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Abstract: Advanced driving technologies have the potential to transform the transportation
sector. Specifically, the progress of autonomous vehicles (AVs) has caught the interest of
governmental authorities, industrial groups, and academic institutions, with the goal of
improving the driving experience, effectiveness, and comfort while also improving safety
and flexibility and lowering vehicle emissions. Considering these facts, the purpose of
this study is to assess the possible effects and advantages of AVs under diverse traffic
situations in urban and rural environments. Knowledge of traffic behavior inside a cer-
tain road network is made easier by traffic microsimulation. PTV VISSIM (Verkehr In
Stadten—SIMulationsmodell) is among the microsimulation software programs that has
attracted great interest because of its remarkable capacity to faithfully simulate traffic
conditions. This review helps researchers choose the best methodological strategy for their
individual study objectives and restrictions while using VISSIM. This research assesses
the effect of AVs in different driving behavior and weather conditions in urban and rural
situations using VISSIM and introduces traffic safety using the surrogate safety assessment
model (SSAM). The study focuses on 10 parameters from the Wiedemann 99 car-following
model and speed distribution to establish the correlation between weather conditions and
surrogate safety measures (55SMs). The findings could lead to more accurate and authentic
models of driving behavior and encourage the automotive industry to further equip AVs to
operate efficiently in various environmental and driving conditions.

Keywords: VISSIM; SSAM; driving behavior; autonomous vehicles

1. Introduction

On a yearly basis, the World Health Organization (WHO) publishes statistics on traffic-
related damage. WHO'’s 2024 Global Status Report on Road Safety claims that the number
of fatalities caused by traffic decreased marginally to 1.19 million in 2021, highlighting
the necessity of ongoing efforts to meet the global target of cutting road traffic deaths in
half by 2030 [1]. Traffic fatality studies have resulted in improved intelligent transport
systems (ITSs) with increased capabilities [2,3]. The main component of traffic simulation
platforms would be motorway infrastructure, which is human-driven and automated
vehicles. Autonomous vehicles (AVs) have recently gained popularity as a means of
transportation that will significantly affect road traffic [2]. AVs have many advantages, but
two key factors are crucial for many individuals. The first is their impact on road safety; for
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example, sensors and cameras can be utilized to enable autonomous driving, which could
lower the frequency of accidents caused by human error. They can identify obstructions in
360 degrees and have a wider detection range than humans, allowing for higher speeds
while maintaining safety. As compared with human driving, AVs reduce the gaps between
vehicles, increase efficiency, and reduce congestion and environmental loads [4-6]. Some
previous studies included an indoor AV driving environment, a real-time simulation of
AV behavior, and a re-creation of autonomous driving scenes [7-9]. While a few previous
researchers have used traffic flow simulations to examine the impact of AV mobility on traffic
flow. These studies have primarily focused on modeled AVs [10-13]. An essential stage in the
evolution of transport is the operation of AVs and mixed human vehicles (HVs). However,
the interplay between these two vehicle types can result in variances in HV driving behavior,
impacting highway traffic flow conditions, because the degree of trust that HV drivers
have in AVs varies. This behavioral variability can significantly impact traffic flow, safety
outcomes, and infrastructure performance. Therefore, a comprehensive review is necessary
to bridge the gap between controlled simulation environments and the dynamic conditions
of real-world traffic. Such a review can consolidate current methodologies, highlight
limitations in existing research, and guide future efforts toward more realistic and robust
traffic modeling.

Thus, this study aims to investigate how autonomous vehicles (AVs) and human-
driven vehicles (HVs) behave under various adverse weather conditions in both urban and
rural settings. It specifically addresses: (1) how different weather scenarios affect driving
behavior and safety, (2) the effectiveness of AVs at various penetration levels, and (3) the
applicability of VISSIM and the SSAM in modeling mixed traffic flow.

1.1. Verkehr in Stidten—SIMulations Model (PTV VISSIM)

Traffic management is an approach to improving traffic conditions. In many places,
traffic congestion is a serious issue. Common strategies for reducing traffic congestion
and raising service standards include improving road capacity, effective urban and rural
transport systems, and efficient traffic management techniques. Microsimulation modeling
of transportation and infrastructure has improved over time to become a safer, simpler,
and more cost-effective method of assessing the effects of weather changes on vehicles.
Traffic simulations are useful for analyzing and assessing various traffic models, and since
no system is needed for testing, computer simulation software is affordable. Microscopic
simulation models rely heavily on driving behavior. Driver-behavior models have preset
parameters that can be adjusted based on local traffic circumstances. The default values for
these parameters sometimes do not adequately reflect the local traffic topographies and
conditions of certain regions because of the wide difference in driver behavior depending
on geographic location, vehicle type, weather, and driving circumstances [14]. PTV VISSIM
is one such tool that is being extensively studied. Created by the German group PTV, PTV
VISSIM is a new multi-model simulation tool that enables the study of urban and rural
traffic as well as pedestrian flows. The engineering and traffic problems that VISSIM can
fix include building intersections and comparing their benefits, identifying the best area
for roads and highways, building capacity analysis, transportation development planning,
transportation management, traffic planning, human resources, and public transporta-
tion [15]. To accurately detect and analyze the effects of various weather scenarios on the
transportation network and traffic flow, PTV VISSIM demonstrated efficacy in simulating
driving behavior in adverse weather conditions. Previous researchers investigated the
psycho-physical car-following models “Wiedemann 99” and “Wiedemann 74" in addition
to the lane-change model within the extensively used traffic simulation tool, PTV VISSIM,
to improve the accuracy of traffic simulations and create weather-dependent simulations.
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They changed the default parameters to weather-specific values and identified parameters
that represented changes in behavior under the various weather conditions. There are
10 parameters in the Wiedemann 99 model (CCO-CC9) [16], which are explained in Table 1.
In VISSIM software, CC0O, CC1, and CC3 perform a vital role for the car-following behavior
of cars, especially when traffic demand is high.

Table 1. Wiedemann 99 vehicle parameter (CCO-CC9).

Parameter Description Impact
CCo Distance at standstill Influences PUITTM Spacing
between vehicles
cCl Headway time nghel.' values 1mply more cautious
following behavior
cC2 Following variation Aff(?cts longitudinal oscillation in
vehicle movement
cC3 Threshold for entering Determines perception—reaction
following threshold
CCa Negative following Defines lower bound of speed
threshold difference for following
CC5 Positive following threshold Defmes upper boun(El of speed
difference for following
Speed dependency of Higher values cause greater
CCo 1 a1
oscillation speed oscillation
cc7 Oscillation acceleration Ind.1 cates acceleration during
oscillatory movements
CC8 Standstill acceleration Acceleration from stationary state
CC9 Acceleration at 80 km/h Desired acceleration at higher speeds

1.2. Surrogate Safety Assessment Model (SSAM)

Traffic microsimulation is controlled by a collection of mathematical formulas that
outline the driving behavior of specific automobiles within the software. These equations
often include safety characteristics that prevent vehicle accidents, which are considered the
primary safety performance indicator in safety literature. This statement is a paradox, and
it may have an impact on the reliability of using simulation for safety evaluation. In fact,
the incapacity of traffic microsimulation to assess road safety has been criticized [17,18].
However, the practice of microsimulation technology for safety assessment is supported by
a large number of studies, provided that the simulation model is appropriately calibrated
and validated using safety indicators [19-21].

