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Abstract: Test Case Prioritization (TCP) is critical in software quality testing, aiming to
identify high-priority test cases early in the testing process. This study proposes a novel
TCP approach using the Dragon Boat Optimization Algorithm (DBOA), inspired by the
synchronized teamwork seen in dragon boat racing. The proposed TCP-DBOA model
strategically reorders test cases to improve fault detection efficiency while minimizing exe-
cution time. By using the Average Percentage of Faults Detected (APFD) as the optimization
objective, the model enhances both coverage speed and testing effectiveness. DBOA offers
advantages in handling large search spaces, balancing exploration and exploitation, and
adapting to complex testing scenarios. The performance of TCP-DBOA is evaluated using
four benchmark datasets—GZIP, GREP, TCAS, and CS-TCAS—demonstrating superior
APFD values compared to existing methods. Results confirm the model’s robustness in
reducing test execution time and improving fault detection early in the test cycle. This
approach contributes to faster, more efficient regression testing, especially in continuous
integration environments.

Keywords: Test Case Prioritization; fitness function; software testing; Dragon Boat
Optimization Algorithm; software engineering

1. Introduction
Generally, software engineering is software development and programming and

the execution of engineering processes in the growth of any software in an organized
method [1]. Software testing takes a long time to implement, which is the costliest stage of
software development. With the assumption of the agile model in most software enterprises,
the interest in constant integration environments is developing [2]. The advantages of
such atmospheres include incorporating regular software variations and creating software
evolution quicker and less expensive. As an outcome, it will efficiently handle challenges
like test implementation, test result reporting, and build procedures [3]. Software testing
has been proficient since the area of software engineering arose. Software testing was
presented to estimate the quality of the software. Testing contains actions that can classify
every possible fault in software for resolving them before the software product has been
delivered to end-users [4]. Software testing is frequently implemented, even with time
restrictions and fixed resources. The groups of software engineers are commonly required
to close their testing actions due to economic and time needs, which will cause some
troubles like issues with software excellence and client contracts. However, the TCP app
acts to improve test feasibility in software testing action [5]. TCP’s primary goal is to fix test
cases to attain a preliminary optimizer dependent upon the chosen assets. It provides the
capability to perform highly vital test cases as soon as possible according to a few measures

Electronics 2025, 14, 1524 https://doi.org/10.3390/electronics14081524

https://doi.org/10.3390/electronics14081524
https://doi.org/10.3390/electronics14081524
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-6367-2977
https://doi.org/10.3390/electronics14081524
https://www.mdpi.com/article/10.3390/electronics14081524?type=check_update&version=1


Electronics 2025, 14, 1524 2 of 20

and generate preferred outcomes like illuminating previous errors and delivering reviews
to the samples. In addition, it aids in addressing a perfect transformation of a sequence of
test cases and is implemented consequently. Software testing and debugging costs exceed
50% of the growth cost [6].

The price of regression testing (RT) depends upon the difficulty of the use and the
dimension of the test set. The important task of software testing is to enhance the demand
of the test cases for execution to identify the highest errors in the assumed test suite. To
overcome this task, three common answers are studied in the work, namely test suite
prioritization (TSP), test suite minimization (TSM), and test suite selection (TSS). TSP
reorganizes the test cases to detect more faults in the highest few test cases. Machine
learning (ML) and artificial intelligence (AI) approaches have verified their real suitability
in interdisciplinary uses [7]. Finding out the best demand for the test cases and the best
method to restrict or pick the test cases creates an NP-hard issue. Optimization approaches
are employed to overcome these problems positively. Nature-inspired algorithms have
effectively resolved tough optimizer issues in numerous areas. Otherwise, they can enhance
the cost-effectiveness of RT. Nature-inspired systems demand researchers due to their
simple structure and simplicity of utilization. The techniques have been ideally constructed
by exhibiting natural actions [8]. They are generally categorized into biology-inspired, social
phenomena-inspired, and physics/chemistry-inspired algorithms. Also, these methods
are functional in RT. The most frequently employed algorithms are evolutionary and
swarm intelligence-based methods from the biology-inspired family of nature-inspired
techniques. The growing complexity of modern software systems demands more effectual
testing methods to ensure reliability and quality [9]. Given the time and cost constraints in
software testing, optimizing the process has become significant for improving productivity
and mitigating expenses. With the rise of continuous development cycles, there is a growing
requirement for techniques to prioritize test cases and detect faults early efficiently. This
assists in minimizing the overall testing time while ensuring that critical issues are identified
promptly. The proposed method aims to address these challenges by introducing a novel
approach for TCP, which enhances the overall efficiency and effectiveness of the testing
process [10].

