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Abstract: Three-dimensional object detection has emerged as a focal point of increas-
ing interest among researchers, driven by advancements in and widespread adoption
of autonomous driving technologies. However, this field still faces inherent challenges
in single-modal approaches that rely solely on point cloud data for 3D object detection,
such as the difficulty in effectively extracting features from sparse point clouds and the
lack of critical texture information in the captured representations. To overcome these
limitations, we introduce PomageNet, a fusion approach that combines point cloud and
image data for 3D object detection. First, initial detection results from the two different
kinds of data were applied as inputs, and joint encoding was performed. The encoded joint
tensor is then fed into fusion layers. In the fusion stage, multiple 1 × 1 2D convolutions
are employed to extract joint high-dimensional features. To enhance feature extraction,
a parallel dual-branch framework was designed, and a multidimensional joint encoding
mechanism tailored to the network was proposed to better capture contextual information.
Experiments show that the capacity of our model is comparable to state-of-the-art (SOTA)
methods on KITTI, which was achieved by the proposed network. Results were delivered
by the method in detecting small objects, a key challenge in 3D object detection. An average
precision (AP) of 67.87% and 60.40% was reached on the cyclist and pedestrian splits of
KITTI. Compared to CLOCs, significant improvements were achieved by PomageNet, with
1.28%, 8.40%, and 3.64% increases in the result of detection achieved on the car, cycle, and
pedestrian splits of the KITTI dataset.

Keywords: data fusion; 3D object detection; point clouds; deep learning

1. Introduction
Three-dimensional (3D) object detection technology fundamentally aims to identify

and localize target objects within 3D data representations such as point clouds. Compared
with 2D object detection, this approach effectively mitigates performance degradation
caused by object occlusion and results in reduced sensitivity to illumination variations.
However, its complexity significantly surpasses that of 2D detection due to the inherent
challenges of processing sparse, unstructured 3D data. Traditional 3D detection methods
are categorized into point and voxel-based approaches, with emerging image-based meth-
ods gaining recognition as the field evolves. Notable point-based frameworks include
the pioneering PointNet series: PointNet [1], PointNet++ [2], and PointRCNN [3]. As
one of the earliest deep learning architectures capable of directly processing raw point
clouds, PointNet addresses the inherent disorderliness of point data through symmetric
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feature aggregation functions, enabling effective feature extraction. PointNet++ further
advances this paradigm by introducing hierarchical feature learning mechanisms to capture
local geometric structures at multiple scales. PointRCNN represents a 3D object detection
framework that integrates a region proposal network (RPN) with point cloud processing,
leveraging raw point data directly to preserve geometric fidelity and avoid information
loss inherent in intermediate representations. While point-based methods demonstrate ad-
vantages in feature preservation, their computational efficiency remains constrained by the
high overhead of processing unordered point sets. This limitation has driven the emergence
of voxel-based approaches, which discretize point clouds into 3D voxel grids and employ
convolutional neural networks for feature extraction and detection. In 2017, VoxelNet [4]
pioneered voxelization of raw point clouds, achieving notable accuracy improvements
through hierarchical feature learning within an end-to-end trainable architecture. Subse-
quently, SECOND [5] introduced sparse convolutional networks to significantly enhance
computational efficiency while maintaining detection precision, effectively addressing
the sparsity of 3D data. PointPillars [6], proposed in 2019, organized point clouds into
vertical columnar structures and processed them as pseudo-images via two-dimensional
(2D) convolutions, achieving a favorable balance between speed and accuracy. Further
advancements emerged with PV-RCNN [7] in 2020, which fused point-wise and voxel-wise
features through a proposal-based framework to boost performance in complex scenes.
Recent innovations continue to optimize sparse data processing. In 2023, researchers from
Facebook AI Research developed SparseConvNet [8], which refines sparse convolutional
architectures to improve memory efficiency and point cloud representation capability. Par-
allel efforts produced SparseBEV [9], which employs dynamic sparse convolutions and
adaptive feature sampling for efficient bird’s-eye-view (BEV) detection, demonstrating
SOTA in real-time applications. These developments underscore the ongoing evolution of
3D detection paradigms toward balancing accuracy, computational efficiency, and scene
adaptability. In 2024, the latest DynamicVoxelNet [10] introduced dynamic voxelization
technology, which enhances robustness and detection accuracy in complex scenarios with
uneven point cloud distributions through adaptive adjustment of voxel resolution. These
voxel-based methods have distinct advantages in latency, average precision of detection,
and the processing of complex geometric structures.

