, −0.008] in [2], which is shortened to reduce memory
usage during the simulations to the following:

v = [0.553, 0.793,−0.084,−0.171, 0.154,−0.064]. (5)

Consequently, turbo equalization (the BCJR detector) utilizes a minimum phase model
of ISI and white noise. The detector branch label l at trellis stage n is generated from data
a as follows:

l =
m

∑
n=0

an−kvk, (6)

where m is the length of v taken into account (which may be shortened due to memory
limitations).

2.2. BCJR Detection and Turbo Equalization

The BCJR algorithm computes the probability of states and paths in trellises. It
performs forward and backward recursion among the state transition map. Suppose
the channel observation y = y1, y2, . . . , yN , and the a priori symbol probability of each
transmitted symbol is known. The joint probability can therefore be calculated as follows:

P(sn = i, sn+1 = j, y) = αn[i]Γn(i, j)βn+1[j], (7)

where αn[i] is called the forward path metric for state i at stage n, βn+1[j] is called the
backward path metric for state j at stage n + 1, and Γn(i, j) is the branch metric connecting
states i and j at stage n. Usually, the transmitted symbols start from (and terminate at) an
initial all-zero state, so that

αn+1[i] = ∑
i∈S

αn[i]Γn(i, j) (8)

is initialized as α0 = (1, 0, . . . , 0), where S is the set of states that can reach state j at stage
n + 1. Regarding binary modulation, there are two elements in set S. Backward recursion
is similar in that βN = (1, 0, . . . , 0). It starts from the last symbol (stage) then proceeds
backward to the beginning, computing the backward path metric as follows:

βn[i] = ∑
j∈S

βn+1[i]Γn(i, j) (9)

where S is the set of states that can reach state i at stage n. The branch metric is

Γn[i] = [P(a′)/
√

πN0] exp[−(yn − li,j)2/N0)], (10)

where li,j is a label on the branch from state i to j, and P(a′) is the a priori probability of
symbol a′, which causes the transition (from state i to j). Let λn[j] = αn[j]βn[j], and let j be
a state at stage n. Then, we calculate LLRs via

LLR(an) = ln
P[an = +1]
P[an = −1]

= ln
∑j∈L+1

λn[j]

∑j∈L−1
λn[j]

, (11)

and L±1 are sets of states reached by an = ±1. The M-BCJR algorithm proposed by [2]
utilized the reduced search of trees and trellises. It proceeds breadth-first through a tree
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structure of metric values, keeping only the dominant M paths at each tree stage, and it
also deals with empty values of αn[j], βn[j]. More details can be found in [2]. In coded FTN
signaling, turbo equalization is usually adopted, whereby the BCJR detector and channel
decoder exchange soft information iteratively. Turbo equalization enhances detector and
decoder performance but increases complexity and latency proportional to turbo iterations.
The coded FTN signaling diagram is depicted in Figure 1, where the dashed box represents
turbo equalization.

Match Filter

& Demodulator

Channel

Encoder

Pulse shaping & 

FTN modulator

M-BCJR

Detector

AWGN 

channel

Channel

Decoder

data

recovered

data

Extrinsic LLR

Turbo Equalization

Figure 1. FTN signaling with turbo equalization.