The surrogate safety assessment model (SSAM) was created by Siemens ITS and
financed by the Federal Highway Administration (FHWA). By analyzing trajectory data
provided by traffic microsimulation techniques like VISSIM, PARAMICS, TEXAS, and
AIMSUM, the SSAM was developed to automate the procedure of traffic conflicts [22]. The
SSAM functions as a post processor, classifying conflicts and using a trajectory file (trj)
to calculate a few surrogate safety precautions generated by the microsimulation tools.
The SSAM creates a database of each instance found in the model output after analyzing
trajectory files with vehicle-to-vehicle interaction to find conflict scenarios [23,24]. Figure 1
depicts a concept of the SSAM.
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Figure 1. Concept of the SSAM.

The SSAM approach is now widely utilized in safety evaluation and is regarded as
the sole viable procedure for using microscopic simulation for safety evaluation [18,23,25].
Contflicts are the intermediate ground between accidents and quiet, safe travels. According
to a recent study, there are still considerable differences in opinion over what constitutes a
traffic dispute, even after decades of theoretical development and extensive application. It
is well acknowledged that a traffic conflict has two distinct natures. The term “surrogate
safety measure” refers to a situation where two vehicles are too near in space or time, and
an evasive motion is performed to avoid a collision [26]. Considering the above description,
a significant portion of the simulation-based literature used traffic conflicts as a safety
indicator [13,21,22]. Additionally, Gettman et al. [22] found a high correlation between
the field validation study’s real accident data and the conflict data supplied by the SSAM.
FHWA created an equation to illustrate the connection between conflicts and collisions
because there are far more conflicts than crashes, presented below in Equation (1).

Crashes/Year = 0.119 x (Conflicts/Hour)1.419 @

To meaningfully assess the chance and/or severity of an accident, surrogate safety
measures (SSMs) are measurements that indicate the association between two road users
during a traffic occurrence. There are numerous SSMs used in traffic simulation studies to
assess the safety impact. The utmost common SSMs derived from traffic microsimulation
and their definition given by the FHWA (2003) [27] are presented below in Figure 2.

The two most widespread SSMs are Time to Collision and Post-Encroachment Time.
When discussing the most common SSMs, it is important to note that they have been
employed as safety performance indicators in some of the current literature [21]. A better
strategy would incorporate the addition of SSMs and an adverse movement identification
system. Gettman et al. [22] examined the possibility of using vehicle trajectory data gener-
ated by traffic microsimulation in conjunction with surrogate safety measure thresholds
to detect traffic conflicts. Their efforts led to the growth of the SSAM, a popular post-
simulation processing tool that uses vehicle trajectory data from microsimulation and the
SSMs, Time to Collision (TTC), and Post-Encroachment Time (PET) to detect traffic conflicts.
The SSAM has been arguably the sole validated instrument for finding traffic conflicts from
microsimulation, and has been frequently utilized in recent research [19-21,28].
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Figure 2. The most common SSMs derived from traffic microsimulation and their definitions.

1.3. SSAM Simulation with VISSIM

Conventionally, road safety assessments have been conducted using historical collision
data. The reactive strategy in this situation has limitations, including limited access to
high-quality collision data and difficulty distinguishing between components. Observing a
substantial number of collisions over a considerable amount of time is necessary to conduct
a statistically reliable safety analysis; however, it creates an ethical quandary [29]. Rather
than depending only on collision-based analysis, it is advised to employ surrogate measures
such as the SSAM in combination with resources from the Swedish Traffic Conflict Method
to increase road safety [30]. Traffic collisions are extracted from drivers’ trajectories by the
SSAM program using microscopic simulation models like VISSIM [31]. However, the SSAM
software’s map display feature lacks capability and reliability, and there are issues when
choosing a map. There is no built-in feature in the SSAM for detecting conflicts between
different vehicle types, such as CV-HV and HV-CAV. Nonetheless, it offers vehicle IDs that
are engaged in a dispute, which can be acquired using VISSIM. Large-scale simulations
with hundreds of conflicts will be difficult for this method to handle, but it performs well
in small-scale simulations with few conflicts [23].

The SSAM conflict analysis tool and VISSIM simulation software workflow are shown
in Figure 3.

Alternative simulation tools like AIMSUN, PARAMICS, and SUMO also exist for traffic
flow modeling. However, PTV VISSIM offers advanced customization of driver behavior
through the Wiedemann models, while the SSAM provides a validated postprocessing tool for
trajectory-based conflict analysis. The study focuses on the review of VISSIM and the SSAM
based on their widespread adoption, high fidelity, and integration capabilities [14-21].
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Figure 3. The SSAM conflict analysis tool and VISSIM simulation software workflow.

2. Literature Review on Different Parameters Used in PTV VISSIM
Microsimulations

2.1. Mobility Impact of AVs

In comparison with other microsimulation platforms, VISSIM has been more widely
used in assessing the influence of AVs on traffic flow at intersections, interchanges, and
roundabouts using built-in models. According to recent research studies conducted using
PTV VISSIM, AVs would help transport networks in several ways. These advantages
include reduced traffic congestion, enhanced safety, better traffic flow, and greater traffic
capacity for the existing road infrastructure [32,33]. Based on how the human driver and
the vehicle technology coordinate the driving task, the Society of Automotive Engineers
has divided automated cars into six levels of automation. As shown in Figure 4, in the first
three levels, the primary driving tasks are performed by the human driver. Conversely,
however, Levels 4 and 5 indicate total automation [34].

Level 0 Level 2 Level 4 and 5
sConvention sPartial sComplete
al cars automation automation (AV)
Level 1 Level 3
¢ Driver sConditional
assistance automation

cars

Figure 4. Classification of automated cars into six levels of automation.

Park et al. [35] conducted research by defining 36 different scenarios in VISSIM en-
compassing diverse traffic volumes and AV penetration rates to examine how the behavior
of Level 4 automated vehicles affects the traffic flow of urban roadways. According to their
findings, AVs have an optimistic impact on traffic dynamics, lowering travel times and
delays while improving vehicle speeds. As AV use increased, these traffic benefits became
more noticeable. When AV penetration reached 100%, average travel time decreased by
17%, delays reduced by 31%, and vehicle speeds improved by 21%.

Aria et al. [36] used the PTV VISSIM internal model for automated cars to conduct
a simulation study on an Autobahn sector with two scenarios: 100% AVs and 100% CVs.
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Based on previous research, they altered the speed distribution and driver behavior features
in car-following and lane-changing models to simulate the presence of AVs. The results
showed that AVs greatly improved traffic performance, particularly in congested areas.
The AV situation raised average density by 8.09% during the evening peak hour, increased
travel speed on the Autobahn by 8.48%, and resulted in a 9.00% decrease in travel speed.
The specialty of modeling AVs is the basic differences in driving behavior, which require
variable parameter values and often require unique features. This becomes particularly
significant when assessing traffic safety.

