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Abstract: This paper proposes a novel federated recommendation framework that incorporates differ-
ential privacy to safeguard user privacy without compromising on the accuracy of recommendations.
Unlike conventional recommendation systems that centralize user data, leading to potential privacy
breaches, our framework ensures that user data remain on local devices. It leverages a federated
learning approach, where a global model is trained across multiple devices without exchanging raw
data. To enhance privacy protection, we integrate a specially designed differential privacy algorithm
that adds carefully calibrated noise to the aggregated data updates. This mechanism ensures that the
global model cannot be exploited to infer individual user information. We evaluate our framework
on two real-world datasets, one from the e-commerce sector and another from the multimedia content
recommendation domain. The results exhibit that our framework achieves competitive recommenda-
tion accuracy compared to traditional centralized approaches, with minimal loss in precision and
recall metrics, while significantly enhancing user privacy. Our work stands as a testament to the
feasibility of creating recommendation systems that do not have to choose between privacy and
performance, paving the way for more ethical AI applications in sensitive domains.

Keywords: privacy protection; machine learning; federated learning; recommendation system

1. Introduction

In the era of digital transformation, recommendation systems have become indis-
pensable tools across a myriad of platforms, enhancing user experiences by personalizing
content, products, and services. These systems leverage vast amounts of data to predict
and suggest items that are most likely to be of interest to users based on their past behavior,
preferences, and interactions. While the utility of recommendation systems is undeniable,
their reliance on personal and sensitive user data has raised significant privacy concerns.
The aggregation and analysis of user data, if not properly managed, can lead to unintended
privacy breaches and the exploitation of personal information.

Federated learning emerges as a promising solution to this privacy conundrum. It
is a distributed machine learning approach that enables model training across multiple
decentralized devices or servers holding local data samples, without exchanging them.
This paradigm not only helps in safeguarding user privacy by keeping the data localized
but also utilizes collaborative learning to improve the model’s performance. However, fed-
erated learning itself does not guarantee absolute privacy, especially against sophisticated
inference attacks that can deduce individual data points from shared model updates.

Enter differential privacy, a mathematical framework designed to provide strong
privacy guarantees by adding randomness to the data or algorithms, thereby making it
difficult to infer information about any individual within a dataset. Integrating differential
privacy into federated learning, especially in the context of recommendation systems,
presents a viable pathway to achieving a balance between personalization and privacy.
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Despite its potential, the application of differential privacy in federated recommenda-
tion systems poses unique challenges. The primary concern revolves around the trade-off
between privacy and utility. Excessive noise can protect privacy but may degrade the
quality of recommendations, whereas minimal noise may compromise user privacy for
the sake of accuracy. Moreover, the decentralized nature of federated learning compli-
cates the uniform application and management of privacy-preserving mechanisms across
different nodes.

This paper seeks to address these challenges by proposing a novel architecture for a
differentially private and effective federated recommendation system. Our research aims
to explore innovative approaches to integrate differential privacy into federated learning
frameworks without significantly compromising the system’s recommendation capabil-
ities. We delve into optimizing the privacy–accuracy trade-off, ensuring that the system
remains robust against privacy threats while maintaining high levels of personalization
and user satisfaction.

Through this work, we contribute to the burgeoning field of privacy-preserving ma-
chine learning by offering insights and practical solutions that can be applied to federated
recommendation systems. Our goal is to pave the way for the development of recommen-
dation systems that not only respect and protect user privacy but also maintain the quality
and effectiveness that users have come to expect.

To summarize, this paper makes the following contributions:

• We introduce a novel framework that combines federated learning with differential
privacy mechanisms. This approach decentralizes data processing to keep user data
on local devices, enhancing privacy without significantly compromising the accuracy
of recommendations.

• This paper details the implementation of a specifically designed differential privacy
algorithm that adds calibrated noise to model updates. This ensures the privacy of
individual user data in the aggregated model, offering a robust privacy guarantee
while maintaining the utility of the recommendation system.

• Through extensive experiments on widely recognized datasets like MovieLens and
Amazon Product Reviews, this paper validates the effectiveness of the proposed
framework. It demonstrates that the system achieves competitive recommendation
accuracy and privacy preservation, establishing a practical balance between user
privacy and personalized recommendation quality.

This paper is organized as follows. Section 2 introduces related work. Section 3
presents preliminaries of our work. Section 4 gives our method to achieve a privacy-
preserving recommendation system in federated learning. Section 5 presents our empirical
evaluation results and Section 6 concludes our work.

2. Related Work
2.1. Recommendation System

Recommendation systems are pivotal in navigating the vast amount of content avail-
able in today’s digital age, enhancing user experience by personalizing content delivery
based on user preferences and behaviors. The evolution of recommendation systems has
been marked by significant advancements, from basic collaborative filtering algorithms to
complex deep learning-based models [1,2].

Early recommendation systems relied heavily on collaborative filtering techniques [3,4],
which make predictions about the interests of a user by collecting preferences from many
users [3]. This approach was further refined through matrix factorization techniques, which
decompose the user–item interaction matrix into lower-dimensional matrices, capturing
latent factors associated with users and items [5,6].