This study presents a Test Case Prioritization using the Dragon Boat Optimization
Algorithm (TCP-DBOA) model for software quality testing. The chief purpose of the TCP-
DBOA model is to diminish the total execution period and maximize the APFD. The DBOA
is utilized for TCP. In addition, the TCP-DBOA technique utilizes the average percentage
of test point coverage APFD as an optimizer objective to represent the coverage velocity
to the test point. The TCP-DBOA technique is recognized as a huge search space for
finding an optimum collection of test cases. The performance analysis of the TCP-DBOA
method is performed, and the results are investigated in terms of dissimilar measures under
diverse datasets.

• The TCP-DBOA model strategically prioritizes test cases to optimize the testing pro-
cess, effectively mitigating the total execution time. Focusing on an efficient test case
order improves overall testing efficiency. This approach ensures faster fault detection
and enhanced resource utilization during testing.

• The TCP-DBOA approach aims to optimize the APFD, increasing the chances of
identifying faults early in the testing cycle. Prioritizing test cases based on APFD im-
proves fault detection efficiency. This approach results in quicker defect identification,
improving the overall efficiency of the testing process.

• The TCP-DBOA methodology implements the DBOA model to improve TCP, allowing
the model to navigate large search spaces effectively. By employing DBOA, optimal



Electronics 2025, 14, 1524 3 of 20

test case orders are identified, enhancing testing efficiency. This method ensures a
more streamlined process, prioritizing test cases that maximize fault detection.

• The TCP-DBOA technique uniquely utilizes the APFD as an objective function to
capture coverage velocity, giving a novel approach to TCP. This method effectively
balances fault detection and test case selection (TCS). By optimizing APFD, it ensures
a faster and more effective testing process. The novelty is its ability to handle large
search spaces while prioritizing fault detection and coverage speed.

2. Related Works
In [11], a model termed TestReduce was developed and planned by a mixture of

genetic procedures to discover an enhanced and least pair of test cases. The vital objective
of this research is to offer a method that resolves the minimized issue of RT in related desires.
The 100-dollar prioritized technique has been employed to describe the significance of
novel desires. Hamza et al. [12] intended a Modified Harris Hawks Optimized-based
TCP (MHHO-TCP) model for software testing. The main intention of the developed
MHHO-TCP method is to expand APFD and diminish the complete implementation period.
Furthermore, the MHHO model is intended to increase the exploitation and exploration
capacities of the conventional HHO process. Many models have been directed at dissimilar
benchmark programs to authorize improved efficacy. In [13], an optimizer algorithm,
namely the Bee Algorithm (BA), was projected, dependent upon the intelligent forage
performance of the honey bee group. The planned technique advanced for improving the
error recognition rate in the least period is stimulated by the performance of dual kinds
of worker bees, such as foragers and scout bees. The projected method is executed on
dual projects. The prioritized outcome is dignified by employing the APFD. Priya and
Prasanna [14] develop an effectual Multi-objective Test Case Generation and Prioritize
utilizing an Improved GA (MTCGP-IGA) technique. An arbitrary search-based model
for generating and highlighting multiple-objective tests was used. Specifically, the multi-
objective optimizer includes increasing the prioritized range of test cases (PR), pairwise
coverage of characteristics (PCC), decreasing total implementation cost (TIC), and fault-
finding capability (FFC). An exclusive fitness function has been built using cost-effective
metrics for the test prioritizing issue.

Iqbal and Al-Azzoni [15] developed an enhanced quantum-behaved particle swarm
optimizer (PSO) approach. The model is enhanced using a fix-up device to execute perturba-
tion for the combinatorial TCP issue. Next, the dynamic contraction expansion co-efficient
is employed to quicken the convergence. It is surveyed using an adaptive test case col-
lection plan to pick the modification-illuminating test cases. Lastly, the superfluous test
cases are detached. In [16], the authors developed a hybrid method for change or RT over
the test case prioritized. The recommended model primarily produces the test cases and
then groups them into experimental and insignificant clusters by employing a kernel-based
fuzzy c-means (FCM) clustering model. Then, the suitable test cases were measured and
prioritized by executing the grey wolf optimization (GWO) model. Chandra et al. [17]
projected a nature-inspired smell detection agent (SDA) technique. This method is an
optimizer algorithm appropriate for recognizing optimum tracks with priority. The SDA
procedure depends upon the vanishing of small particles in the gas procedure and the
ability of a sensing agent to gain insight. The amount of linearly liberated tracks over a
program unit is dignified by generating a control flow graph (CFG), which trials the cyclo-
matic difficulty. In [18], a test case reduction (TCR) and support-based whale optimization
algorithm (SWOA) optimizer for distributed agile software improvement employing RT
and including dual phases is projected. Selection and prioritization are implemented once
the test cases are rescued and gathered. The test groups have been organized and ranked to
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confirm that the most dangerous examples were elected foremost. Furthermore, the SWOA
has been employed to pick test cases with superior coverage or failure measure occurrence.
Table 1 highlights the existing studies on TCP techniques, comparing various approaches
in performance metrics such as fault detection, execution time, and efficiency.