2.2. Driving Behavior’s Impact on Safety

The type of vehicle, network characteristics, and driver behavior are three main com-
ponents that have direct or indirect effects on road transport safety. Driving behavior, which
includes a driver’s speed, acceleration, and gear selection, can have a substantial impact on
traffic safety. The transport network’s performance is heavily influenced by driver behavior
on a given route segment. Similarly, lateral and lane-changing habits have an important
influence in determining driving behavior [37]. Driver behavior varies depending on traffic
conditions, including free mobility, proximity to other vehicles, adherence to the car ahead,
and deceleration [2]. In the last few years, a few studies have examined the safety impacts
of connected and autonomous vehicles (CAVs) using the SSAM along with the VISSIM
simulation software. Li et al. [38] utilized VISSIM simulation and the SSAM to examine the
influence of AV fleets with different driving levels on traffic flow and safety in motorways.
The VISSIM platform was used to study the driving behaviors of four AVs. According to
the study, excessively cautious AVs could present new risks to the safety and efficacy of
traffic. To examine the safety effects of connected and autonomous (CAV) penetration on
the road network, Virdi et al. [39] developed a calibrated microsimulation environment
in VISSIM. The SSAM was used for safety performance analysis. To simulate CAVs and
evaluate their safety using microsimulation testing, this work employed VISSIM to develop
a bespoke control algorithm. Morando et al. [32] used VISSIM microsimulation with the
SSAM to evaluate the effects of AVs on safety at signalized intersections and roundabouts.
VISSIM was used as a traffic microsimulation platform to simulate human-driven and
autonomous vehicle behavior, analyzing probable conflicts based on TTC and PET. In
this study, simulation was used to assess the AVs’ safety, addressing the lack of empirical
evidence on their performance. Tibljas et al. [40] conducted a study to determine if the
planned introduction of AVs will increase cyclist safety. The study employed VISSIM and
the SSAM to analyze bicyclist behavior during peak hour traffic in the city center and
investigate the possible advantages of AVs for their safety. This research was original in
that it used VISSIM to simulate cars and bicycles sharing the same lane, which is common
in city centers. The models were based on field data. Research by Fan et al. [19] and Zhou
and Huang [20] showed that VISSIM and the SSAM may be applied to calculate the safety
of a signalized intersection and that improving the simulation model may result in accurate
traffic conflict estimates.

2.3. Effect of Weather
2.3.1. Impact of Weather and Driving Conditions on Driver Behavior

Unfavorable weather conditions that include precipitation, strong winds, low visibility,
and extremely high or low temperatures can affect how people drive, notably in terms of
speed selection and maintaining proper headway distances [41,42]. Ghasemzadeh et al. [43]
examined the lane-keeping behavior of drivers in heavy rain by examining Florida and
Washington highway traffic statistics from the Road Information Database (RID) and
SHRP2 naturalistic driving study (NDS). They discovered that while there are more lane
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changes in clear weather than in heavy rain, there is also more variability in speed during
heavy rain than in clear weather, which may indicate a higher safety risk. Additionally,
they investigated the acceleration—deceleration behavior and found that while average
deceleration was higher in clear weather, the range and average acceleration were larger
under heavy rain. Data are evaluated either in real time or after they have been collected
by software-based algorithms taught to detect objects. These methods aim to increase the
accuracy and efficiency of object recognition on roads and streets while resolving safety
issues. Vehicle-based investigation is a popular method, and subsequently it allows for
rapid and effective object inspection. However, autonomous algorithms have always had
trouble identifying things in bad weather, including rain, fog, snow, haze, storms, and
poor lighting [44]. There are several negative impacts of the weather on traffic flow and
transportation. Globally, rainfall happens 11.0% of the time on average [45]. According to
studies [46], rainfall can unquestionably raise the risk of accidents by 70% when compared
with normal weather. Furthermore, 76% of the world’s countries experience snowfall. For
instance, according to U.S. national data, frozen slushy, slippery, or snowy roads account
for 24% of weather-related vehicle accidents each year, while actively falling snow or snow
combined with sleet accounts for 15%, underscoring the actual dangers of winter weather.
Environmental factors such as fog, haze, sandstorms, and intense sunlight significantly
impair visibility, which poses serious challenges for drivers [44].

During SHRP2 trips in clear and rainy weather, Mohamed M. Ahmed and Ali
Ghasemzadeh [42] discovered a notable variation in driving habits and vehicle perfor-
mance. Drivers reduced speeds by over five kilometers per hour below the permitted speed
limit and kept longer headway lengths in both moderate and heavy rain. Weng et al. [47]
assessed how a motorway in Beijing’s traffic flow changed with different snow levels.
They concluded that, based on the volume of traffic, heavy snow reduces vehicle speed
by 15% to 40%, with the average speed being roughly 28% slower than in clear weather.
Furthermore, it was discovered that road capacity dropped by roughly 33% and that the
headway time, the amount of time between vehicles, increased by two to four seconds.
Druta et al. [48], who gathered weather-related collisions and near-collision incidents from
the SHRP2 dataset, found that drivers are generally extra cautious when driving in snow
than when it is raining. Khan et al. [41] evaluated how drivers chose their speeds in near and
distant fog. They discovered that the average speed decreases more in near fog than in far fog,
and that the average speed is significantly slower in foggy weather than in clear conditions.

2.3.2. Modeling Driving Behavior and Traffic Flow in a Variety of Weather Scenarios

Numerous studies have examined the damaging effects of unfavorable weather on
road transportation and traffic flow variables (capability, free-flow speed, mean speed, and
saturation flow rate); however, very few have made use of trajectory-level information
from SHRP2-NDS [49,50] or driving simulators [51,52] to assess traffic flow in various
driving situations and develop weather-dependent microsimulation models by carefully
analyzing driver behaviors at the microscopic level. Some studies considered various
weather conditions along with their respective intensities to calibrate lane-change and
weather-dependent vehicle-following models in the PTV VISSIM, and researchers defined
diverse adversity levels for each of these weather conditions [53,54]. Hammit et al. [53]
used the SHRP2 NDS dataset to determine the ideal velocities and parameter values
for the W99 model under various weather situations. Following baseline traffic flow
situations, simulations of fog, snow, and rain (from very light to heavy) were conducted.
When compared with clear sky conditions, VISSIM simulations revealed no differences
in capacity between extremely light and light rain. However, under both moderate and
heavy rain, the capacity improved. Speed improved by 22% in fog, very light rain, and light
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rain, but reduced by 11% in moderate rain, heavy rain, and snow. To assess traffic safety
and operation in adverse weather, Anik Das and Mohamed M. Ahmed [54] determined
that clear weather and two levels each of rain, snow, and fog were the seven weather
scenarios for which the essential and free-lane-change variables were modified based on
lane-change frequencies from the SHRP2 NDS. Weather-specific simulation results showed
that the overall number of simulated conflicts, including rear-end and lane-change conflicts,
increased in extremely bad weather, highlighting the detrimental effects of bad weather on
driver performance and behavior.