With the advent of deep learning, recommendation systems have seen a paradigm shift.
Neural network-based models, such as the Neural Collaborative Filtering framework [7,8],
have demonstrated superior performance in capturing complex user–item interactions.
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Moreover, the incorporation of contextual information, such as time and location, into rec-
ommendation algorithms has further improved their accuracy and relevance [9,10].

However, the effectiveness of these systems often comes at the cost of user privacy,
as they require access to sensitive user data [11]. This has led to an increasing interest in
developing privacy-preserving recommendation systems. Differential privacy has emerged
as a promising approach to safeguard user privacy in recommendation systems by adding
noise to the data or the algorithm’s outputs, ensuring that individual user data cannot be
inferred [12,13].

2.2. Federated Learning

The concept of federated learning has emerged as a groundbreaking approach to
address privacy concerns in machine learning and artificial intelligence [14,15]. Initiated by
McMahan et al. [16], federated learning enables model training across multiple decentral-
ized devices or servers holding local data samples, without needing to exchange them. This
approach not only helps in preserving the privacy of user data but also reduces the com-
munication overhead associated with traditional centralized learning paradigms [17,18].

The implementation of FL has been explored in various domains, ranging from mobile
keyboard prediction to healthcare and financial services, demonstrating its versatility and
effectiveness in privacy-preserving data analysis [19,20]. Konečný et al. [21,22] further
extended the federated learning framework by introducing optimization strategies that
enhance model convergence speed. A number of recent studies also focus on reducing the
required communication rounds between the clients and the central server [23,24].

In the context of recommendation systems, the adoption of federated learning is rela-
tively recent. Pioneering studies [25,26] first applied federated learning to collaborative
filtering, illustrating its potential in creating personalized recommendation systems that
respect user privacy. Their work demonstrated how FL could be adapted to recommen-
dation systems, ensuring data remain localized while achieving comparable accuracy to
traditional centralized approaches.

Moreover, the integration of differential privacy within federated learning frameworks,
as proposed by [27–29], has set a new standard for privacy-preserving machine learning.
By adding noise to the model updates in a controlled mannver, differential privacy ensures
that the trained model does not reveal sensitive information about the data on any specific
client’s device [30,31].

We introduce a pioneering federated recommendation system that seamlessly inte-
grates differential privacy to ensure user data privacy while maintaining high recommenda-
tion accuracy. Distinguishing itself from existing approaches, this work leverages federated
learning to process data locally on devices, thus mitigating central data collection risks.
A key innovation is the implementation of a differential privacy algorithm that injects
noise into aggregated data updates, safeguarding against the inference of individual user
information. Through rigorous evaluation on real-world datasets from the e-commerce and
multimedia sectors, the framework demonstrates a practical equilibrium between privacy
protection and the quality of recommendations.

Our work differentiates itself from previous works by introducing a novel federated
recommendation framework that integrates differential privacy directly into federated
learning, enhancing privacy without compromising recommendation accuracy. Unlike
prior approaches that primarily focused on theoretical models or specific aspects of privacy,
this work presents a comprehensive solution with a custom differential privacy algorithm
and empirically validates its effectiveness using real-world datasets like MovieLens and
Amazon Product Reviews. It effectively addresses the critical challenge of optimizing the
privacy–accuracy trade-off, offering both practical implementations and demonstrating
superior performance in privacy preservation compared to earlier methods.
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3. Preliminaries
3.1. Differential Privacy

Differential Privacy is a framework designed to ensure the privacy of individuals’ data
within a dataset while allowing for the analysis and extraction of meaningful insights. It
provides a quantifiable way of protecting individuals’ privacy by adding randomness to
the data or the outcomes of algorithms applied to the data. The core idea is to make it
mathematically improbable for anyone—even those with access to the output of a differ-
entially private mechanism—to infer the presence or absence of any individual’s data in
the dataset.

A randomized mechanismM satisfies ϵ-differential privacy (ϵ-DP) if for all datasets
D and D′ that differ by at most one element (these are called adjacent datasets) and for all
S within the range ofM, the following inequality holds:

Pr[M(D) ∈ S] ≤ eϵ × Pr[M(D′) ∈ S]

Here, ϵ is a non-negative parameter that quantifies the privacy loss, with lower values
indicating stronger privacy.

The sensitivity of a function f , denoted as ∆ f , is a measure of how much the output of
f can change by altering a single individual’s data in the dataset. For a function f : D → Rd,
the sensitivity is defined as

∆ f = max
D,D′
∥ f (D)− f (D′)∥

where the maximum is taken over all pairs of adjacent datasets D and D′.
The Laplace Mechanism adds noise drawn from the Laplace distribution to the output

of a function f to achieve differential privacy. The scale of the Laplace noise is determined
by the sensitivity of f and the desired privacy level ϵ. The probability density function of
the Laplace distribution with mean 0 and scale b is given by

Pr(x|b) = 1
2b

exp
(
−|x|

b

)
To achieve ϵ-differential privacy, the scale b is set as ∆ f /ϵ.
The Exponential Mechanism is used for differential privacy in cases where the output

is not numerical. It selects an output with a probability proportional to the exponential
of the privacy loss parameter ϵ, divided by twice the sensitivity, times a utility function
u(D, r) that measures the usefulness of result r. The probability of selecting a particular
outcome r is

Pr(r) ∝ exp
(

ϵ · u(D, r)
2∆u

)
where ∆u is the sensitivity of the utility function u.