2.3. LDPC and RS Code

Let N be the block length of the LDPC code and K be the data length; then, M = N−K
is the parity length. Let d = (d1, d2, . . . , dK) be the data and G be the generation matrix
of K-by-N size. The code word c = dG has the property cHT = 0, where H is the parity
matrix of M-by-N. The code is called low-density parity check code, a feature of which
is that parity matrix H is sparse; namely, there are many zeros and few ones in H. There
are binary and non-binary LDPC codes, and only binary codes are discussed in this work.
LDPC codes can be classified into two types from the construction of parity matrix H,
as regular and irregular codes. The number of ones in a row (column) of H is called the
row (column) degree. Regular codes have the same row degree for each row and the same
column degree for each column. Row i’s degree indicates how many variable nodes are
connected to check node i, and column j’s degree indicates how many check nodes are
connected to variable node j. Among soft decision-decoding methods, belief propagation
(BP) is a promising decoding scheme for the LDPC and other codes that need soft decisions
and iterative decoding. The BP decoder uses message passing and iteration to propagate
soft information among check and variable nodes. Since BP involves many nonlinear
calculations, the min-sum (MS) algorithm was proposed. This algorithm uses the minimum
value of soft information from relevant variable nodes to approximate the result of nonlinear
functions that the BP decoder performs, thus reducing computation complexity and latency
significantly [20]. Although the MS decoder requires fewer computations, the approximated
results always have a greater absolute value than those of BP, which causes performance
degradation. To mitigate performance loss, the normalized min-sum (NMS) scheme [21]
and its variant were studied [22]; moreover, a neural network-aided NMS approach was
proposed in [23]. The BP decoding scheme can be described as Algorithm 1.



Electronics 2024, 13, 1588 6 of 16

Algorithm 1 BP Decoding of LDPC Code.

Define:
Set of variable nodes connected to check node i: N(i) = {j : hij = 1}.
Set of check nodes connected to variable node j: M(j) = {i : hij = 1}.
Soft information from variable node j to check node i: Zij.
Soft information from check node i to variable node j: Lij.

Input: Soft bit information: L = (l1, l2, . . . , ln).
Initialization: Zij = lj.
Iteration: For each i, j, the following steps are performed until the stopping criterion is
satisfied.

(1) Row operation: For each check node i, calculate

Li = ∏
j∈N(i)

tanh(
Zij

2
), (12)

and for messages from i to each relevant variable node j,

Lij = 2 tanh−1(Li/ tanh(
Zij

2
)). (13)

(2) Column operation: For each variable node j,

Zj = lj + ∑
i∈M(j)

Lij, (14)

and the message passed from j to each relevant check node i is

Zij = Zj − Lij. (15)

(3) Stopping criterion: Make hard decision b = (b1, b2, . . . , bn) from Zj as

bi =

{
0, if Zj > 0
1, if Zj ≤ 0.

(16)

If bHT = 0 (no error) or the maximum iteration limit has been reached, stop the
decoder, otherwise continue.
Output: The decoding result b.

RS code is defined with finite field GF(2p), where p is a positive integer, and all
calculations are performed with this field. RS(n,k) code has code word length n and k
data symbols, each symbol having p bits. It can correct up to ⌊(n− k)/2⌋ errors. Let the
data symbols be m = (m0, m1, . . . , mk−1) and be represented with polynomial m(x) =
m0 + m1x + m2x2 + · · · + mk−1xk−1. Suppose the generator polynomial is g(x) = (x −
σ1)(x− σ2) . . . (x− σn−k) = x(n−k) + gn−k−1xn−k−1 + · · ·+ g1x + g0, where σ is a prime
element of GF(2p). Then, the code word c = (c0, c1, . . . , cn−1) can be calculated as follows:

c(x) = xn−km(x) + xn−km(x) mod g(x) = c0 + c1x + · · ·+ cn−1xn−1. (17)

2.4. Experiment with 5G LDPC Code and Turbo Equalization in FTN Signaling

We simulated 5G LDPC code and turbo equalization in FTN signaling with MATLAB.
The diagram is depicted in Figure 1. The LDPC code used here is a (7680, 3840) code
based on BG2 [24]. We used shortened v as in (5) and used BPSK modulation for the
baseband system model. We used turbo equalization containing an M-BCJR detector and
BP decoding for demodulation. Considering complexity and latency, we chose a maximum
turbo equalization count of 3 to lower the number of whole iterations and M = 4 states
stored at each stage of the trellis in BCJR detection, i.e., 4-BCJR detection, to reduce memory
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usage. We considered maximum iteration limits of 10, 20, and 50 for BP decoding. Therefore,
in total, three iterations of the 4-BCJR algorithm and 30, 60, and 150 iterations of BP decoding
were performed at most for three turbo iterations. Unfortunately, an error floor was found
near 10−5 as in Figure 2. It can be eliminated through many detection and decoding
iterations, but this is unacceptable considering the low latency and storage. Accordingly,
few turbo iterations and states of FTN detection can be adopted. With sufficient SNR,
the error floor of the BP decoder will disappear independently. It appears in the BER
region (10−5) of most concern in wireless communication, which is why we must lower or
eliminate the error floor.