Several existing models for optimizing TCP concentrate on improving APFD and
mitigating implementation time, but they often face difficulty with scalability for mas-
sive datasets. While techniques like BA and MTCGP-IGA aim to improve error detection
and coverage, they lack robust mechanisms for adapting to dynamic changes in software
environments. Furthermore, approaches such as SDA and SWOA optimizers encounter
challenges in generalizing across diverse software applications. Despite improvements,
many of these models do not account for the complexities of growing software systems, em-
phasizing a research gap in developing more flexible, scalable, and adaptive prioritization
methods for dynamic testing environments.

Table 1. Existing studies on TCP using optimization algorithm for software quality testing.

Ref. Number Objective Methods Dataset Measures

Sheikh et al. [11]

To propose the
TestReduce
technique for
minimizing and
prioritizing RT
cases.

GA Web application
requirements

Test case
minimization,
prioritization
using 100-Dollar
approach.
Quality criteria
conformance
evaluation

Hamza et al. [12]

To propose the
MHHO-TCP
technique for
maximizing
APFD and
minimizing
execution time
in software
testing.

MHHO-based
TCP technique

GZIP, GREP,
TCAS, and
CSTCAS

APFD, ET, FDR

Nayak et al. [13]

To propose a
BA-based
technique for
enhancing fault
detection.

BA with Fuzzy
Rule Base, Scout
And Forager
Bees Behavior

Standard
Dataset

APFD, FDR,
TCP
performance

Priya and
Prasanna [14]

To propose an
efficient
MTCGP-IGA for
Component-
based software
development.

Improved GA,
Nondominated
Sorting GS-II

Component-
based Software
Development
Test Scenarios

TCP, PCC,
Fault-Finding
Capability (FFC),
TIC

Iqbal and
Al-Azzoni [15]

To propose a test
prioritization
approach for the
RT model
transformations
using rule
coverage
information.

Rule
Coverage-based
TCP, Empirical
Study and Tool
Implementation

Model
Transformation
Test Cases

FDR, TCP
Efficiency, Test
Case Orderings
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Table 1. Cont.

Ref. Number Objective Methods Dataset Measures

Pathik, Pathik,
and Sharma [16]

To propose a
hybrid technique
for RT through
TCP using
clustering and
optimization.

Kernel-based
FCM Clustering,
GWO for
Prioritization

RT Cases for
Software
Modifications

FDR, TCP
Efficiency

Chandra, Sankar,
and Anand [17]

To propose a
SDA approach
for selecting and
prioritizing
paths in
software testing.

SDA, CFG,
Cyclomatic
Complexity

Ten
Benchmarked
Applications

Path Coverage
Increase, Time
Complexity
Reduction

Singh, Chauhan,
and Popli [18]

To propose a
TCR and SWOA
for RT in
distributed agile
software
development.

TCP and
Selection,
SWOA,
Clustering and
Sorting of Test
Cases

Distributed
Agile Software
Projects

TCS
Performance,
Coverage and
Failure Rate

3. The Proposed Method
This article proposes the TCP-DBOA methodology for software quality testing. The

methodology aims to minimize total execution time and maximize the APFD. In addition,
it picks the average percentage of test point coverage APFD as an optimizer objective to
represent the coverage velocity to the test point. Figure 1 illustrates the overall process of
the TCP-DBOA approach.
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3.1. Design of DBOA

Motivated by the dragon boat (DB) race, the DBOA model examines the conditions of
the drummers and paddlers on dissimilar DBs and gathers the racing conditions of all of
them [19]. Furthermore, the algorithm integrates a social psychology device to perfect the
whole procedure of a DB race. The DBOA model is chosen over other techniques due to its
unique capability to combine individual and collective performance through the analogy
of a DB race. By considering the roles of drummers and paddlers, the model efficiently
captures the dynamics of cooperation and competition within a group, making it highly
appropriate for optimization problems. Integrating a social psychology device improves
the capability of the model to adapt and refine the racing process, promoting better syn-
chronization and coordination among elements. This aspect allows DBOA to optimize
complex tasks more effectively than conventional techniques that may not account for
the components’ social interaction and collaborative behavior. Additionally, the flexibility
and adaptability of the model to various scenarios make it a robust contender for TCP,
presenting a more holistic and dynamic approach compared to conventional algorithms.
Algorithm 1 demonstrates the DBOA model.