Differential privacy also provides composition theorems that describe how the privacy
parameter ϵ accumulates when multiple differentially private mechanisms are applied.
Sequential Composition states that if a series of k mechanisms, each providing ϵi-differential
privacy, are applied to a dataset, the total privacy loss is bounded by ∑k

i=1 ϵi. Parallel
Composition asserts that if multiple mechanisms, each providing ϵi-differential privacy,
operate on disjointed subsets of the dataset, the overall privacy guarantee is governed
by max(ϵi).

The concept of a privacy budget is crucial in differential privacy. It refers to the
total amount of privacy loss (ϵ) that is allowable over the course of multiple queries
or analyses. It is essential to manage and track the privacy budget to ensure that the
cumulative privacy loss does not exceed a predefined threshold. By employing these
principles and mechanisms, differential privacy ensures that the privacy of individuals in a
dataset is protected while still allowing for valuable data analysis. This balance is crucial in
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a wide range of applications, from statistical analysis to machine learning, where the use of
personal data is often necessary to generate insights and make decisions.

3.2. Recommendation Systems

Recommendation systems are pivotal in personalizing user experiences across various
digital platforms, using algorithms to suggest items, such as products, movies, or articles,
that users are likely to be interested in. These systems can broadly be categorized into three
types: content-based filtering, collaborative filtering, and hybrid systems. Each employs
distinct methodologies to analyze and predict user preferences.

Content-based filtering relies on item features and a profile of the user’s preferences.
The recommendation score, s, for a user u and item i can be calculated as

s(u, i) = pu · qT
i

where pu is the preference vector of user u, and qi is the feature vector of item i.
Collaborative filtering makes recommendations based on the past behavior of users in

the system, without requiring item metadata. User-based collaborative filtering computes
the similarity between users, for instance, using the Pearson correlation coefficient:

sim(u, v) = ∑i∈I(rui − r̄u)(rvi − r̄v)√
∑i∈I(rui − r̄u)2

√
∑i∈I(rvi − r̄v)2

where rui and rvi are the ratings of users u and v for item i, respectively, r̄u and r̄v are the
average ratings of users u and v, and I is the set of items rated by both users.

Item-based collaborative filtering computes similarities between items, often using
the cosine similarity:

sim(i, j) =
ri · rj

∥ri∥∥rj∥

where ri and rj are the rating vectors of items i and j, respectively.
Matrix factorization techniques, such as Singular Value Decomposition (SVD), are

commonly used in collaborative filtering to predict unknown ratings:

r̂ui = µ + bu + bi + pu · qT
i

where µ is the global average rating, bu and bi are the user and item bias terms, and pu and
qi are the latent factor vectors for user u and item i.

Hybrid systems combine collaborative and content-based methods to improve recom-
mendation quality, addressing limitations such as the cold start problem and data sparsity.
The combined score might be computed as a weighted sum:

s(u, i) = α · sCBF(u, i) + (1− α) · sCF(u, i)

where sCBF and sCF are the scores from content-based and collaborative filtering, respec-
tively, and α is the weight that balances the two.

To evaluate the performance of recommendation systems, metrics such as Mean
Absolute Error (MAE) and Root Mean Square Error (RMSE) are used:

MAE =
∑(u,i)∈T |rui − r̂ui|

|T|

RMSE =

√
∑(u,i)∈T(rui − r̂ui)2

|T|

where T is the set of user–item pairs in the test set, rui is the actual rating, and r̂ui is the
predicted rating.
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By employing these methodologies and metrics, recommendation systems aim to
enhance user satisfaction and engagement, tailoring content to individual preferences
and interests.

4. Method

This section outlines our novel method for a privacy-preserving recommendation
system leveraging federated learning and differential privacy. The system model enables
private, client-specific model updates using calibrated Gaussian noise to maintain a balance
between user privacy and recommendation accuracy. The recommendation algorithm
combines collaborative filtering and deep learning within this privacy-aware federated
framework, optimizing for personalization and accuracy. Through advanced aggregation
techniques and privacy budget management, the system effectively mitigates privacy risks
while preserving the quality of recommendations. A general pipeline of our proposal is
given in Figure 1.

Figure 1. A general pipeline of our proposal.

4.1. System Model

Our proposed system model intricately weaves differential privacy mechanisms within
a federated learning framework to construct a recommendation system that not only
respects user privacy but also delivers personalized content with high precision. Operating
over a distributed network, this model empowers a collaborative yet private learning
environment, significantly mitigating the privacy and security concerns associated with
traditional centralized systems.