In order to analyze traffic flow and road capacity, Chen et al. [55] constructed 11 dis-
tinct weather conditions in a driving simulator with three distinct traffic flow stages. These
comprised two levels of snow, four levels of fog and of rain, and a clear-sky scenario.
They suggested the optimum speed in each weather condition and all 10 parameters
of the Wiedemann 99 car-following model (CC0-CC9) based on the data collected from
the driving simulator. According to the simulation’s output, average speed decreased
significantly in snowy conditions (19.2-45.6%), and in additional harsh weather circum-
stances (heavy rain, dense fog, and very heavy rain), average speed decreased noticeably
(7.6-27.5%). In snowy conditions, lesser density has been recognized as the larger head-
way that vehicles often maintain to avoid rear-end collisions because of reduced visibility
and road friction. Furthermore, under snow, the road capacity significantly decreased
by 43.7% to 71.1%, and in other extreme weather conditions, it significantly decreased by
11.1% to 20.5%. Jiagi Ma et al. [56] created three weather situations—normal/clear, snowy,
and severe—to depict the different winter weather circumstances of Wyoming’s I-80 for
a weather-responsive management system for connected vehicles. For each of the three
weather scenarios, 10 parameters of the Wiedemann 99 model (CC0-CC9) in VISSIM were
calibrated to simulate improving road conditions after snowplow vehicles were deployed
at crucial roadway segments before adverse weather events. Golshan Khavas et al. [57]
used loop sensor and meteorological information for I 694 in the Twin Cities, Minnesota, to
calibrate nine key VISSIM input parameters for three weather scenarios (icy, dry, and wet)
in order to evaluate the impact of unfavorable weather on traffic flow.

2.3.3. Modeling Speed Distribution of Vehicles Under Various Weather Situations

Along with updating traffic flow models, it is critical to add speed distribution into
VISSIM to ensure correct calibration of microsimulation models and reflect the unique char-
acteristics of traffic states under various weather situations [42]. A few publications [41,57]
addressed the requirement to calibrate the speed distribution in order to simulate traffic
flow during bad weather conditions. In the analysis of trajectory-level data on drivers’
speed selection in uncongested traffic under different weather conditions, Khan et al. [41]
concluded that while vehicle speeds show a normal distribution in clear weather, they
produce a clear Weibull distribution in adverse weather. The researchers chose the right
speed distribution for four weather situations (rain, snow, fog, and clear) and found that
drivers always slow down significantly in bad weather, with snow having the biggest effect.
In a different investigation, Khan et al. [58] adjusted the distribution for two fog levels
(near fog and far fog) and speeds in clear weather. According to the study, when compared
with clear weather, speed fluctuations are greater in fog but reduced in near fog.

2.3.4. Performance of AVs Under Adverse Weather

AVs and automated driving systems (ADSs) are the most advanced automotive tech-
nologies. Despite the numerous benefits, perception and sensing for vehicles equipped
with ADSs in unpredictable driving situations are a source of concern, preventing them
from progressing to higher autonomy for a prolonged period. To address the immediate
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challenge of AVs” ADSs performance in bad weather, a few studies have been conducted
using computer simulations or rigorous testing in difficult conditions to concentrate on how
AVs perceive and logically sense severe weather. A thorough literature review of the effects
of unfavorable climate on advanced sensors, like LIDAR (light detection and ranging), GPS,
cameras, and radar, was presented by Zang et al. [59]. They also described in detail how
rainfall impacts automotive radar, considering both attenuation and backscatter effects.
Song et al. [60] evaluated the ability of a multi-sensor system to identify dynamic barriers
and road lanes in a three-dimensional (3D) environment under a variety of simulated
weather conditions in the ALEAD digital environment. The researchers simulated these
sensing technologies—image sensors, cameras, and infrared cameras—as well as LIDAR
technology and examined their performance problems in rainy and foggy environments.
According to Rasshofer and Gresseret [61], rainy weather significantly reduces autonomous
cars’ capacity to track and avoid moving objects. The study emphasized how more ad-
vanced segmentation algorithms, such as deep learning methods, could be used to increase
object recognition and tracking accuracy under these unfavorable weather conditions.

According to Zhang et al. [62], increasing perception was considered to be the best
technique to lessen the adverse effects of unfavorable weather conditions, which necessi-
tated a thorough evaluation of many machine learning and image processing approaches,
including de-noising. The study also looked at other ways for improving sensing, such
as classification and localization. The findings demonstrated a growing use of advanced
networks, computer vision models, and robust sensor fusion. A thorough analysis revealed
that improvements in test equipment and new LiDAR architectural technologies have sig-
nificantly improved perception and sensing performance in typical wet weather conditions,
with the recent improvement in rain and fog situations being primarily due to advances
in computer vision. The study stated that future advancements to LiDAR technology are
expected, emphasizing the significance of expanding datasets and developing perception
enhancement methodologies to meet issues faced by snowy weather.

2.4. Rural Area and Safety Analysis

Small cities and rural areas frequently see mixed flow traffic, which deviates from
lane markings. Both motorized and non-motorized vehicles contribute to mixed traffic
flow. Non-motorized vehicles include bicycles, rickshaws that are pulled by hand, and
carts pulled by animals. Cars, motorcycles, transport vehicles, bicycles, trucks, and auto-
rickshaws are examples of motorized vehicles. The size, mobility, control systems, and
stationary/moving characteristics of these vehicles vary. Traffic flow is not consistent;
instead, there is a lot of lateral motion [3]. Analyzing vehicle-to-vehicle interactions and
creating workable results are necessary to comprehend overcrowding and bottlenecks in di-
verse traffic. The conduct of drivers who follow other vehicles is replicated by car-following
models. These models are frequently employed in capacity and safety assessments, in
addition to the creation of traffic simulation models [63]. VISSIM’s ability to precisely
simulate mixed traffic, including lane-changing, car-following, and lateral behaviors, sets it
apart from other traffic flow simulation solutions [64]. Approximately 30% of interstate
vehicle miles are driven on rural motorways, which have lower maximum speed limits
and truck percentages. Due to the altered roadway environment, rural freeway work areas
are characterized by heavy truck traffic and unpredictable vehicular behavior [65]. W 99
was given precedence for highways, with speed restrictions of 80 km/h and higher, while
W 74 is appropriate for intersections, roundabouts, and arterials with speed limits under
80 km/h. Depending on the study methodology, lane modifications can be applied to both.
Here, the priority was for W99 for rural and small city arterial roads. Jehn et al. [65] created
and adjusted the generalizable microsimulation models in VISSIM for lane closures on
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rural motorways. The results suggested that different time headway distributions be made
for trucks and passenger cars, and that the default anticipated acceleration for heavy-duty
vehicles would be set between two and three feet per second. They suggested that inte-
grated site capacity estimations with a range of geometric, traffic, and ecological variables
may be obtained by extending the methodology provided. Table 2 shows some previous
literature based on driver-behavior models in VISSIM software.

Table 2. Review of previous literature on driver behavior models in VISSIM software.

Author

VISSIM Model

Geometry

Important Conclusions

[37]

[66]

(671

[32]

[68]

[69]

[70]

[71]

[72]

[73]

W99 and lane change

W 99
and lane change

W 99
and lane change

W99

W74

W99

W99
and lane change

W 99
and
W74

W 99
and
W74
and lane change

W99

Intersection

Freeway

Freeway

Intersections and

roundabouts

Arterial

Freeway

Intersection

Roadway

Freeway

Freeway

Examining how AVs may affect potential conflicts. There
will be substantial safety improvements from AVs.
The rate of collisions was found to have decreased.

The network is safer when there are more AVs installed.

Examining the impact of traffic characteristics on lane
change for safety. Setting an immense speed dispersion
results in more frequent lane changes, while a small speed
distribution results in fewer lane changes.

Investigating the application of ramp metering (RM) on

a highway.

The average wait time was most successfully decreased by
the signal on the ramp with the shortest red time.
The metering rate on highways is influenced by traffic
conditions, and this strategy improved average speed
the most.

The impacts of AV on safety are assessed through
simulation. With
increased penetration, AVs greatly improve safety.
Predicting emergency vehicle (EV) routes and travel times.
Calibration and validation considerably improved the
accuracy of travel time estimation.