Image-based 3D detection approaches have emerged as alternative methodologies. These
methods typically utilize image data as the primary input to extrapolate 3D bounding boxes,
aiming to synergize the complementary advantages of multimodal data. A seminal example
is Mono3D [11], proposed by Chen et al. in 2016. More recently, in 2023, Xie et al. developed
M²BEV [12], a unified BEV framework that integrates multicamera image fusion. Further-
more, with the maturation of Transformer architectures, novel 3D object detection techniques
incorporating transformer improvements have emerged, exemplified by FocalFormer3D [13],
which adapts the Transformer paradigm for enhanced 3D perception tasks.

Single-modal object detection techniques have demonstrated remarkable performance
with advancing technology, relying solely on unimodal data for 3D detection, which has
been proven to exhibit inherent and unresolved limitations. For instance, point cloud-based
methods often lack critical texture information inherent in images, whereas image-based
approaches are significantly vulnerable to occlusion and illumination variations. Consequently,
camera–LiDAR data fusion—integrating image and point cloud modalities—has increasingly
become a research priority. The fusion of point cloud and image data represents a pivotal
form of multi-sensor integration, aiming to enhance the accuracy and reliability of scene
understanding by synergizing complementary characteristics from heterogeneous modalities.

Figure 1 shows a ground robot equipped with a LiDAR and a camera. Late fusion
integrates the detection results of two modalities. It involves independent processing of
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point clouds and images using dedicated algorithms, followed by integration via mech-
anisms such as weighted averaging or voting schemes to derive final detections. Late
fusion mitigates errors inherent to single-modal data and enhances system robustness,
making it particularly suitable for accuracy-critical applications. Thus, this paper proposes
PomageNet, a novel late-fusion 3D object detection framework. The framework comprises
three modules: a data preprocessing module, a fusion network, and an output layer. Unlike
conventional late-fusion methods that rely on simplistic decision mechanisms, PomageNet
introduces a dual-branch fusion network architecture. The key innovations are outlined
as follows:

1. We construct a joint tensor with fused confidence scores by aligning 2D and 3D
detection results. Specifically, 3D candidate bounding boxes are projected onto the 2D
image plane, and their intersection-over-union (IoU) with 2D detection candidates is
computed. These IoU metrics serve as the basis for generating the joint tensor, which
is then fed into the fusion network.

2. We introduce a dual-branch structure where parallel subnetworks independently
process modality-specific features. This architecture enhances feature discriminability
and overall average precision.

3. To prevent the network from overlooking distant spatial features in original candidate
regions, we integrate a cross-attention mechanism into the fusion branches. Channel
attention and spatial attention modules were embedded in the two branches of the
fusion network, functioning as channel encoders and spatial encoders, respectively.
Channel attention emphasizes feature relevance across channels, whereas spatial
attention focuses on contextual relationships within feature maps. The outputs of
these modules are adaptively combined to produce the final fused features.

 

Figure 1. A LiDAR–camera fusion-enabled ground surveillance robot.

2. Related Works
Recently, substantial progress has been made in data fusion-based 3D object detection

methodologies. These methods are systematically categorized into early, intermediate,
and late fusion methods on the basis of their integration stages. Early fusion combines
raw sensor data prior to feature extraction, intermediate fusion merges modality-specific
features during network processing, and late fusion consolidates detection outputs from
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independent modality-specific pipelines. Figure 2 shows the average precision(AP) of
fusion detection approaches on te KITTI dataset.

 

Figure 2. Average precision of fusion detection approaches on the KITTI dataset.

2.1. Early Fusion

In 2018, Qi et al. proposed F-PointNet [14], which first performed 2D object detec-
tion on 2D images to define 3D frustum regions based on 2D bounding boxes. Three-
dimensional bounding box regression was then conducted on the point clouds within
these frustums, significantly improving search efficiency and detection accuracy. Building
upon this idea, Zhao et al. proposed SIFRNet [15], which improved the representation of
frustum regions by incorporating front-view images and truncated frustum point clouds,
further improving the quality of object box predictions. Subsequently, Chen et al. proposed
MV3D [16], a 3D detection system utilizing multiple viewpoints that adopts a two-stage
pipeline. It generated 3D proposals and projected them into three views for feature extrac-
tion. MV3D had the highest value of average precision on the KITTI dataset at the time,
but suffered from high cost. Thus, Ku et al. presented AVOD [17], which incorporates
multi-view feature fusion during the first stage to produce a proposal region. By applying
the Region Proposal Network (RPN) on high-resolution fused features, AVOD significantly
enhances the detection of small objects in the scene.

2.2. Middle Fusion

Feature fusion at the feature extraction stage demonstrates strong robustness, with
performance largely dependent on the quality of extracted features. In 2018, Xu et al.
proposed SqueezeSeg [18], which combines CNNs with CRFs to segment point cloud data
in real time. In 2020, 3D-CVF [19] introduced a cross-view fusion mechanism to jointly
leverage camera and point cloud features, enhancing 3D average precision in complex
scenes. PointPainting [20] attached image segmentation results to point clouds, effectively
mitigating cross-modal misalignment in the bird’s-eye view (BEV), though it relied heavily
on segmentation accuracy. EPNet [21] employed LI-Fusion for point-wise semantic fusion
from images and introduced a consistency loss to improve alignment between localization
and classification.