The cornerstone of our model is the local model update, a process that enables in-
dividual clients to contribute to the collective learning objective without exposing their
private data:

∆wi = ∇L(w, Di) + ηi, (1)

where ∆wi denotes the update computed by client i, derived from the gradient of the loss
function L with respect to the model weights w over the local dataset Di. To safeguard
privacy, noise ηi is introduced, adhering to the principles of differential privacy. This noise
is meticulously calibrated, following a Gaussian distribution N (0, σ2 I), to balance the
trade-off between privacy and the utility of the aggregated model:

ηi ∼ N (0, σ2 I). (2)

Secure aggregation is the next pivotal step, where updates from all participating
clients are amalgamated to refine the global model. This process is encapsulated in the
following equation:

w(t+1)
global = w(t)

global +
1
N

N

∑
i=1

∆wi, (3)
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ensuring that the synthesis of updates enhances the model without compromising the
confidentiality of individual contributions.

Client participation is inherently probabilistic, governed by their respective privacy
budgets, ensuring a democratic and equitable learning environment:

Pi =
exp(ϵi)

∑N
j=1 exp(ϵj)

. (4)

At the heart of personalized recommendations lies the recommendation score, a mea-
sure that determines the relevance of items to users based on the insights gleaned from the
global model:

S(u, i) = f (wglobal, u, i), (5)

where f denotes a sophisticated function that meticulously analyzes user preferences and
item characteristics to generate precise recommendations.

Model convergence is a testament to the efficacy of the learning process, marked by
the stabilization of the global model across successive iterations:

lim
t→∞
∥w(t+1)

global − w(t)
global∥ = 0. (6)

The differential privacy guarantee assures that the introduction or alteration of a single
data point negligibly affects the outcome, which is a foundational pillar of privacy protection:

Pr[M(D) ∈ S] ≤ exp(ϵ) · Pr[M(D′) ∈ S] + δ. (7)

The update frequency of the global model inversely correlates with the learning rate,
highlighting the dynamic nature of the learning process:

τ =
1
γ

. (8)

Adjusting the learning rate is crucial for optimizing the convergence rate, ensuring
the model rapidly adapts to new data insights:

γ(t+1) = βγ(t). (9)

4.2. Privacy Mechanism

Differential privacy provides a quantifiable guarantee that the privacy of an individ-
ual’s data is maintained, even in the aggregate. This is achieved by introducing a calibrated
amount of noise to the data or model updates, effectively obscuring individual contribu-
tions. Differential privacy is applied by adding noise to the model updates computed on
client devices before they are aggregated by the central server. The noise-added update can
be represented as

∆w′i = ∆wi +N (0, σ2I), (10)

where ∆w′i denotes the privacy-preserving update from client i, and σ2 is the variance
in the Gaussian noise, which is a critical parameter in balancing privacy and utility. The
calibration of noise is based on the sensitivity of the function computing the updates and
the desired privacy level, formalized as follows:

σ =
∆ f

√
2 ln(1.25/δ)

ϵ
, (11)

where ∆ f is the sensitivity of the function, ϵ is the privacy loss parameter, and δ is the
probability of exceeding this privacy loss. This equation ensures the noise is calibrated to
provide (ϵ, δ)-differential privacy.
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The privacy budget, ϵ, is allocated to each client to manage the total privacy loss over
multiple interactions. The allocation is adjusted dynamically based on the client’s activity
level and the overall system’s privacy requirements:

ϵtotal =
N

∑
i=1

ϵi, (12)

ensuring that the cumulative privacy budget across all clients does not exceed the system’s
predefined threshold.

To mitigate the impact of noise on the aggregated model, we employ advanced
aggregation techniques that enhance the utility of the noisy updates. One such technique
involves weighted averaging, where updates are weighted based on their variance:

w′global =
∑N

i=1 w′i/σ2
i

∑N
i=1 1/σ2

i
, (13)

where w′i is the noise-added update from client i, and σ2
i is the variance in the noise added

to client i’s update. To ensure the quality of recommendations, algorithms are designed to
be robust against the noise introduced for privacy preservation. This involves adjusting
the learning algorithm to account for the expected noise, thereby minimizing its impact on
recommendation quality:

Ŝ(u, i) = S(u, i) + α · Err(σ), (14)

where Ŝ(u, i) is the adjusted score for recommending item i to user u, S(u, i) is the original
recommendation score, α is a scaling factor, and Err(σ) represents the error introduced by
the noise, which is a function of σ.

By integrating these advanced techniques and carefully managing the privacy budget,
our federated recommendation system achieves a balance between preserving user privacy
and maintaining the efficacy of personalized recommendations.

4.3. Recommendation Algorithm

The recommendation algorithm at the heart of our federated recommendation system
leverages collaborative filtering and deep learning techniques, adapted to operate within
the constraints of differential privacy and federated learning. This subsection outlines the
algorithm’s core components, including model training, personalization strategies, and the
integration of privacy-preserving mechanisms.