EVs’ limited mobility necessitated a more dynamic PCU
at high flow rates.

Considerate consequences of aggressive driving. Close
following, abrupt lane changes, and quick deceleration are
examples of destructive driving that raises the possibility
of an accident with another car.
Determining different CAV penetration rates. Significant
increases in safety are among the advantages of raising
CAV penetration rates in traffic flow.
Simulated vehicle behavior in mixed traffic conditions.
The trajectories show that the hysteresis phenomenon
occurs among vehicles even under mixed traffic
conditions. The technique of replicating high-speed roads
with W 99 models and urban roads with W 74 models is
severely opposed by the study. According to the study’s
findings, both theories are very consistent.
Examined how traffic flow distribution inside a lane is
affected by car-following and lane-change characteristics.
In Wiedemann’s model, the parameters CC3 and CC1 play
a vital role in determining a vehicle’s lane-change
headway. In the W 99 scenario, CC1 plays a substantial
role, while the bxadd and bxmult parameters have little
effect on lane flow distribution in W 74.

The reliability of route time can be predicted by
examining the distribution of time headway and standstill
distance. Incorporating stochastic elements for time
headway and standstill distance into car tracking models
enhances the precision and efficacy of assessing travel
time reliability metrics.
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Table 3 shows the literature review on the utilization of different parameters like
weather, rural or urban areas, mobility, and traffic flow in road networks. Huang et al. [74]
concluded that snowy weather had the greatest impact on traffic flow. Fujiu et al. [75]
demonstrate that the delay between OD intervals rises with the mixing rate of AVs. Khasha-
yarfard and Nassiri [37] concluded that traffic flow will be lowered if AVs were present in
traffic flow. Park et al. [69] suggested that traffic flows increase and delays decrease with
an increase in AV penetration rate. Hammit et al. [53] observed that speed and density
increase in snow, moderate rain, and heavy rain. Chen et al. [55] concluded that adverse
weather affects traffic flow. Zhang et al. [62] proposed the sensor model, and the results
showed that intense rains may decrease a millimeter-wave radar’s detection range by up
to 55%. Khan et al. [58] studied how fog affected motorway speed selection. This study’s
findings may help drivers choose their speeds more wisely in foggy situations, which could
enhance some safety measures, such as variable speed restrictions. Morando et al. [32]
illustrate that AVs improve safety through high penetration rates and reduce conflict at
signalized intersections. Khavas et al. [57] proposed the model to calculate which VISSIM
input parameters are most capable of generating a traffic stream related to the weather
category. Ghasemzadeh et al. [58] found that, compared with drivers in clear weather,
drivers in heavy rain are approximately 3.8 times more likely to have a higher average
deviation of lane position. Fan et al. [19] observed that, after two stages of calibration, the
mean absolute prevent error (MAPE) for all conflicts was found to have decreased from
78.1% to 33.4%.

Table 3. Review of previous literature based on weather, AV, rural or urban area, and other parameters.

Author

Key Parameter Finding Limitations

Huang et al. [74]

Fujiu et al. [75]

Khashayarfard and
Nassiri [37]

When compared with clear weather,
snowy conditions had the greatest
impact on traffic flow, increasing stop
counts by 7.5 times and delay times
by 2.5 times. When compared with
clear weather, heavy, dense fog
Mobility, inclement significantly increases the total Environmental impact on adverse
weather amount of stop (1.8 times more) and weather conditions not studied.
stoppage durations (2.9 times more).
Whereas rainy weather results in a
1.3-fold increase in delay durations
and a 2.37-fold increase in the
frequency of stops compared with
clear weather.
Autonomous vehicles’ effects on

traffic flow are highly dependent on Only weekday mornings were
the amount of mixing and the type of analyzed.

Rural area traffic, such as urban or rural. When Utilizing only delay time as an

delay time compared with simply autonomous evaluation

AV vehicles, the combination of index,
non-vehicular traffic, such as cyclists no sensitivity analyses were
and pedestrians, with AVs increases conducted.
the OD delay time.

Does not employ MTTC or PET or
any other surrogate measures.
Evaluation of how AVs affect

variations in demand and
applying them to every situation
was not carried out; no sensitivity
analysis was conducted.

Accident risk might be lowered by up
to 93% if all AVs were present in
traffic flow. Use the traffic conflicts
TTC and DRAC.

AV, safety
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Table 3. Cont.

Author

Key Parameter

Finding

Limitations

Park et al. [69]

Hammit et al. [53]

Chen et al. [55]

Zhang et al. [62]

Khan et al. [58]

Morando et al. [32]

AV, urban road, traffic
flow, road capacity

Adverse weather
driving behavior
on NDS SHRP2 trips

Adverse weather
Traffic flow characteristic

Adverse weather
conditions
AV sensors

Driver behavior in general;
speed selection in clear
and foggy weather

SSAM, AV

Traffic flow improved as AV
penetration increased, and the
average delay decreased by up to
31%. Connections with three or four
lanes also significantly increased the
delay, as was to be expected. When
AV adoption reached 100%, the
roadway network could handle 40%
more traffic in terms of increased
road capacity.

Improvement in speed at capacity
and density are observed in snowy,
moderate, and heavy
rain environments and no capacity
change and reduction in density is
observed for fog,
very light rain, and light rain.

The study found that poor weather has
a consistent impact on traffic flow
characteristics. The developed method
can overcome the current limitation of
the field data-based methodology.

The impact of unfavorable weather
conditions on AV sensors including
LiDAR, GPS, cameras, and radar is
reviewed in this research.
Additionally, they suggested a novel
model that considers both the
backscatter and attenuation effects to
describe the rain impact on
millimeter-wave radar. According to
the modeling results, intense rains
may decrease a millimeter-wave
radar’s detection range by up to 55%.
Driver speed selection behavior is
significantly influenced by
weather-related factors such as
visibility, fog, and surface conditions,
since sensor-based technology (AV) is
less vulnerable to bad weather. On
motorways, fog can result in rear-end
and lane-deviation accidents by
affecting a driver’s observation of
speed and visibility of objects on
the road.

AVs improve safety through high
penetration rates, regardless of
traveling with shorter headways to
increase roadway capacity and
reduce delays. AVs reduce conflicts at
signalized intersections by 20% to
65%, with penetration rates (PRs)
ranging from 50% to 100%. With
100% AV PR, roundabout conflicts
decrease by 29% to 64%.

The model’s parameters were not
precisely calibrated. Minor
passageways were not as
well-calibrated, and the main
corridors were the focus. The
study assumed homogenous
behavior of AVs. Does not
investigate how adding AVs to
microscopic simulation models
affects the behavior of
human drivers.

Excludes considering the
variability of drivers within each
weather situation. Does not assess

how driving behavior changes
from favorable to adverse
weather circumstances.

Here only car-following behavior
is tested but lane-change and
overtaking behavior are not
considered. No other traffic
parameters are considered; only
the volume of traffic is considered.

The radar receiver experiences
noise problems due to the radar’s
large bandwidth. The radar’s
optimum beamwidth, according to
the function requirements, should
be employed. Adaptable power
transmission should be indicated
according to the function region
and weather circumstances.

Does not use different age group
representative sample in speed
selection during foggy weather.

Driver’s behavior in selection of
speed and acceleration during

adverse weather is neglected.