SNR (dB)

B
E

R

4-BCJR BP itr. = 20 turbo itr. = 3, no RS.

4-BCJR BP itr. = 30 turbo itr. = 3, no RS.

4-BCJR BP itr. = 50 turbo itr. = 3, no RS.

Figure 2. BER vs. SNR of 5G LDPC (7680, 3840) code with three turbo iterations and 4-BCJR detection.

3. LDPC-RS Concatenation Code
3.1. Occurrence of an Error Floor in FTN Signaling

Inter-symbol interference caused by FTN signaling introduced relevance between
symbols and code words. Additionally, shortening or tail cutting of the pulse-shaping
filter and the channel response further complicate symbol relevance canceling. The LDPC
code shows good performance with the AWGN channel, where symbols and noise are
all independent. While applying FTN signaling and M-BCJR detection, there is residual
relevance (interference) between symbols since we cannot accurately simulate an infinite
pulse-shaping filter or channel response. On the other hand, LDPC code sometimes
independently suffers from error propagation, stopping and trapping sets of its factor
graph [17]. Thus, FTN signaling makes the LDPC code’s weakness obvious, and therefore
an error floor occurs. The smaller the acceleration factor value is, the more severe the ISI
that will occur, and thus, the BER performance of the LDPC will be poor, and the error floor
will still occur.

The error floor is caused by FTN signaling and residual relevance (interference) be-
tween symbols. Since the M-BCJR algorithm is already a good detection scheme from the
decoder perspective, we used shortening to provide some absolutely right bits of the
LDPC—known bits with a high LLR in the factor graph in order to help the BP decoder
partially overcome error propagation. Furthermore, we utilized perturbation to add low
power noise to calculation of all check nodes during BP decoding. Since the operation is
summation, confident nodes with high LLR values will not be affected, but those nodes of
low reliability (a low magnitude of LLR) will be perturbed and may be corrected or move
away from stopping or trapping sets, which are believed to be a reason for the error floor.



Electronics 2024, 13, 1588 8 of 16

3.2. Structure of the Proposed LDPC-RS Concatenation Code

Typical concatenation code consists of inner and outer code. Data bits are encoded by
the outer code, and the whole outer code word is treated as data that are part of the inner
code; then, the inner encoder encodes it to form the inner (final) code word.

The structure of the proposed LDPC-RS concatenation code is depicted in Figure 3.
We chose RS (340, 320) and a shortened version of RS (511, 491) code for BP decoding,
and the corresponding generation polynomial coefficients are 1, 58, 257, 157, 222, 388, 151,
62, 280, 137, 404, 286, 394, 61, 399, 73, 84, 145, 293, 369, and 331. We adopted 5G LDPC
(7680, 3840) code for the inner code, with 780 bits shortened (filled with a known pattern
which is not transmitted) and accustomed to the 3060-bit length of outer RS (340, 320)
code. Therefore, there are 320× 9 = 2880 bits of data, the total transmitted code length
is 340× 9 + 3840 = 6900 bits, and the code rate is 2880/6900 = 0.4174. The price of 0.09
rate-loss is acceptable considering rate and error floor trade-off.

20×9=180 bits320× 9=2880 bits

RS code 3060 bits 3840 bits

RS data RS parity

RS (340, 320) code 

Shortening 780 bits

LDPC data LDPC parity

LDPC (7680,3840) code 

Figure 3. Proposed LDPC-RS concatenation code. With concatenation and shortening, the code rate
is 0.42.

3.3. Perturbation BP Decoder

One reason for the error floor is that the BP decoder cannot correct nodes for some
code structures and absorbing sets, becoming trapped in incorrect states. One example of
the (6, 3) trapping set is given in Figure 4, where all variable nodes v1, v2, v3 are incorrect
and where check nodes are too weak to correct them, so all three variable nodes remain
erroneous. Finally, several uncorrected error bits can be corrected using concatenated RS
code due to its definite error correction ability. When using a parallel RS encoder or decoder,
latency and complexity can be lowered.