In addition, middle fusion strategies have been widely adopted in tasks such as
segmentation and 3D reconstruction. Representative methods such as LaserNet++ [22]
and DVLO [23] leverage multi-modal fusion to improve system robustness and accuracy,
particularly in the detection of small objects.
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2.3. Late Fusion

Compared to the other two fusion strategies, late fusion is a more straightforward and
efficient approach. As a consequence, this technique has emerged as the most commonly
used framework for multi-sensor fusion within the field of practical applications. In
recent years, an increasing number of late fusion techniques have been proposed and
employed across multiple domains such as intelligent transportation, bird’s-eye view
recognition, and road scene perception. In 2021, Dong et al. introduced AssociationNet [24],
which projects targets detected in millimeter-wave radar point clouds onto the image
plane. A neural network then learns target features in the image coordinate system to
compute a similarity matrix. CLOCs [25] was proposed the same year as an effective
late fusion method. It introduces a post-fusion network intended to take over the role of
non-maximum suppression (NMS), improving the precision of candidate bounding boxes.
Subsequently, Pang et al. proposed Fast-CLOCs [26], an enhanced version of CLOCs that
achieved superior average precision across multiple datasets. In 2024, Sgaravatti et al. [27]
proposed a multimodal delayed fusion approach in a cascade structure that blends LiDAR
inputs with image-based information at the high-level feature stage to further advance the
accuracy and stability of detecting objects in 3D environments. Similarly, FusionRCNN [28]
employs a late fusion strategy to combine LiDAR and camera features within a two-
stage detection framework, significantly improving detection accuracy. CL-fusionBEV [29]
adopts a BEV-based late fusion method that integrates camera and LiDAR data to enhance
3D object average precision. PLC-Fusion [30] proposes a viewpoint-based hierarchical
depth fusion approach that consolidates multi-modal data in the late fusion stage, leading
to improved performance in autonomous driving scenarios. BAFusion [31] introduces a
bidirectional attention mechanism to combine LiDAR and camera features during the late
fusion phase, improving robustness and accuracy. SparseFusion [32] presents a multi-modal
sparse representation fusion strategy that achieves efficient information integration during
late fusion.

Moreover, numerous BEV-based late fusion methods have emerged. For instance,
BEVFusion4D [33] utilizes cross-modal guidance and temporal aggregation strategies to
significantly enhance average precision in dynamic scenes. MSMDFusion [34] employs a
multi-scale and multi-depth seed point mechanism to integrate multi-source data during
the late fusion stage, thereby boosting precision. BEVFusion [35] presents an integrated
approach combining multi-task capabilities with multi-sensor fusion, which enhances both
3D object detection and semantic segmentation in BEV representation. Sec-CLOCs [36],
built upon CLOCs, targets adverse weather conditions such as snowy environments by
integrating YOLOv8s and SECOND detectors through a late fusion mechanism to improve
detection robustness. Finally, VoxelNextFusion [37] proposes a simple, unified, and efficient
voxel-based fusion framework that integrates LiDAR and camera features in the late fusion
stage, demonstrating strong performance in 3D object detection tasks.

3. Materials and Methods
Figure 3 illustrates five principal components: upstream candidate result acquisition,

preliminary data fusion module, joint tensor construction, fusion network, and final output.
This structured pipeline systematically integrates heterogeneous data sources through pro-
gressive feature transformation and multi-dimensional representation learning, ultimately
producing optimized decision outcomes.
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Figure 3. The overall architecture of PomageNet.

We comprehensively elaborate on the implementation framework of PomageNet.
The implementation pipeline is initiated by employing SECOND for 3D object detection
and Cascade-RCNN [38] for 2D detection in parallel. The derived 3D bounding boxes
are transformed and aligned onto the 2D image surface. Through joint calibration of
intrinsic and extrinsic camera parameters, we establish geometrically consistent multimodal
representations for downstream processing.

As shown in Figure 4, the multimodal detection outputs are consolidated into a joint
tensor through geometric co-registration. Candidate regions coplanar in the projective
space undergo IoU quantification, with those exhibiting non-zero spatial overlap (IoU > 0)
being selected as optimal fusion candidates. Our fusion architecture employs a dual-
branch parallel topology exclusively composed of 1 × 1 convolutional layers. Channel-wise
encoding and scale-wise encodings are successively applied in each branch, followed by
feature aggregation through global max-pooling to generate the final detection.