Does not investigate the effects of
V2V safety technologies. Traffic
conflicts in this analysis were
solely related to TTC and PET.
Consider including more SSMs to
reinforce the approach’s validity.
Additional testing with diverse
network configurations, traffic
situations, and AV penetration
rates may be necessary.
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Table 3. Cont.

Author

Key Parameter

Finding

Limitations

Khavas et al. [57]

Ghasemzadeh et al. [58]

Fan et al. [19]

Inclement weather

Weather;
driver behavior

Freeway merge area
SSAM

Which VISSIM input parameters are
most capable of generating a traffic
stream with the attributes connected
to the weather category can be
ascertained using the model
proposed in this study.
Standard deviation of lane location
was greatly increased by heavy rain.
Compared with drivers in clear
weather, drivers in heavy rain are
approximately 3.8 times more
probable to have a higher average
deviation of lane position. They
further concluded that drivers are
better at maintaining their lanes on
roads with greater speeds.

After two stages of calibration, the
mean absolute prevent error (MAPE)
for all conflicts was found to have
decreased from 78.1% to 33.4%. In
particular, the MAPE value decreased
from 79.5% to 35.8% for lane-change
conflicts in addition to 76.6% to 33.5%

Does not utilize the AVs under
different traffic flow and
inclement weather.

Limitations of this study included
the limited sample size and the
lack of demographic and NDS

vehicle data (Naturalistic Driving

Research Data).

Does not apply safety assessment
study to unsignalized intersections
and freeway diverging regions.
Does not discover consistency
among the simulated and the
observed traffic conflicts along
with use of calibration process

using numerous

for rear-end conflicts.
performance measurements.

2.5. Research Gaps Identified
Despite their strengths, the reliability of VISSIM and the SSAM has several limitations.

2.5.1. Lack of Real-World Validation of SSAM Results

To see whether the simulated traffic conflicts could be utilized to forecast real-world
conflicts, linear regression analysis was carried out by Fan et al. [19]. Traffic conflicts are
unpredictable and difficult for microscopic traffic simulation models to predict. The discrep-
ancy among the observed and simulated conflicts suggests that the SSAM approach should
be used carefully and only in situations when alternative safety evaluation techniques are
not appropriate.

Table 4 shows that it is challenging to cross-validate the field observation of traffic
conflict results because of the observational approach, and the definition of a dispute varies
for various conventional methodologies. Furthermore, observers subjectively register
conflicts whether recognizing conflicts by evasive actions or manually analyzing video
recordings, and inter- and intra-observer variability pose a significant reliability issue [76].
The field study approach is costly and time-consuming.

Real-world traffic conflicts can be detected objectively and effectively using com-
puter vision techniques. There have been early attempts to connect computer vision
techniques to accident observations [17], and the development and use of these approaches
is growing [77-79]. In the future, these methods have the capacity to greatly enhance the
traditional drawbacks of observer-based traffic conflict strategies. Due to ethical and regu-
latory concerns, naturalistic driving information is safeguarded and not entirely accessible
to the research community. Furthermore, because there is so much naturalistic driving
information—it contains recordings covering years—extracting traffic conflicts from it is
a challenging task. However, because some incidents featured no driver reaction and
hence no notable kinematic changes, selecting occurrences based on kinematic triggers may
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potentially result in selection bias. Recording a collision by a participating vehicle is a risky
prerequisite for validating traffic conflict methods that depend on naturalistic driving data.
Because random drivers would be less inclined to take part in a thorough monitoring study
of their own car, selection bias is another possible problem.

Table 4. Methods to collect traffic conflict used in previous study.

Method Used Advantage Disadvantage
' . . . s - high

Field study [76,80,81] Simple to use; more reliable than many  Variability among anfl across observers; hig
other objective measurements. expense; labor-intensive.

Computer vision Automatically identify traffic conflicts; ~ High standards for video quality; still in the

methods [77-79,82] economical; trustworthy; and effective. ~ early stages of development.

o i Permits the investigation of uncommon  Restricted data size: event sorting is

Driving in a naturalistic . Q. . .
safety scenarios, such as collision and time-consuming; data are safeguarded and not

manner [83-85] 4 . . . .
conflict scenarios. entirely accessible to the research community.

2.5.2. Inconsistencies in Weather Impact Modeling

A variety of weather scenarios within each condition category, the total number of
trips that constitute each dataset, the particular drivers that are represented in each dataset,
the degree of congestion, and other unidentified elements pertaining to the current driving
environment, can influence the results in modeling [53]. The author concluded that a
comprehensive dataset that encompasses a wide variety of circumstances is susceptible to
overfitting. The effect of adverse weather can affect the AV sensors such as camera, LiDAR,
and GPS. It is challenging to thoroughly evaluate the impact of weather circumstances,
particularly the uncommon severe weather, on traffic flow characteristics because both
weather and traffic conditions are unpredictable and nonrepeatable [55].

2.5.3. Limited Work on Mixed Traffic in Developing Countries

Garcia et al. [14] compared manual and automatic calibration techniques in VISSIM on
an expressway in Chihuahua, Mexico. Asaithambi et al. [63] investigated the assessment
of various vehicle-following models to determine which models were appropriate for
mixed traffic situations. Field data were collected from Chennai, India. Huang et al. [74]
evaluated AV mobility under adverse weather conditions on the five-lane arterial road in
Saratoga Springs, Utah. Mou et al. [86] used T-LSTM to forecast traffic flow on Beijing’s East
Fourth Ring Road between the Shibalidian Bridge and Hongyan Bridge. Weng et al. [47]
studied the impact of snowy weather on the expressways in Beijing. Chen et al. used
driving simulators on Beijing’s Ring Road (an urban motorway) between Zuoanmen Bridge
and Xizhimen Bridge to assess the impact of bad weather on traffic flow characteristics.
However, there is very little research available on the effect of weather and AVs’ driving
behavior on mixed or heterogenous traffic flow in developing countries.

3. Discussion

The fundamental element of VISSIM microsimulation is driving behavior. Highways,
which significantly affect traffic operations, were the subject of 60% of the investigation,
as Figure 5a,b illustrates. W 99, on the other hand, was utilized by 36% since it contains
metrics that show a thorough comprehension of the traffic situation. However, W 99 did
not adequately depict traffic problems associated with unusual driving behavior, including
forced driver movements that can cause conflict. VISSIM’s lane-change model identifies
traffic features that lead to constant changes of lanes. There are issues with the W 99
lane-change model that must be resolved. Driving-behavior simulation could enhance the
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understanding of lane-change risk and result in more successful road safety programs on
rural or small city roads or freeways.
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lane W74 W74 and change
change lane
change

Figure 5. (a,b). Use of VISSIM software in driving-behavior models in the previous literature.

VISSIM does not provide a model for lateral movement within a lane and cannot
model two-dimensional traffic flow. In mixed traffic models, lower-speed vehicles often
cause bottlenecks, which is uncommon in practice. Additionally, because vehicles in the
simulation follow links and connectors, VISSIM cannot precisely simulate vehicle trajecto-
ries. Two opposing left-turn connectors can be programmed at a junction without overlap
to reduce the likelihood of head-on collisions between left-turning cars. Furthermore, cars
driving to the left occasionally deviate from lane lines and make broad or tight bends. To
avoid biased SSAM results, these vehicle-turning radius uncertainties must be suitably
handled by the simulation tools.