−2.1

V1

V2 V3

C1

C2 C3

C4

C5 C6

L1 = −0.9

L2 = −0.7 L3 = −0.5

−1.5 −1.3

−2.1

−2.1
+0.1

Z1 = −3

Z2 = −3.2 Z3 = −2

V1

V2 V3

C1

C2 C3

C4

C5 C6

L1 = −0.9

L2 = −0.7 L3 = −0.5

+0.1

+0.1

−1.3 −1.5

−0.7

V1

V2 V3

C1

C2 C3

C4

C5 C6

L1 = −0.9

L2 = −0.7 L3 = −0.5

−0.7 −0.5

−0.9

−0.5

Z1 = −2

Z2 = −2 Z3 = −2

V1

V2 V3

C1

C2 C3

C4

C5 C6

L1 = −0.9

L2 = −0.7 L3 = −0.5

+0.1

+0.1 +0.1

−0.5 −0.7

Variable node Check node

Figure 4. One example of BP decoding in a (6, 3) trapping set. Three variable nodes all have incorrect
negative values, meanwhile relevant check nodes are weak and cannot provide error correction
during BP iterations.

Moreover, the BP decoder will sometimes encounter errors with very few LLRs, while
adding some low-level noise to the decoder can actually improve decoding performance.
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This phenomenon is called stochastic resonance and was found in many devices and
research fields and studied using [25] for bit-flipping decoding. In this work, we adopted
this method in the soft decision BP decoder, adding a low level of noise to nodes while
decoding, and called it the perturbation BP decoder. We modified the message from check
node i to each relevant variable node j by adding noise (perturbation) to affect or flip the
signs of small absolute value LLRs, which are believed to be less reliable, as follows:

L′ij = 2 tanh−1(Li/ tanh(
Zij

2
)) + np, (18)

where np is low-level i.i.d. random noise, irrelevant to i, j, with the expectation that
E(np) = 0, and variance Var(np) = σ2

np is irrelevant to i, j. Its power σ2
np can be chosen in

practice, and its type was chosen to be Gaussian here; thus,

E(L′ij) = E(Lij),

Var(L′ij) = Var(Lij) + σ2
np.

(19)

Note that adding noise (perturbation) to LLRs is a more general form of adding the
same offset value, which has been shown to be effective in a hard decision bit-flipping
decoder. The perturbation decoder proposed here can be seen as a soft bit-flipping BP
decoder. From a statistical viewpoint, it adds power σ2

np to LLRs of small absolute value.
Since E(np) = 0, the summation of i.i.d. random Gaussian noise will tend toward a

small value near zero, so for variable node j, the updating rule becomes

Z′j = lj + ∑
i∈M(j)

L′ij ≈ lj + ∑
i∈M(j)

Lij = Zj, (20)

and the message passed from variable node j to each relevant check node i is

Z′ij = Z′j − L′ij ≈ Zij. (21)

Therefore, perturbation here only affects unreliable check nodes with very small
absolute value Lij, making them perturbed. The histogram in Figure 5 illustrates the value
distribution of L′ij when σnp = 10−4, showing that perturbation has almost no effect on
the value distribution of L′ij. Therefore, perturbation decoding can help to perturb the less
confident L′ij without destroying the original value distribution of L′ij or hindering the BP
decoding scheme and decision.

Figure 5. Value distribution of L′ij.

Figure 6 shows a (6, 3) trapping set of three variable nodes that remain erroneous dur-
ing iterations and may be corrected with perturbation in check-to-variable messages. Since
all three variable nodes are incorrect, perturbation here may flip their signs and therefore
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will not hinder BP decoding but rather provide the possibility for error correction. However,
a simple (6, 3) trapping set here contains 9 nodes and 9 edges, and it is impossible to use
the whole Tanner graph of the LDPC code to analyze the gain of perturbation and yield a
closed-form expression. We used Monte Carlo simulations to evaluate its performance.
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Figure 6. Decoding of a (6, 3) trapping set without/with perturbation.