 
Figure 4. Two-dimensional detection and projected 3D detection.

3.1. Upstream Candidate Result Acquisition

Figure 5a presents a schematic representation of the SECOND network architecture,
while Figure 5b illustrates the cascaded output refinement module in Cascade R-CNN.
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(a) 

 
(b) 

Figure 5. Architectural configurations of both 2D and 3D detection frameworks. (a) Architecture of
the two-dimensional detector. (b) Architecture of the three-dimensional detector.

The quality of upstream detection outputs constitutes a critical determinant for all
subsequent fusion architectures, as their performance exerts the most significant and direct
impact on multimodal-integration efficacy. Figure 5a,b present schematic diagrams of the
upstream 2D/3D detection frameworks (SECOND and Cascade R-CNN), illustrating their ar-
chitecture. LiDAR-acquired point cloud data and camera-captured RGB imagery—captured
under identical observational conditions—are separately processed through their respective
detection pipelines to generate modality-specific bounding box proposals.

3.2. Joint Tensor Construction

The PomageNet framework is architected to augment 3D average precision through
strategic integration of 2D visual cues. This necessitates implementing an effective fusion
strategy that ensures cross-modal correspondence. Specifically, an association matrix is
constructed by combinatorially pairing i 2D proposals with j 3D candidates to form a joint
tensor as formalized in Formulas (1) and (2):

ci2d = [dix, diy, dih, diw, pi2d] (1)

ci3d = [hj, wj, lj, xj, yj, zj, θ, pj3d] (2)

In Equation (1), the initial four components correspond to the offset values of the two-
dimensional bounding boxes, while the term ci2d denotes the confidence level associated
with the i-th class in the 2D object detection task. In a similar manner, Equation (2) begins
with seven elements, which collectively describe the seven-dimensional representation of
a 3D bounding box. Correspondingly, cj3d reflects the confidence score linked to the j-th
category in the 3D detection scenario.

In Formula (1), dix, diy, dih, and diw denote the coordinate adjustments applied to the
two-dimensional bounding box positions along different axes, whereas pi2d represents the
category confidence score for the i-th 2D detection. In Formula (2), hj, wj, and lj correspond
to the length, width, and height of the 3D bounding box, respectively. xj, yj, zj indicate the
3D coordinates of the bounding box center, and θ defines the rotation angle of the candidate
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box relative to the reference plane. Similarly, pj3d denotes the category confidence score for
the j-th 3D detection.

c′ j2d = [djx, djy, djh, djw, pj3d] (3)

As illustrated in Formula (3), 3D candidate boxes undergo a transformation to aligns
them with the corresponding positions on the image plane by leveraging the sensor-specific
internal characteristics and external alignment data of the camera and LiDAR, where cj2d
denotes the projected 2D representation of the 3D candidate box on the image plane. We
compute the IoU between the original 2D detection boxes and the projected 3D candidates.
The reconstructed input tensor denoted as Qi,j is formally expressed in Formula (4):

Qi,j = [IoUi,j, pi2d, pj3d, dj] (4)

IoUi,j =
SI
SU

(5)

In Formula (4), the first element Qi,j represents the IoU metric calculated between
two candidate bounding boxes. Specifically, SI denotes the area of the overlapping region
between the two boxes, while SU corresponds to the total area covered by their union.
Concurrently, dj quantifies the normalized distance in the xy-plane between the LiDAR
sensor and the j-th 3D bounding box, as defined in Formula (6):

dj =

√
(xj − xi)

2 + (yj − yi)
2

ω
(6)

The coordinates (xj, yj) denote the position of the j-th target in the xy-plane, while
(xl, yl) represent the coordinates of the LiDAR system within the same planar coordinate
framework, with ω being a constant parameter.

3.3. Screening Mechanism

The effectiveness of PomageNet stems from its utilization of high-performance 2D
detection outcomes to guide the enhancement of 3D detection results. Thus, the implemen-
tation of meticulous screening on the input joint tensor becomes imperative.

As illustrated in Figure 6, the joint tensor construction process incorporates a dual-
stage screening mechanism. Candidate pairs with IoU values computed via Formula (5)
below zero are systematically eliminated. The subsequent screening phase retains ex-
clusively those candidates demonstrating IOU values above zero while simultaneously
requiring their normalized distances calculated through Equation (6) to fall within the
experimentally determined optimal range of 0.4 to 0.9. This threshold interval has been
rigorously validated through comprehensive ablation studies.

3.4. Fusion Network

Serving as the terminal component of the PomageNet framework prior to the output
layer, the fusion network is architecturally designed to achieve comprehensive integra-
tion of the constructed joint tensor while maintaining computational efficiency. Accord-
ingly, we adopt a deliberately simplified dual-branch architecture comprising convolu-
tional layers and multi-dimensional joint encoding modules to emphasize information
synergy over structural complexity. This configuration ensures effective cross-modal fea-
ture interaction while preserving essential spatial-semantic relationships embedded in the
tensor representation.