Huang et al. [74] investigated mobility under inclement weather using VISSIM. Unfa-
vorable weather situations, like snowfall, dense fog, and rain, have a tremendous effect on
traffic patterns and driving habits. Traffic flow is primarily affected by snowy conditions.
Ansarinejad et al. [87] studied the effect of fog on vehicular emissions in mixed traffic flow
with AVs and HVs using the VISSIM model. Driving in foggy conditions would have
less of an adverse environmental impact if AVs were introduced into the conventional
transportation network and their penetration rate was gradually increased. Figure 6a,b
show that the average stops and delays in all weather conditions (snow, rain, heavy, dense
fog, and clear) are gradually and steadily reduced as the AV penetration rate increases from
0% to 100%, with a fully autonomous network seeing the fewest stops, minimized delays,
and enhanced traffic flow. This finding shows a direct correlation between AV use and a
decrease in the frequency of stops, which holds true across different weather conditions,



Electronics 2025, 14, 2046

17 of 26

indicating that AVs can adapt and behave well in a variety of environmental challenges
and are beneficial in reducing stops regardless of weather. The improvements in traffic
flow, such as reduced stoppage frequency, diminished delays, and higher average speeds,
can be directly credited to the distinct driving behavior of AVs, setting them apart from
their human-driven counterparts. The average speed of vehicles increases in all weather
circumstances when the proportion of AVs on the road increases steadily from 0% to 100%.
When transitioning from 0% to 100% AVs, the most substantial improvement in average
speed is observed during snowy weather, followed by heavy dense fog and then rain
(Figure 6). Examining the data in Table 5 will allow us to provide a more detailed insight
into the driving behavior of these new technologies. When compared with human-driven
vehicles, AVs are perceived to be less cautious. They show faster recognition of other
vehicles on the road and quicker reaction times when following them.

800 741s
700 (a)
600
500 428's 468 s
400 379s
300
oo | o k63/h Ny 38 1 70n
100 | km/h 2in m 33n km/h 35n km/h
0
Clear (50% PR) Rain(50% PR) Heavy dense Snow(50% PR)
fog(50% PR)

B Average Speed(km/h)  m Average Delay(s) Average Stop(n)
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s 367s (b)
300
200
74 73 74 70
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0
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m Average Speed(km/h)  m Average Delay(s) Average Stop(n)

Figure 6. Various levels of automated vehicle adoption under clear sky, rain, heavy dense fog, and
snow with (a) 50% and (b) 100% penetration rate.

Table 5. Comparison of car-following behavior measures in human-driven and autonomous vehicles.

Compared to Human-Driven Vehicles

Behavior of AVs Under All Weather Scenerios
Degree of caution based on Lower
CCland CC2
Degree of perception reaction based on CC3 Higher
Degree of sensitivity to the dec/acc of following Lower
vehicle based on CC4/CC5
Speed dependency of oscillation based on CC6 Lower
Degree of acceleration oscillation based on CC7 Lower

Degree of standstill acceleration based on CC8 Higher
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Traffic flow dynamics are determined by competitive traffic streams with different
features that arise from different vehicle behaviors and driver preferences. In a multimodal
system, for instance, vehicles, transit fleets, and trucks all share rights-of-way. Different travel
lanes, desired speeds, and safety distances are needed for the various vehicle characteristics.
Additionally, drivers might exhibit a variety of driving behaviors that can complicate traffic
dynamics, like maintaining gaps when chasing a leading car, using brakes repeatedly, and
changing lanes continuously. In the same way, real-world traffic flow frequently exhibits
variation [88]. The main difference among homogeneous and heterogeneous traffic systems
is that the former are mostly caused by the various operational and performance features of
automobiles. Figure 7 demonstrates the use of homogenous and heterogenous traffic flows
in VISSIM. About 65% of previous researchers used heterogenous traffic flow in VISSIM,
while 35% of the literature is based on homogenous traffic flow.

Percentage (%)

= Homogenous traffic = Heterogenous traffic

Figure 7. Use of homogenous and heterogenous traffic flow parameters in VISSIM in
previous literature.

Table 6 demonstrates the comparison between AVs and HVs modeled in VISSIM with
default parameters. VISSIM’s Wiedemann 99 car-following model was used to model
behavior of HVs using its default settings. Two different sets of AV parameters were taken
from Atkins [89] and PTV [90]. More assertive behaviors are reflected in AV parameters,
such as shorter safety distances (CC1 and CC2) and shorter standstill distances (CCO0). As a
result, AVs should have shorter gaps. AVs respond more sensitively to the acceleration or
deceleration of the preceding vehicle when the levels of the positive following threshold
(CC5) and negative following threshold (CC4) are less. CC6 is set to zero since AVs can
precisely maintain the correct speed without oscillating. Because of linked car technologies,
AVs can accelerate more aggressively (higher CC7 and CC8) and have more observed
vehicles, claims Atkins [89]. The alteration of these factors should be able to represent the
expected AV behaviors even though the precise behavior of AVs is still mostly unknown.
Table 7 shows the comparison between AV and HV performance under different parameters.
As compared with HVs, AV performance on traffic flow shows a decrease in delay, traffic
congestion, and accidents, while an increase in speed and dependability of travel duration
was observed. AVs can be used in various weather conditions and at any location, such as
urban and rural highways. AVs can perform well in adverse weather conditions because of
attached sensor equipment like cameras, LIDAR, and GPS. With HVs, driver distractions
due to reading or using cellphones while driving is high. If HVs and AVs are used in
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mixed traffic flow conditions, the delay in original destination (OD) increases. The delay
among OD intervals is then progressively lowered as the mixing rate surpasses a particular
level [19].

Table 6. HVs and AVs modeled with VISSIM’s Wiedemann 99 car-following model with
default parameters.

Parameters AV1 [89] AV2[90] HV
CCo 0.50 0.75 15
cC1 0.50 0.45 0.9
cC2 0 2 4
Cc4 0 —-0.1 —0.35
CC5 0 0.1 0.35
CCeo6 0 0 11.44
cCc7 0.45 0.25 0.25
CCs8 3.9 3.5 3.5
Look ahead distance 10 2 2

Table 7. Comparison between AVs and HVs under different parameters.

Parameters AV HV
Locati Cities, country roads, highways, and Cities, country roads, highways, and
ocation
urban areas urban areas
Weather Can be used in various weather Cannot be used in adverse weather
Speed Increase Decrease
Delays, stoppage frequency Decrease Increase
Traffic congestion, accidents Decrease Increase
Dependability of travel duration Increase Increase
Driver distraction Minimum High
Road capacity increase decrease