3.4. RS Parallel Encoder

The conventional RS encoder adopts a serial structure that can be treated as a digital
circuit. It consists of shifting registers and constant multipliers [26], depicted in Figure 7,
whose control, initialization, and reset logic are not depicted here. There are 20 shifting
registers and 20 constant multipliers for RS (340, 320) code together with 20 adders (bitwise
XOR). After data dk are serially input, contents of registers are serially shifted out in the
sequence of R19, R18, . . . , R0, which are parity bits, accordingly.

...

...

  

g0
  
 

 

g1 g2 g3 g14 g15

Input data

dk

R0 R1 R2 R13 R14 R15

Shift out Parity
[R15, R14 …, R0]

Figure 7. Conventional serial RS (340, 320) encoder.

For RS (340, 320) code, let the input data be d = {dk}, where k = 0, 1, . . . , 319 is the
index of the clock period in this digital circuit of the encoder, and the generator polynomial
is g(x) = x20 + g19x19 + . . . + g1x + g0, whose coefficients [g19, . . . , g0] = [58, 257, 157, 222,
388, 151, 62, 280, 137, 404, 286, 394, 61, 399, 73, 84, 145, 293, 369, 331] are constant. Shifting
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register Rn(k) describes the value of register n at clock period k, where n = 0, 1, . . . , 19. We
formulated the serial encoder as

Rn(k + 1) =

{
Rn−1(k)+ (dk + R19(k))gn, n ≥ 1,

(dk + R19(k))gn, n = 0.
(22)

Furthermore, initial states Rn(0) = 0 for all registers. After 320 clock periods, all data
are input into the encoder, all adders and multipliers are stopped, and 20 registers are
shifted out in the sequence of [R19(320), R18(320), . . . , R0(320)] to constitute the parity part
of the RS (340, 320) code. In fact, the calculation performed by this encoder is equivalent
to x20 + R19x19 + · · · + R1x + R0 = (((d0g(x) × x + d1g(x)) × x + · · · + d318g(x)) × x +
d319g(x) mod g(x).

R5(k + 4) = R4(k + 3) + (dk+3 + R19(k + 3))g5

= . . .

= R1(k) + (dk+3 + R16(k))g5 + (dk+2 + R17(k))(g4 + g19g5) + (dk+1 + R18(k))(g3 + g19g4 + (g18 + g2
19)g5)

+ (dk + R19(k))(g2 + g19g3 + (g18 + g2
19)g4 + (g17 + 2g18g19 + g3

19)g5).

(23)

Rn(k + 4) =Rn−4(k)+ (dk + R19(k))pn(0) + (dk+1 + R18(k))pn(1) + (dk+2 + R17(k))pn(2) + (dk+3 + R16(k))pn(3), n ≥ 4,

(dk + R19(k))pn(0) + (dk+1 + R18(k))pn(1) + (dk+2 + R17(k))pn(2) + (dk+3 + R16(k))pn(3), n = 0, 1, 2, 3.
(24)

The shortcomings of a serial encoder are low throughput and high encoding latency.
We accordingly require a new structure to encode in parallel and lower the encoding latency
while improving its throughput. Considering a 4-parallel encoder, each clock period during
operation should be equivalent to four clock periods in the serial encoder. By carefully
observing (22) and Figure 7, we can see that Rn(k + 1) is determined by two variable
terms Rn−1(k) (except for R0) and (dk + R19(k)). By recursively applying (22), Rn(k + 4)
is determined by five variable terms: Rn−4(k) (except for R0, R1, R2, R3), (dk + R19(k)),
(dk+1 + R18(k)), (dk+2 + R17(k)), and (dk+3 + R16(k)). We take R5(k + 4) for example,
as in (23), which is clearly especially complicated to derive and difficult to understand.
In order to simplify the derivation, we came up with an easy approach for calculating
parallel encoding coefficients, leveraging a conventional serial encoder structure.