Figure 7 shows the architectural configuration of the fusion network, which incor-
porates a dual-branch design for complementary feature processing. The first branch,
designated as the channel pathway, employs multi-channel attention encoding to perform
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hierarchical refinement of extracted feature maps, with principal emphasis on inter-channel
information exchange. The second branch, termed the scale pathway, applies analogous
attention-based processing to its feature maps while specifically focusing on spatial cor-
relation within the joint tensor. These two distinct attention encoding mechanisms are
subsequently integrated through element-wise summation. They have formed a multi-
dimensional joint attention encoding module that effectively synthesizes both channel-wise
and spatial-wise feature interdependencies.

Figure 6. The screening process of the joint tensor.

 

Figure 7. Fusion network.

3.5. Multi-Dimensional Joint Attention Encoding

To achieve optimal fusion of feature representations within the joint tensor, we propose
a Multi-dimensional Joint Attention encoding mechanism, as illustrated in Figure 8. It can
give different attention weights to the information in the feature map from the channel
and scale dimensions. These components are embedded at the terminal segments of two
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distinct network branches to capture dimension-specific feature hierarchies. The final fused
representation is obtained through element-wise summation of the two attention-enhanced
feature maps, which ensures the comprehensive fusion of cross-dimensional characteristics
while maintaining representational consistency.

 

Figure 8. Multi-dimensional joint attention encoding module.

H,H’,h represent feature maps in different stages. The MLP (Multi-Layer Percep-
tron) is used to further process the features. The vectors h1, h2, and h3 represent the
outputs obtained from grouped convolution, while H1, H2, and H3 correspond to the
resulting feature vectors after being processed by the MLP. Figure 9 shows the channel
attention mechanism in multi-dimensional joint attention encoding. Our channel atten-
tion mechanism is different from the transmitted channel attention mechanism. In this
module, the feature maps are first convolved through three groups with different numbers
of groups (1, 2, and channels) to obtain three different feature maps. The three feature
maps are processed through global-level feature aggregation through average and max
pooling operations.

Figure 9. Channel attention encoding module in the fusion network.

Global information is extracted by aggregating spatial information from the feature
map using a global averaging strategy. The dependency relationships between channels are
learned using a shared fully connected layer, and channel attention weights are obtained
through the Sigmoid activation function. Channel weighting is applied to the input feature
map to enhance the feature representation of important channels. The reason for adding
different grouped convolutions is to increase the sample size of different channel feature
maps and enhance the robustness of feature representation.

H′ = σ((MPmax) + (MPmax) + (MPavg))H (7)
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In Formula (7), H represents the original feature map, while H’ denotes the feature after
processing. σ represents the sigmoid activation function, M is the multi-layer perceptron
structure, Pavg and Pmax are the global average pooling and max pooling operations.

Figure 10 shows the scale attention module in multi-dimensional joint attention en-
coding. The scale attention in PomageNet should be accurately referred to as pseudo-scale
attention. We also use 1 × 1 convolution to change the number of channels to obtain
features of different dimensions, rather than changing the size of the feature map. Global
information is obtained through max pooling and average pooling. They are fused by
concatenating and adding these different feature maps. Ultimately, sigmoid was once again
applied to obtain completely new weights.

H′ = σ(Pmax(Pavgh4 + (Pmaxh5 + h3) + (Pmaxh6 + h2)))H (8)

H is the input feature vector, hi is the feature map processed by convolution at different
stages, Pavg and Pmax are global average pooling and max pooling.

 

Figure 10. Scale attention encoding module.

3.6. Focal Loss

In PomageNet, the same loss function as the 3D baseline has been applied and proven
to be effective. It is primarily composed of three distinct components: classification loss,
directional classification loss, and candidate box regression loss. Classification loss is
mainly applied to balance foreground and background. However, the difference from
SECOND is that the input of the focal loss is the fused prediction probability:

FL(pt) = −α(1 − pt)
γ log(pt) (9)

where pt is the predicted probability of the target, and α and γ are the relevant parameters
of the classification loss. The regression loss for candidate boxes is defined as follows:

Lθ = SmoothL1
(
sin

(
θp − θt

))
(10)

where θp is the predicted direction angle of the target, and θt is the true direction angle
of the target. An improved version of the Smooth L1 loss is applied to regress and train
the seven-dimensional vectors in the 3D candidate boxes. The reason for adding the
predicted direction angle and the true direction angle is to impose a constraint on regression
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training. The error caused by the predicted direction being opposite to the actual direction
can be reduced. The directional classifier is a softmax loss function. Thus, the overall
objective function that needs to be trained for the loss function in PomageNet is shown
in Formula 11:

Ltotal = β1Lcls + β2

(
Lreg−θ + Lreg−other

)
+ β3Ldir (11)

Lcls is the classification loss, Ldir is the directional classification loss, Lreg-θ is the
angle-constrained loss, and Lreg-other is the position and size loss of the candidate box.