The foundation of our recommendation algorithm is the federated averaging (Fe-
dAvg) process, which aggregates model updates from multiple clients to improve the
global recommendation model. The training process for each client’s local model can be
expressed as

Li(w) =
1
|Di| ∑

(x,y)∈Di

ℓ( f (w; x), y) + λ∥ω∥2, (15)

where Li(w) is the loss function for client i’s model given the weight w, Di is the local
dataset of user–item interactions, ℓ is a loss metric (e.g., mean squared error for rating
prediction), f (w; x) is the predictive function of the model, y represents the true preference
values (e.g., ratings), and λ∥ω∥2 is a regularization term to prevent overfitting. After local
training, the model updates are aggregated to update the global model:

wglobal ← wglobal + η
N

∑
i=1

|Di|
D

∆wi, (16)

where η is the learning rate, N is the number of clients, |Di| is the size of the local dataset,
D is the total size of all datasets, and ∆wi is the update from client i. To personalize
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recommendations, the global model is fine-tuned on individual clients’ data, allowing for
tailored recommendations. The personalization step for client i can be represented as

w∗i = wglobal − α∇Li(wglobal), (17)

where w∗i is the personalized model weight for client i, and α is the personalization learn-
ing rate. For generating recommendations, a prediction score for each user–item pair is
computed using the personalized model. The score indicates the likelihood of a user’s
preference for an item:

ŷui = f (w∗i ; xui), (18)

where ŷui is the predicted preference score for user u and item i, and xui represents the
user–item interaction features.

Based on these scores, the items are ranked, and the top-N recommendations are
selected for each user:

Ru = rank(ŷui)
M
i=1, (19)

where Ru is the ranked list of recommendations for user u, and M is the total number of
items. To ensure that the recommendation process adheres to differential privacy standards,
noise is added during the aggregation of model updates and the personalization step.
In this way, the recommendations are generated in a manner that respects user privacy
while maintaining the effectiveness of the system.

5. Experiments

To validate the efficacy and privacy guarantees of our federated recommendation
system, we conducted a series of experiments focusing on various aspects, including
recommendation accuracy, privacy preservation, and system scalability. This section
delineates the experimental setup, the datasets employed, the evaluation metrics, and a
detailed discussion of the findings.

5.1. Experimental Setup

The experiments were carried out using a simulated federated environment consisting
of a central server and multiple client nodes, each with its dataset simulating user interac-
tions with items. The client nodes were configured to represent different data distributions,
mimicking real-world scenarios where user preferences and item popularity can vary
significantly across clients.

5.1.1. Datasets and Evaluation Metric

We utilized two benchmark datasets widely recognized in recommendation system
research:

• MovieLens Dataset. A collection of movie ratings by users, facilitating the evaluation
of the recommendation system’s ability to predict user preferences accurately.

• Amazon Product Review Dataset. Comprising user reviews and ratings of products,
this dataset allowed us to assess the system’s performance in a more diverse and
sparse data environment, which is typical of e-commerce platforms.

5.1.2. Model Configurations and Privacy Settings

We implemented the following three recommendation models:

• Collaborative Filtering: This model is based on the assumption that users who agreed
in the past tend to agree again in the future. It uses user–item interactions (ratings,
likes, etc.) to predict preferences. The model structure can be user-based, item-based,
or a mixture of both, employing similarity measures like cosine similarity or Pearson
correlation to recommend items.

• Content-Based Filtering: This model recommends items based on the features of
items and a profile of the user’s preferences. It uses item attributes (e.g., genres, tags,
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descriptions) to recommend other items similar to what the user likes, based on their
past interactions. The model structure involves creating item profiles and user profiles,
then matching these profiles to predict preferences.

• Matrix Factorization techniques: This approach decomposes the user–item interaction
matrix into lower-dimensional matrices, capturing latent factors associated with users
and items. The structure involves finding two lower-dimensional matrices (for users
and items) whose product approximates the original matrix. Techniques like SVD,
ALS (Alternating Least Squares), and SGD (Stochastic Gradient Descent) are used to
optimize the factorization.

Our experiment incorporated a Gaussian noise mechanism tailored with a differential
privacy parameter ϵ ranging from 0.005 to 0.05 to achieve varying levels of privacy assur-
ance. Model training parameters included a batch size of 128 and a learning rate initially
set to 0.005, which was adjusted using a decay factor of 0.99 per epoch to accommodate
the diminishing gradient issue over 100 epochs. Each client processed a subset of data,
typically around 10% of the total data pool, ensuring substantial data diversity and repre-
sentation. Noise calibration followed the sensitivity of the data, calculated based on the
maximum change observed in the user–item interaction strength, with a privacy budget (δ)
set to 1× 10−5. Secure multi-party computation protocols were employed for aggregating
updates securely, ensuring no individual client’s data could be inferred from the shared
updates. These parameters were validated on real-world datasets, demonstrating their
effectiveness in maintaining a robust balance between user privacy and recommendation
accuracy. In particular, DP was implemented in our federated recommendation system
using the Gaussian mechanism. The process involved the following key steps:

1. Noise Addition: Gaussian noise was added to model updates from each client.
The noise’s standard deviation, σ, was determined based on the sensitivity of the
update function, ∆ f , and privacy parameters ϵ and δ, as follows:

σ = ∆ f
(√

2 ln(1.25/δ)/ϵ

)
.