We came up with a method to use the serial encoder to calculate the parallel encoding
coefficients and propose it as Algorithm 2. The details of its derivation are described in
the Appendix A.

Algorithm 2 Parallel Encoding Coefficient Calculation.

Initialize the serial encoder; set all registers to zero.
Input: “1”. Run one clock and pn(3)← Rn(1).
Input: “0”. Run one clock and pn(2)← Rn(2).
Input: “0”. Run one clock and pn(1)← Rn(3).
Input: “0”. Run one clock and pn(0)← Rn(4).

Return: pn(3), pn(2), pn(1), pn(0).

An example of a 4-parallel encoder structure is given in Figure 8. Other parallelism
implementations are very similar to the 4-parallel scenario.
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Figure 8. Structure of a 4-parallel RS (340, 320) encoder.

4. Performance Evaluation, Results, and Discussion

We carried out simulations to evaluate the proposed concatenation code and decoding
algorithm. The simulations were performed with FTN signaling, τ = 0.703, and shortened
v = [0.553, 0.793,−0.084,−0.171, 0.154,−0.064]. We used y = a ∗ v as in (4) to model the
received signal through the AWGN channel, detect it with the 4-BCJR method, and then
decode the channel code and perform turbo equalization. Finally, we computed the BER
to evaluate each decoding scheme at different SNRs. To reduce storage used for the BCJR
trellis, we limited states at each stage to M = 4. Moreover, we set the number of turbo
equalization iterations to 3 to avoid excessive iterations for the LDPC decoder and decrease
the decoding time. The LDPC code used here is a (7680, 3840) code defined by the 5G
standard mentioned in Section 2, with 780 data bits shortened (around 10%) to the lower
code rate, leading to more definite results. RS (340, 320) is a 0.94 high-rate code with 6%
parity redundancy. The shortening of the LDPC and simple hard decision RS concatenation
scheme shows the ability to lower the error floor of original LDPC-coded FTN signaling
and has an overall code rate of 0.42. All simulations were performed with MATLAB 2022
on a CPU; no GPU was used.

Note that the demonstration of the proposed scheme is intended to show its effective-
ness in lowering the error floor, and parameters of shortening and RS code can change with
different code rates vs. the BER and with different LDPC code. Thus, those parameters can
be determined by practical means and trade-offs and are not required to be optimal since
the goal of the proposed scheme is to lower the error floor.

The BP decoders with maximum iteration limits of 20 and 50 also show an error floor
of around 10−5. The concatenation code lowers the error floor to 4× 10−6, and no error
floor was found in the simulations of the concatenation code with perturbation in the BP
decoder down to 2× 10−7 and 4× 10−8, as depicted in Figure 9 and Figure 10, respectively.
We found that, for three iterations of turbo equalization, increasing the iteration number of
the LDPC code has little effect on the BER performance.

The saturation (no more decrease) of the red curve and the blue curve in Figure 9
and the green curve and the red curve in Figure 10 are caused by residual relevance
(interference) between symbols. From the view of the decoder, residual relevance leads to
error propagation especially with trapping sets in the factor graph. We utilize high-rate RS
code to lower the error floor, but it still exists, which means concatenating RS code is helpful,
but high-rate RS is inadequate for eliminating the error floor. We introduce perturbation
decoding to enhance the proposed LDPC-RS concatenation scheme and eliminate the
error floor.
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SNR (dB)

B
E

R

BP itr. = 20 turbo itr. = 3, no RS.

BP itr. = 20 turbo itr. = 3, with RS.

BP perturbation itr. = 20 turbo itr. = 3,

 with RS.

Figure 9. 4-BCJR, BP max. itr. = 20, turbo eq. itr. = 3.

SNR (dB)

B
E

R

BP itr. = 50 turbo itr. = 3, no RS.

BP itr. = 50 turbo itr. = 3, with RS.

BP perturbation itr. = 50 turbo itr. = 3, with RS.

Figure 10. 4-BCJR, BP max. itr. = 50, turbo eq. itr. = 3.