4. Analysis of Experimental Results
4.1. Dataset and Implementation Details

The novel fusion network PomageNet was evaluated on the KITTI [39] dataset. The
numbers of training and testing samples were 7481 and 7518, respectively. In this dataset,
7481 training samples with ground truth labels were split into 3712 samples for training
and 3769 samples for validation. The testing process was conducted on an NVIDIA RTX
A6000 GPU. We employed the Adam optimizer with an initial learning rate of 0.003, which
was gradually reduced by a factor of 0.8 throughout training. A batch size of 1 was applied,
with each individual training sample counted as one step. Based on this setup, the training
was carried out for a total of 37,120 steps.

4.2. Experiment on KITTI Dataset

To verify the effectiveness of our network, we conducted comparative experiments
using PomageNet and other advanced 3D object detection networks on the car category of
the Kitti dataset. N/A stands for no experimental results in that category in that model.
Bolded results represent the best results. Relatively, blue color represents the second best
result. The values of average precision are listed in Table 1:

Table 1. Comparison experiment of the average precision of the car split model on the Kitti dataset.

Methods Modality
3D AP(%) Bird’s Eye View AP(%)

Easy Mod Hard Easy Mod Hard

VoxelNet [4] L 81.79 65.46 62.85 89.60 84.81 78.57
PointPillars [6] L 86.99 77.12 74.98 89.77 87.02 83.71
Point-GNN [40] L 87.89 78.34 77.38 89.82 88.31 87.16

MV3D [16] L 71.09 62.35 57.73 86.02 76.90 68.49
AVOD [17] F 73.59 65.78 58.38 86.80 85.44 77.73

AVOD(Fp) [17] F 81.94 71.88 66.38 88.53 83.79 77.90
F-PointNet [14] F 81.20 70.39 62.19 88.70 84.00 75.33

EFNet [41] L 86.71 77.25 75.73 89.66 87.27 85.61
SECOND [5] L 87.43 76.48 69.10 95.61 89.54 86.96
3DSSD [42] L 88.36 79.57 74.55 N/A N/A N/A
EPNet [21] F 92.28 82.59 80.14 N/A N/A N/A

PV-RCNN [7] L 92.10 84.36 82.48 N/A N/A N/A
PI-RCNN [43] L 88.27 78.53 77.75 N/A N/A N/A

MAFF [44] F 88.88 79.37 74.68 89.31 86.61 89.72
Pointformer [45] L 90.05 79.65 78.89 95.68 90.77 88.46
CLOCs(SM) [25] F 92.37 82.36 78.23 96.34 92.59 87.81

SMOKE [46] M 14.76 12.8 11.50 19.99 15.61 15.28
M3D-RPN [47] M 20.40 16.48 13.34 26.86 21.15 17.14
MonoDIS [48] M 18.05 14.98 13.42 24.26 18.43 18.43

F-ConvNet [49] F 84.16 68.88 60.05 N/A N/A N/A

PomageNet F 92.95 83.64 80.22 96.66 92.73 89.88
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We carried out experiments to compare PomageNet and other advanced 3D object
detection methods on the car split of the Kitti test set. As shown in Table 1, the symbol L
refers to the LiDAR-based detection method, M corresponds to the detection of monocular
3D objects, and F represents the fusion-based method. The best result is marked in black
and blue, indicating that it is the second-best result.

It is not difficult to see from the table that although the cost of monocular object
3D detection is the lowest, the AP of this detection approach is significantly lower than
that of the other two methods. Methods based on LiDAR and fusion have developed
more maturely. Among the methods based on LiDAR, the two-stage 3D object detection
methods, such as PIRCNN and PVRCNN, have achieved the best results so far, and their
results are significantly better than those of the one-stage method. PomageNet combines
two-dimensional detection with the one-stage SECOND method, resulting in a significant
improvement in its results, with a 1.28% increase in detection results, on the car split of the
Kitti validation set.

Table 2 shows that compared with other advanced models. PomageNet performs better
in detecting small-sized targets such as cyclists and pedestrians. Bolded results represent
the best results. Relatively, blue color represents the second best result. Compared with
our baseline SECOND, the experimental result increased by 11.13% and 8.52% in the two
categories, respectively. In addition, even in point cloud and image fusion models, our
method has improved the pedestrian split by 3.64% compared to the highest fusion method.