2. Privacy Parameters: Parameters ϵ (privacy loss) and δ (probability of exceeding pri-
vacy loss) were carefully chosen to balance between privacy protection and model utility.

3. Secure Aggregation: Noisy updates were aggregated to update the global model
securely, ensuring the final model complied with (ϵ, δ)-differential privacy.

4. Performance Evaluation: The trade-off between privacy protection and recommen-
dation system performance was quantified by evaluating accuracy metrics under
various ϵ and δ settings.

5.2. Results and Discussion
5.2.1. Recommendation Accuracy

Table 1 presents the accuracy metrics of a collaborative filtering recommendation
system tested on two datasets, MovieLens and Amazon Product Review, with various
numbers of clients (1C to 200C). The metrics include precision, recall, F1 Score, mean
average precision (MAP), hit rate (HR), reciprocal rank (RR), and diversity score (DS). The
selection of 200 clients (200C) as the upper limit in our experiments was based on a balance
between computational feasibility and the representation of a realistic federated learning
environment. This upper limit allowed us to simulate a sufficiently large and diverse
network of devices, capturing the challenges and performance dynamics in a distributed
learning scenario without exceeding practical resource constraints. It ensured that our
findings were scalable and applicable to real-world federated systems, where the number
of participating devices can vary significantly. For MovieLens, precision, recall, F1 Score,
and all other metrics gradually decreased as the number of clients increased. The highest
scores across all metrics were observed with the lowest number of clients (1C). A similar
trend was seen with the Amazon Product Review dataset, albeit with lower scores across
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all metrics compared to MovieLens. The decrease in performance metrics as the number of
clients increased suggests that the model may be more accurate with fewer clients or needs
adjustment to scale effectively.

Table 1. Recommendation accuracy of collaborative filtering under different numbers of clients.

Dataset Configuration Precision Recall F1 Score MAP HR RR DS

MovieLens 1C 0.86 0.81 0.83 0.87 0.92 0.95 0.88
5C 0.85 0.80 0.82 0.86 0.91 0.94 0.89
10C 0.84 0.79 0.81 0.85 0.90 0.93 0.87
20C 0.83 0.78 0.80 0.84 0.89 0.92 0.86
50C 0.80 0.76 0.78 0.81 0.86 0.89 0.83
100C 0.78 0.73 0.75 0.79 0.84 0.87 0.81
200C 0.74 0.69 0.71 0.75 0.80 0.83 0.77

Amazon 1C 0.71 0.66 0.68 0.72 0.77 0.80 0.74
Product 5C 0.70 0.65 0.67 0.71 0.76 0.79 0.73
Review 10C 0.69 0.64 0.66 0.70 0.75 0.78 0.72

10C 0.68 0.63 0.65 0.69 0.74 0.77 0.71
50C 0.66 0.61 0.63 0.67 0.72 0.75 0.69
100C 0.64 0.59 0.61 0.65 0.70 0.73 0.67
200C 0.60 0.55 0.57 0.61 0.66 0.69 0.63

Tables 2 and 3 present the recommendation accuracy of three different filtering meth-
ods across two datasets (MovieLens and Amazon Product Review), with varying numbers
of clients (from 1 to 200). Each method is evaluated based on precision, recall, F1 Score,
mean average precision (MAP), hit rate (HR), reciprocal rank (RR), and diversity score (DS).

Table 2. Recommendation accuracy of content-based filtering under different numbers of clients.

Dataset Configuration Precision Recall F1 Score MAP HR RR DS

MovieLens 1C 0.82 0.73 0.77 0.82 0.85 0.91 0.81
5C 0.80 0.74 0.76 0.80 0.85 0.93 0.83
10C 0.80 0.72 0.75 0.77 0.86 0.88 0.84
20C 0.81 0.74 0.79 0.78 0.86 0.91 0.82
50C 0.75 0.69 0.73 0.75 0.80 0.78 0.77
100C 0.73 0.65 0.68 0.76 0.79 0.84 0.77
200C 0.72 0.67 0.67 0.71 0.73 0.78 0.72

Amazon 1C 0.67 0.61 0.61 0.64 0.70 0.74 0.71
Product 5C 0.64 0.60 0.62 0.67 0.73 0.74 0.67
Review 10C 0.65 0.57 0.58 0.64 0.73 0.69 0.66

20C 0.62 0.57 0.58 0.63 0.69 0.72 0.65
50C 0.60 0.56 0.58 0.63 0.69 0.71 0.62
100C 0.59 0.52 0.57 0.62 0.66 0.71 0.62
200C 0.52 0.51 0.52 0.57 0.60 0.63 0.58

For collaborative filtering, the highest precision, recall, and F1 Scores on the MovieLens
dataset are observed with the smallest client configuration (1C). The scores generally
decrease as the number of clients increases. In content-based filtering, similar to CF,
the performance metrics tend to decrease with more clients. However, the starting precision
and recall values for 1C are lower than those for CF. For matrix factorization, the trend
of decreasing metrics with increased client numbers continues. However, the starting
precision and recall for 1C are lower than those for CF but similar or slightly higher than
those for content-based filtering. All methods show a trade-off between the number of
clients and recommendation accuracy metrics across both datasets.
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Table 3. Recommendation accuracy of matrix factorization techniques under different numbers
of clients.