In [6], LDPC-RS product code and the hybrid error–erasure correction (HEEC) de-
coding algorithm were proposed. The difference is that our proposed approach utilizes
concatenated code, i.e., a whole RS code word is treated as the information part of an LDPC
code word. Additionally, [6] utilizes product code, in which multiple RS code words are put
in columns and multiple LDPC codes are put in rows. LDPC (576, 288)-RS (255, 51) product
code (code length 576 × 255) and HEEC decoding in [6] will have better performance than
our proposed scheme. However, since product code is deeply coupled, RS decoding can
only start after 255 LDPC codes finish decoding. The product code consists of 255 LDPC
codes and 36 RS codes. The overall decoding latency is (255× Latency(LDPC) + 36×
Latency(RS))× Iteration, where Latency(LDPC) and Latency(RS) may vary from differ-
ent decoding algorithms. For the LDPC-RS concatenation scheme proposed in this paper,
the overall decoding latency is (Latency(LDPC) + Latency(RS))× Iteration. The storage
required by product code in [6] is 255× Storage(LDPC) + 36× Storage(RS), while our
proposed scheme needs Storage(LDPC) + Storage(RS). Therefore, product code in [6]
introduces much more latency and needs much more storage than our proposed concate-
nated code. For our proposed scheme, RS decoding only needs to wait for one LDPC
code to finish decoding. Additionally, the HEEC iterative decoding exchanges information
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between the LDPC and RS decoders. Therefore, decoding latency increases in proportion
to iterations. Our proposed scheme does not use iterative decoding between LDPC and RS
code considering the increase in latency. In [11], Qiu and coworkers achieved a similar level
(10−8 to 10−7) of noise floor with their RS-SC-LDPC algorithm. Spatially coupled LDPC
code may have better performance; however, it has much more complexity and latency,
even when utilizing sliding window decoding. Meanwhile, SC or sliding window decod-
ing needs more storage for multiple LDPC code words. Product code scheme or spatially
coupled code scheme will have better performance than our proposed concatenated code
scheme. However, while considering constraints on latency, complexity, and storage, our
proposed scheme will be a better choice.

5. Conclusions

In this paper, we demonstrate 5G LDPC (7680, 3840) code in FTN signaling to explore
spectrum efficiency and reliability. When limited to low latency and low storage, i.e., few
BCJR states and few turbo iterations, we found an undesirable error floor. To combat the
error floor, we proposed one possible solution, namely, using the LDPC-RS concatenation
and shortening scheme together with perturbation introduced into the BP decoder, where
the LDPC has a rate of 0.5 as well as a 0.94 high-rate hard decision RS code to lower the rate
loss. We proposed a 4-parallel encoder architecture for RS component code and a concise
algorithm to calculate its constant multiplier coefficients, leveraging a traditional serial
encoder. This algorithm can also be used for calculating other parallelisms, code rates,
and lengths. The simulation results show that the proposed concatenation and shortening
scheme can lower the error floor of the original single LDPC code, and with perturbation in
the BP decoder, the error floor can be eliminated below 10−7 for different LDPC maximum
decoding iterations. The advantage of the proposed scheme is that the LDPC has an error
correction ability for BCJR detection with few states and few iterations of turbo equalization
FTN signaling, while RS concatenation, shortening, and perturbation techniques together
lower the error floor. In future research, other LDPC codes will be constructed, factor
graph-based FTN detection with LDPC joint decoding will be explored, and LDPC-RS soft
iteration decoding will also be studied. A better equalizer will also be studied to strengthen
and broaden the LDPC-RS concatenation scheme’s implementation for fading channels
and other scenarios.
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Appendix A. Parallel RS Encoding Coefficient Calculation

From deriving (22) to (23), we can conclude that each register in the parallel encoder
can be determined linearly. Let pn(0), pn(1), pn(2), pn(3) be the constant multiplication fac-
tors for the parallel calculation of Rn(k + 4). Accordingly, each register can be calculated as
in (24). Since the register value at clock period k and parallel input data dk, dk+1, dk+2, dk+3
are all known, the problem is to compute constant multiplication factors in a concise and
convenient way.
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We formed a data vector and input it into serial encoder, let it run for 4 clock periods,
and stored each register’s value at each clock. These values are pn(0), pn(1), pn(2), pn(3),
n = 0, 1, 2, . . . , 19, respectively. Here are the steps:

1. Initialize the serial encoder, reset all registers to zero. Input [d0, d1, d2, d3] = [1, 0, 0, 0].
Let the encoder run for 4 clocks. Store all registers’ values and pn(0) = Rn(4).