Table 2. Comparison experiment of average precision of cyclist and pedestrian split models on the
Kitti dataset.

Methods Modality
Cyclist Pedestrian

Easy Mod Hard Easy Mod Hard

SECOND [5] L 78.50 56.74 52.83 58.01 51.88 47.05
VoxelNet [4] L 81.97 65.46 62.85 57.86 53.42 48.87

PointPillars [6] L 82.31 59.33 55.25 58.53 51.42 45.20
IPOD [50] F 78.19 59.40 51.38 60.88 49.79 45.43

F-PointNet [14] F 77.26 61.37 53.78 57.13 49.57 45.48
AVOD-FPN [17] F 69.39 57.12 51.09 58.49 50.32 46.98
F-ConvNet [49] F 84.16 68.88 60.05 57.04 48.96 44.33
Painted(PR) [20] F 83.91 71.54 62.97 58.70 49.93 46.29
CLOCs(SM) [25] F 85.47 59.47 55.00 62.54 56.76 52.26

PomageNet F 89.14 67.87 63.66 68.34 60.40 54.22

In Figure 11, the bounding box in green corresponds to the location of the detected car,
yellow represents the cyclist, and blue represents the pedestrian. The position of the yellow
circle represents the part detected by SECOND error detection and PomageNet detection.
The red circle represents the error detection of the SECOND algorithm.

In Figure 11, the bounding box in green corresponds to the location of the detected car,
yellow represents the cyclist, and blue represents the pedestrian. The position of the yellow
circle represents the part detected by SECOND error detection and PomageNet detection.
The red circle represents the error detection of the SECOND algorithm. From the detection
results of some typical scenarios in Figure 11, it provides an intuitive comparison of the
detection results of the three methods. Its average precision is significantly better than its
baseline. Compared with CLOCs, our method achieves improvements of 1.28%, 8.40%, and
3.64% across the three splits; and compared with SECOND, the gains are 6.16%, 11.13%,
and 8.52%, respectively.
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IMAGE SECOND PomageNet 

Figure 11. Visualization of the KITTI dataset.

In addition, from the BEV view, the advantages of our network are even more apparent.
As shown in Table 3, PomageNet showed varying degrees of improvement in detection
results when faced with three detection difficulties. Bolded results represent the best results.
Relatively, blue color represents the second best result. Compared with SECOND, the
results have increased by 9.70% and 8.70%, respectively. Compared to CLOCs detected by
fusion, the experimental result also increased by 5.36% and 2.00%, respectively.

Table 3. Comparison experiment of average precision from the BEV perspective on cyclist and
pedestrian split on the Kitti dataset.

Methods Modality
Cyclist Pedestrian

Easy Mod Hard Easy Mod Hard

SECOND [5] L 81.91 59.33 55.53 61.97 56.77 51.27
PointPillars [6] L 84.65 67.39 57.28 66.97 59.45 53.42

CLOCs(SM) [25] F 88.96 63.40 59.81 69.35 63.47 58.93

PomageNet F 91.73 69.03 64.15 71.62 65.47 59.21

4.3. Ablation Studies

As shown in Table 4, comparative experiments were conducted on the pedestrian
and cyclist splits of the Kitti dataset to investigate the contributions of various parts of
PomageNet to network performance. In this study, we apply the SECOND network as the
baseline to explore this issue. The joint application of channel attention encoding (CAE)
and scale attention encoding (SAE) in the following table is equivalent to the application
of multi-dimensional joint attention encoding mentioned. The detection results under
moderate difficulty conditions are summarized below:
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Table 4. The impact of individual components within PomageNet.

2D-3D Fusion Data Selection CAE SAE Pedestrian AP (%) Cyclist AP (%)

51.88 56.74√ 58.23 65.29
√ √ 58.41 65.77
√ √ √ 59.27 66.34
√ √ √ 58.66 66.26
√ √ √ √ 60.40 67.87

From Table 4, we can conclude that fusion of 2D images contributes the most to
the improvement of model performance, with improvements of 6.35% and 8.55% on the
pedestrian and cyclist splits. This further proves that the improvement of the model
performance of PomageNet in small-sized object detection depends on the fusion of image
and point cloud data. A significant contribution is the multi-dimensional attention joint
encoding module proposed in this paper. When channel attention encoding and scale
attention encoding are applied simultaneously, the average precision of PomageNet is
improved by 1.99% and 1.90%.