Dataset Configuration Precision Recall F1 Score MAP HR RR DS

MovieLens 1C 0.79 0.70 0.74 0.79 0.82 0.88 0.79
5C 0.76 0.71 0.74 0.78 0.83 0.90 0.79
10C 0.77 0.70 0.71 0.74 0.82 0.86 0.82
20C 0.78 0.70 0.76 0.74 0.83 0.87 0.78
50C 0.72 0.66 0.70 0.72 0.77 0.75 0.73
100C 0.69 0.62 0.65 0.73 0.76 0.80 0.74
200C 0.69 0.63 0.64 0.67 0.70 0.75 0.69

Amazon 1C 0.65 0.58 0.58 0.61 0.67 0.71 0.68
Product 5C 0.62 0.58 0.59 0.64 0.69 0.71 0.64
Review 10C 0.62 0.54 0.55 0.61 0.69 0.67 0.63

20C 0.59 0.54 0.55 0.60 0.66 0.69 0.62
50C 0.57 0.53 0.56 0.60 0.66 0.68 0.58
100C 0.56 0.49 0.54 0.58 0.63 0.68 0.60
200C 0.49 0.48 0.49 0.55 0.57 0.60 0.55

5.2.2. Privacy Preservation

Our system maintained robust privacy guarantees across all experiments. The differ-
ential privacy parameter ϵ was adjusted to explore its impact on recommendation quality,
revealing a manageable trade-off between privacy and accuracy. We used Membership
Inference Attack to evaluate whether the model can defend against such a privacy attack.

Tables 4–6, each displaying the Membership Inference Attack (MIA) accuracy of a
collaborative filtering system under a range of differential privacy budgets for two datasets:
MovieLens and Amazon Product Review. The tables show the effects of varying levels of ϵ
(ranging from 0 to 0.2) on the recommendation accuracy for different numbers of clients
(from 1C to 200C).

Table 4. MIA accuracy of collaborative filtering under different numbers of clients and different
scales of noise.

Dataset Configuration 1C 5C 10C 20C 50C 100C 200C

MovieLens

ϵ = 0.0 0.79 0.75 0.72 0.70 0.68 0.65 0.60
ϵ = 0.001 0.77 0.73 0.70 0.68 0.66 0.63 0.58
ϵ = 0.002 0.76 0.72 0.69 0.67 0.64 0.61 0.57
ϵ = 0.005 0.74 0.70 0.67 0.65 0.62 0.59 0.54
ϵ = 0.01 0.72 0.68 0.65 0.63 0.60 0.57 0.52
ϵ = 0.2 0.70 0.66 0.63 0.61 0.58 0.55 0.50

Amazon Product Review

ϵ = 0.0 0.65 0.63 0.61 0.59 0.57 0.54 0.50
ϵ = 0.001 0.64 0.62 0.60 0.58 0.56 0.53 0.49
ϵ = 0.002 0.63 0.61 0.59 0.57 0.55 0.52 0.48
ϵ = 0.005 0.61 0.59 0.57 0.55 0.53 0.50 0.46
ϵ = 0.01 0.59 0.57 0.55 0.53 0.51 0.48 0.44
ϵ = 0.2 0.57 0.55 0.53 0.51 0.49 0.46 0.42

The accuracy metrics presented are precision, recall, F1 Score, MAP, HR, RR, and DS.
These metrics evaluate the performance of the recommendation system, with a particular
focus on the system’s resilience to (Membership Inference Attack) MIA under varying
levels of privacy. The accuracy of a Membership Inference Attack (MIA) measures its
effectiveness in correctly identifying training data samples and is calculated using the
formula Acc = TP+TN

TP+TN+FP+FN . In this formula, TP (True Positive) and TN (True Negative)
count the correctly identified training and non-training samples, respectively, while FP
(False Positive) and FN (False Negative) account for the incorrectly identified samples.
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Table 5. MIA accuracy of content-based filtering under different numbers of clients and different
scales of noise.

Dataset Configuration 1C 5C 10C 20C 50C 100C 200C

MovieLens

ϵ = 0.0 0.77 0.73 0.69 0.67 0.65 0.63 0.58
ϵ = 0.001 0.75 0.71 0.67 0.65 0.63 0.61 0.56
ϵ = 0.002 0.74 0.70 0.66 0.64 0.62 0.60 0.55
ϵ = 0.005 0.72 0.68 0.64 0.62 0.60 0.58 0.53
ϵ = 0.01 0.70 0.66 0.62 0.60 0.58 0.56 0.51
ϵ = 0.2 0.68 0.64 0.60 0.58 0.56 0.54 0.49

Amazon Product Review

ϵ = 0.0 0.63 0.61 0.59 0.57 0.55 0.52 0.47
ϵ = 0.001 0.62 0.60 0.58 0.56 0.54 0.51 0.46
ϵ = 0.002 0.61 0.59 0.57 0.55 0.53 0.50 0.45
ϵ = 0.005 0.59 0.57 0.55 0.53 0.51 0.48 0.43
ϵ = 0.01 0.57 0.55 0.53 0.51 0.49 0.46 0.41
ϵ = 0.2 0.55 0.53 0.51 0.49 0.47 0.44 0.39

Table 6. MIA accuracy of matrix factorization techniques under different numbers of clients and
different scales of noise.