2. Initialize the serial encoder, reset all registers to zero. Input [d0, d1, d2, d3] = [0, 1, 0, 0].
Let the encoder run for 4 clocks. Store all registers’ values and pn(1) = Rn(4).

3. Initialize the serial encoder, reset all registers to zero. Input [d0, d1, d2, d3] = [0, 0, 1, 0].
Let the encoder run for 4 clocks. Store all registers’ values and pn(2) = Rn(4).

4. Initialize the serial encoder, reset all registers to zero. Input [d0, d1, d2, d3] = [0, 0, 0, 1].
Let the encoder run for 4 clocks. Store all registers’ values and pn(3) = Rn(4).

The solution is to form zero and the unit input, then leave the calculations to the serial
encoder (through MATLAB in this study). We give the following detailed explanations. The
4-parallel encoder runs for 1 clock, which is equivalent to the serial encoder running for 4
clocks. In step 1, with other terms set to zero, and applying (24), we obtained Rn(4) = 0+ 1 ·
pn(0) + 0+ 0+ 0 = pn(0). In step 2, we obtained Rn(4) = 0+ 0+ 1 · pn(1) + 0+ 0 = pn(1).
In step 3, we obtained Rn(4) = 0 + 0 + 0 + 1 · pn(2) + 0 = pn(2). In step 4, we obtained
Rn(4) = 0+ 0+ 0+ 0+ 1 · pn(3) = pn(3). Since pn(0), pn(1), pn(2), pn(3), n = 0, 1, 2, . . . , 19
will not change with k, the calculation of parallel multiplication coefficients is complete.
Thus, we propose a 4-parallel encoder whose structure is given in Figure 8. Furthermore,
since the initial states of the registers are all zero, step 2 can be simplified as input [1, 0, 0],
letting the serial encoder run for 3 clocks, and step 4 can be simplified as input [1], letting
the serial encoder run for 1 clock (pn(3) = gn). We can accordingly propose Algorithm 2.

Note that pn(3) = gn and the proposed algorithm use a serial encoder such as that
of (22) to calculate Rn values. An example of a 4-parallel encoder structure is given in
Figure 8. Other parallelism implementations are very similar to the 4-parallel scenario.
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25. Ivaniš, P.; Vasić, B. Error Errore Eicitur: A Stochastic Resonance Paradigm for Reliable Storage of Information on Unreliable
Media. IEEE Trans. Commun. 2016, 64, 3596–3608. [CrossRef]

26. Tang, Y.J.; Zhang, X. Low-Complexity Resource-Shareable Parallel Generalized Integrated Interleaved Encoder. IEEE Trans.
Circuits Syst. I Regul. Pap. 2022, 69, 694–706. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1137/0108018
http://dx.doi.org/10.1002/j.1538-7305.1975.tb02043.x
http://dx.doi.org/10.1109/26.990903
http://dx.doi.org/10.1109/MCOM.2018.1700839
http://dx.doi.org/10.1109/TCOMM.2016.2590547
http://dx.doi.org/10.1109/TCSI.2021.3118301

	Introduction
	FTN Signaling with Turbo Equalization
	FTN Signaling with OBM
	BCJR Detection and Turbo Equalization
	LDPC and RS Code
	Experiment with 5G LDPC Code and Turbo Equalization in FTN Signaling

	LDPC-RS Concatenation Code
	Occurrence of an Error Floor in FTN Signaling
	Structure of the Proposed LDPC-RS Concatenation Code
	Perturbation BP Decoder
	RS Parallel Encoder

	Performance Evaluation, Results, and Discussion
	Conclusions
	Appendix A
	References