4. Future Research Opportunities
4.1. VISSIM Integration with Al

VISSIM is an isolated system that is comparatively closed. External control algorithms
frequently need traffic flow data to be inserted within the simulation system to improve
the signal control settings and validate the research model. Nevertheless, VISSIM's fea-
tures usually fall short of this criterion. COM interface script files can be executed with
VISSIM [90]. The COM interface module extension is used for postprocessing and data
preparation. It efficiently oversees the scenario analysis process, which includes develop-
ing the control algorithm and retrieving and processing each network feature separately.
Additionally, commands can be given to VISSIM via the COM interface, and the control
program can be built in accordance with the project needs. It is acceptable to control traffic
flow on each route and manipulate the traffic lights [91,92]. The evaluation of artificial
intelligence (AI) performance, particularly deep learning ensemble-based models, is heavily
impacted by uncertainty quantification (UQ). However, in addition to the need for multiple
evaluations to track model instability, the use of UQ through current Al techniques is
limited by changes to topology and optimization processes as well as computer resource
constraints [93]. Traditional weight update methods of an artificial neural network (ANN)
usually have trouble breaking out of local optima and show delayed convergence to ideal
solutions [94]. This phenomenon, which results in a subsequent decrease in the predictive
power of ANNS, is caused by using optimization techniques such as gradient descent.
Researchers have recently suggested a variety of advanced machine learning models as
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workable substitutes for traffic forecasting. For instance, a stacked auto coder (SAE) and
long short-term memory (LSTM) were created for road traffic prediction [95]. Mou et al. [86]
used both simulated and real data from VISSIM to validate their suggested models. Tem-
poral information improves the LSTM neural networks (T-LSTM) model, which takes
temporal elements into account and acknowledges the importance of temporal data in
traffic flow prediction. When compared with other standalone models, the model under
examination exhibits greater accuracy. However, deep neural networks usually demand a
lot of processing power, which poses challenges for embedded devices. The development
of resource-efficient techniques has become crucial to effectively achieving these goals.
Future studies should provide both quantitative and qualitative analysis with a strong
emphasis on Al computational components. Studies should also include creating behavior
prediction models for AVs that use machine learning and deep learning to predict what
will happen to cars, pedestrians, and bicycles. These models will work well in inclement
weather, enhancing AV decision-making for increased efficiency and safety

4.2. AVs in Heterogenous and Mixed Traffic Environments

Rios-Tores et al. [96] assessed and analyzed CAVs’ performance and impact on fuel
usage in mixed traffic at different market penetration rates using VISSIM. They concluded
that when the CAVs’ market penetration rates (MPR) surpass 40% in crowded situations,
optimum coordination control offers the greatest advantage in terms of fuel efficiency
and emissions reduction. Triber et al. [97] investigated how AVs affected mixed traffic.
The degree to which the presence of AVs (particularly in platoons) alters the behavior of
manually operated vehicles is still unknown. In addition to examining different road surface
conditions, the longitudinal automation of vehicles in situations with and without mixed
traffic (passenger cars, buses, and large trucks) was also examined by Ioannou et al. [98].
Regardless of the situation, capacity was decreased by between 30% and 40% in the study’s
simulations when the road surface was wet. Additionally, dependent on the proportion of
buses and heavy trucks, combining different vehicle classes reduced carrying capacity by
11% to 23%. Platooning produced the maximum capacity, particularly when combined with
coordinated breaking. Capacity for 10-vehicle platoons reached 7489 vehicles per hour, a
significant upsurge over regular traffic. The impact of Cooperative Adaptive Cruise Control
(CACC) on mixed traffic flow stability was verified by Schakel et al. [99]. To ascertain
the stability of traffic flow, they evaluated the shock wave dynamics using simulations.
The study concluded that the stability of traffic flow was only marginally impacted by an
increase in headway unpredictability brought on by mixed traffic.

Vandriel et al. [100] suggested that when 10% to 50% of the vehicles are operating
automatically in traffic, traffic flow models indicate a 30% or 60% reduction in congestion
delays due to increased traffic flow. It is possible that automated driving might decrease
traffic by 50%. When vehicle-to-vehicle or vehicle-to-infrastructure communication is
employed, this percentage may increase. However, the effect of automation on traffic flow
may be greatly influenced by human factors. According to the theoretical framework,
human factors have the potential to impact driving behavior [5] as well as system settings.
Driving behavior in cars with varying degrees of automation may also be influenced by
human factors. Only the automation of the longitudinal control task was considered in
most of the recent research. It is necessary to conduct research that takes automated lateral
control into account. Lastly, basic mathematical models of driving behavior have been
the primary tool employed in simulation investigations. New models that can effectively
represent this new realism should be built using the results of empirical investigations on
the effect of automation on traffic flow efficiency, including behavioral changes.
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4.3. Real-Time SSAM Integration with Live Traffic

The complex nature of real-world circumstances, such as unpredictable human be-
havior and shifting traffic patterns, can pose further difficulties not well represented in
simulated datasets; hence, the simulation environments might not accurately represent real-
world driving cases [44]. Implementing approaches using modern methods like computer
vision and naturalistic driving has significant potential for creating extensive automated
techniques for gathering data on traffic conflicts [26]. Another challenge is determining the
validity of the SSAM. The variety of surrogate safety data that the SSAM can extract from
comprehensive vehicle trajectory data cannot be gathered by manual (human observer)
field investigations. Thus, new insights may be gained by applying the SSAM to the study
of conflict events and real-world vehicle trajectory data. Additionally, real-world data for
calibration could benefit the efforts to create a suitable composite. In addition to analyzing
data from the real world, those data need to be gathered. Comprehensive vehicle trajectory
data cannot be recorded by manual (human observer) research. Although more research
and development are necessary, efforts to gather information from video image analysis
are getting better. This is included as a distinct study direction because it is an ambitious
endeavor in and of itself.

5. Conclusions

This study analyzed international studies and practical uses of PTV VISSIM and SSAM
software. The study focused on driving behavior, AV performance, and traffic flow in
adverse weather environments, as well as traffic safety in urban and rural areas. This
literature review also covered recent research on the impact of AV integration on mobility,
and the impact of driving behavior on safety in conjunction with the SSAM. Through
evaluations, it was observed that the SSAM is the effective model to evaluate traffic safety
in rural and small city traffic scenarios. According to this study, with its 10 parameters,
the Wiedemann 99 driving behavior model provides a more detailed depiction of traffic
field circumstances than the Wiedemann 74 model. One of VISSIM’s unique difficulties is
dealing with situations like bad weather and traffic safety on rural or small city freeways.
Despite VISSIM's lack of incident simulation functionality, researchers investigated several
approaches to overcome these problems.

An in-depth literature review on the impact of weather on AVs improves understanding
of how mixed traffic flow with autonomous vehicles performs across a range of four real-
world weather scenarios: clear sky, rain, snow, and heavy dense fog. The study of how
weather impacts AVs can improve average speed, reduce frequency of stops, and decrease
delay times, all of which subsequently enhances traffic efficiency. An important area of
research is assessing and measuring the advantages and effects of CAVs utilizing mixed
traffic scenarios, particularly in the interface between small cities and rural areas or freeways.

Although it has been acknowledged that the SSAM is the best tool for safety evaluation,
the model has not been calibrated or validated using real-world data to determine realistic
frequency values. Nonetheless, there has been apprehension regarding the precision of
driver behaviors in the modeling, and it has been proposed that the problem may be
resolved by enhancing the simulation model’s calibration. VISSIM merging with the SSAM
across present applications may play a significant role in tackling complex issues like
adverse weather conditions. To find the most important parameters in VISSIM, sensitive
analysis can be used with the SSAM. To determine which characteristics have the greatest
impact on vehicle conflicts, this method can be implemented by using vehicle conflicts as
measures of effectiveness.

This study also recommends the adoption of real-time data integration, weather-
responsive microsimulation calibration, and behavior-based AV parameter optimiza-
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tion. Key future research should prioritize developing dynamic traffic safety frame-
works that incorporate sensor feedback, weather analytics, and machine learning into
AV behavior modeling.
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