Dataset Configuration 1C 5C 10C 20C 50C 100C 200C

MovieLens

ϵ = 0.0 0.74 0.70 0.67 0.65 0.63 0.60 0.55
ϵ = 0.001 0.72 0.68 0.65 0.63 0.60 0.57 0.52
ϵ = 0.002 0.71 0.67 0.64 0.62 0.59 0.56 0.51
ϵ = 0.005 0.69 0.65 0.62 0.60 0.57 0.54 0.49
ϵ = 0.01 0.67 0.63 0.60 0.58 0.55 0.52 0.47
ϵ = 0.2 0.65 0.61 0.58 0.56 0.53 0.50 0.45

Amazon Product Review

ϵ = 0.0 0.60 0.58 0.56 0.54 0.52 0.49 0.44
ϵ = 0.001 0.59 0.57 0.55 0.53 0.51 0.48 0.43
ϵ = 0.002 0.58 0.56 0.54 0.52 0.50 0.47 0.42
ϵ = 0.005 0.56 0.54 0.52 0.50 0.48 0.45 0.40
ϵ = 0.01 0.54 0.52 0.50 0.48 0.46 0.43 0.38
ϵ = 0.2 0.52 0.50 0.48 0.46 0.44 0.41 0.36

As the ϵ value decreases, implying stronger privacy constraints (more noise added),
the accuracy metrics tend to decrease for both datasets across all configurations. This trend
illustrates the trade-off between privacy and utility, where increasing privacy protection
generally leads to lower accuracy of the recommendations.

The decrease in metrics is consistent across all three tables, showing a systematic
degradation in model accuracy as the privacy budget becomes more stringent. Additionally,
as the number of clients increases, there is a general trend of decreasing accuracy, reflecting
the complexity of preserving privacy in a more distributed environment.

5.2.3. Impact of Differential Privacy

The experiments highlighted the nuanced balance between privacy guarantees and
system performance. By fine-tuning the noise-addition parameters, we established an
optimal setting that preserves user privacy without excessively compromising the quality
of recommendations.

We present the privacy and model accuracy trade-offs in Figures 1–3. Multiple lines
in the Figure, each representing different client configurations from 1C (single client)
to 200C (two hundred clients), show that as the noise level increases, the accuracy for
each configuration decreases. The decline is more pronounced with a lower number of
clients; the 1C configuration starts with the highest accuracy and shows a sharp decline
in performance as noise increases. In contrast, the 200C configuration begins with lower
accuracy, which decreases more gradually with added noise. These visual data suggest
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that models with fewer clients are more sensitive to the addition of noise, while those with
more clients are somewhat more resilient but start at a lower accuracy level.

Figure 2. Trade-off between model accuracy and noise added for collaborative filtering.

Figure 3. Trade-off between model accuracy and noise added for content-based filtering.

For content-based filtering, the first graph shows a series of curves for various client
configurations (1C to 200C) where each curve markedly dips as the noise level rises from 0 to
0.2. This illustrates that even a small addition of noise can significantly lower the accuracy,
with configurations that have fewer clients being the most sensitive to noise increase.
Figure 4 details the effects on matrix factorization techniques, where the initial accuracy
rates are generally higher across all client configurations when compared to content-based
filtering. However, similar to the first graph, an increase in noise correlates to a decrease in
accuracy. The decrease is more uniform across different client configurations, indicating
a certain robustness in matrix factorization techniques against noise when compared to
content-based filtering. These results highlight the inherent challenge in balancing privacy
with utility: as the system becomes more private (through increased noise), the ability of
the model to accurately recommend items diminishes. This is a critical consideration for
the design and deployment of privacy-preserving recommendation systems.
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Figure 4. Trade-off between model accuracy and noise added for matrix factorization.

6. Conclusions

This paper presents a comprehensive federated recommendation system that effec-
tively integrates differential privacy to ensure user privacy without significantly com-
promising the quality of recommendations. Through extensive experimentation with
real-world datasets, the system demonstrates a commendable balance between privacy
preservation and recommendation accuracy. The innovative integration of differential
privacy mechanisms within a federated learning framework addresses the critical chal-
lenge of protecting user data while maintaining the utility of the recommendation system.
The system’s scalability and efficiency in handling varying numbers of clients and dataset
sizes further underscore its potential for real-world applications. This work contributes
significantly to the field of privacy-preserving recommendation systems, showcasing the
feasibility of achieving high-quality recommendations alongside robust privacy guarantees.
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