We examine further the role played by different data selection strategies on perfor-
mance within the data filtering framework. The proposed method is derived from the
semantic consistency between images and point clouds. Hence, maintaining the value
of IoU greater than zero during the initial data filtering phase is essential. Our analy-
sis specifically focuses on how the normalized distance from the radar to targets affects
model performance. To facilitate systematic processing, we normalized this parameter
during the construction of the joint tensor representation. The experimental results, shown
quantitatively, are presented in Table 5:

Table 5. Average precision variation with LiDAR–object distance (%).

d > 0.1 d > 0.2 d > 0.3 d > 0.4

d < 0.9 83.27 83.32 83.58 83.64
d < 0.8 83.21 83.32 83.53 83.60
d < 0.7 83.22 83.31 83.53 83.58
d < 0.6 83.18 83.31 83.52 83.58

As shown in Table 5, d denotes the normalized distance (range: [0,1]). Under the
controlled experimental configuration with other modules remaining unchanged, we sys-
tematically evaluated different distance intervals on the car split of the KITTI dataset. The
empirical results demonstrate that the average precision peaks at 83.64% when constraining
the operational range to 0.4 < d < 0.9.

4.4. Deep Exploration

Further experiments were conducted to demonstrate the performance of PomageNet
in multiple dimensions. The previous experiment was conducted under the condition of
40 recalls according to the official Kitti standard. Correspondingly, we also conducted
comparative experiments on object detection under the condition of 11 recall, another
commonly used benchmark.

Figure 12 compares the detection results of SECOND, CLOCs, and PomageNet on
car splits during 11 recalls and 40 recalls. The results were compared with the moderate
detection difficulty. The results of 3D detection are shown in (a), while the detection
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results from the BEV perspective are presented in (b). Under 11Recall, the performance of
PomageNet is still higher than that of SECOND and CLOCs.

(a) (b) 

Figure 12. Comparison of detection results on car split during Recall and 40Recall. (a) Three-
dimensional detection. (b) Bird’s-eye view detection.

As shown in Table 6, to verify the strong generalizability of our method, we replaced
the 3D backbone of PomageNet with PointPillars and conducted experiments on the
replaced method. Consequently, our method can effectively improve the performance of
the original 3D backbone by fusing 2D images. The data in the table also reflect that the
fusion results of our method are largely dependent on the original average precision of
the 3D backbone. The data labeled in blue background indicates the values boosted by
our method.

Table 6. Three-dimensional detection and BEV average precision of PomageNet under different
backbones on the car split.

Methods
3D AP(%) Bird’s Eye View AP(%)

Easy Mod Hard Easy Mod Hard
SECOND [5] 87.43 76.48 69.10 95.61 89.54 86.96
PomageNet 92.95 83.64 80.22 96.66 92.73 89.88

+5.52 +7.16 +11.12 +1.05 +3.19 +2.92
PointPillars [6] 86.99 77.12 74.98 89.77 87.02 83.71

PomageNet 89.97 79.64 76.42 91.45 88.36 84.28
+2.98 +2.52 +1.44 +1.68 +1.34 +0.57

We further analyzed the latency and parameter volume of our method, as illustrated
in Figure 13. In conjunction with the previous detection results on the KITTI dataset,
our method achieved a substantial performance improvement over CLOCs, with only
marginal increases in parameter count (by 0.28 M) and latency (by 2.34 ms). Specifically,
the improvements reached 1.28% for cars, 8.40% for cyclists, and 3.64% for pedestrians.
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Figure 13. Latency and parameter volume analysis.

5. Conclusions
A novel and effective 3D object detection framework, PomageNet, which employs

image and point cloud post-fusion, was proposed to enhance average precision. Our
approach leverages the inherent semantic consistency between 2D image features and 3D
point cloud representations of the same object and applies 2D detection results to guide
and refine 3D predictions. Specifically, raw confidence scores were extracted from both 2D
and 3D detection outputs. Then, the IoU was calculated from the 2D candidate boxes, and
the 3D bounding boxes were projected onto the image plane. Subsequently, candidate pairs
with IoU values exceeding zero were retained as semantically consistent object proposals.
Following secondary screening, these proposal pairs were aggregated to construct a joint
tensor. In addition, a dual-branch fusion network with multi-dimensional joint attention
encoding was introduced to comprehensively integrate cross-modal features from the joint
tensor. The refined features were subsequently fed into the detection head to optimize the fi-
nal 3D detection. The experimental results show that PomageNet significantly outperforms
its 3D baseline, achieving a 7.16% improvement in detection results. Notably, compared
with CLOCs, the framework exhibits enhanced performance in detecting small-scale objects,
with mAP gains of 8.40% and 3.64% on the cyclist and pedestrian splits.

PomageNet is a novel and high-performance network. However, it also presents
two primary limitations. The current implementation restricts end-to-end multi-category
detection due to the constraints in loss function computation, which only ensures valid
optimization for a single category. Potential performance gains may be further unlocked
by integrating more robust 3D baseline architectures. These aspects constitute promising
directions for future refinement of the framework.
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