Algorithm 1 DBOA Technique

1. Initialization:
• A population of agents (DBs) is initialized. Every agent has a position and

velocity representing a possible solution to the optimization problem.
• The number of agents depicts the size of the DB team.
• The optimization problem defines the objective function the algorithm will aim

to minimize or maximize.
2. DB Representation:

• The DBs are illustrated by agents with their positions in the search space.
• Each agent can move across the search space, and their movement depends on

the team’s synchronization.
3. Fitness Evaluation:

• The fitness function computes how well each DB performs concerning the given
objective.

• The fitness can be based on diverse metrics depending on the problem domain
(e.g., APFD, fault detection rate in TCP, etc.).

4. Synchronization:
• Like a DB team where all paddlers synchronize their movements for optimal

performance, the agents update their positions by synchronizing with the best-
performing members (leaders).

• The leaders, usually those with the best fitness values, guide the direction of the
boat’s movement.

5. Exploration and Exploitation:
• Exploration: DBs (agents) explore the search space by slightly adjusting their

positions and attempting to discover new regions of the search space.
• Exploitation: Once a suitable region of the solution space is detected, the agents

exploit this by refining their positions to converge towards the optimal solution.
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Algorithm 1 Cont.

6. Velocity and Position Update:
• The position and velocity of every agent are updated utilizing a formula based

on their current position, the best solution found so far, and the team’s synchro-
nization. The equation is typically:

New Position = Current Position + Velocity
New Velocity = Current Velocity + c1 × ( BestPosition

− CurrentPosition) + c2 × (Global Best Position
− CurrentPosition)

where c1 and c2 are constants that balance the exploration and exploitation efforts.
7. Leader Selection:

• The agent with the best fitness value becomes the leader, directing the entire
team towards better solutions. Other agents adjust their movements based on
the leader’s position.

8. Termination Criteria:
• The algorithm continues iterating until a stopping condition is met, such as a

predefined number of iterations, or if the solution reaches a desired fitness value
(convergence).

9. Final Solution:
• After the termination, the best solution (usually the leader’s position) is consid-

ered the optimal solution to the problem.

3.1.1. Social Behavior Patterns

The DB race is a team sport in which human social powers play a vital part. As an
outcome, at the time of race, the teams are subject to the effect of social psychology devices
such as social incentives and social loafing. Social loafing denotes when individuals in a
group action use less effort than they work alone, often owing to united responsibilities
and decreased individual effort levels. Social incentive refers to the application of external
factors to inspire creativity, effectiveness, and enthusiasm in groups or individuals when
appealing at work or in actions, with the primary goal of enhancing general efficiency.

Considering these social psychology tools, it is thought that when using the DBOA to
find an unrestricted issue, the DB team is inclined to display a social loafing performance
pattern. However, in the case of constrained problems, the constraining states aid in
enhancing the team’s inspiration, which results in the behavior of social incentive.

So, the social behavior factor is presented to describe the team’s behavior patterns. Its
formulation is as follows.

ψ =

{
DBN

Rd
, Rd < DBN or unconstrained situation

1, Rd > DBN or constrained situation
(1)

Here, ψ signifies the social behavior factor. DBN represents the number of DBs who
participate in a DB race. Rd refers to a random number.

3.1.2. Acceleration Factor

The rate at which the drum beat changes is below the drummer’s switch. At the time
of the DB race, the drummer analyses the rate at which the drum should be compressed.
Calculating this rate takes into consideration many key factors, including the difference
in distance enclosed among their own DB and other challenging boats and the state of
paddlers. The expression is used to estimate the acceleration factor.

λ =
ψ × I − 1

ψ × I
(2)
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Here, λ signifies the acceleration factor. I represents the iteration number.

3.1.3. Attenuation Factor

In a perfect scenario, all paddlers must coordinate their paddling with the drumbeat.
However, in actual races, for every crew member, particularly the paddlers, while uphold-
ing a high-intensity workout, it is complex to escape the problem of strength attenuation.
These outcomes in the paddler’s performance worsen as the quantity of paddling rises. The
reduction factor is presented to describe this condition. The following expression shows it.

µ = 1 +
ψ × I − l

ψ × I
(3)

Here, µ represents the attenuation factor. l designates the number of iterations.

3.1.4. Imbalance Rate of Paddlers

The forward propulsion of a DB is based on the paddler’s paddling, which produces a
feedback force on the paddle from the sea, pushing the boat forward. To attain the sturdiest
forward propulsion, the paddler wants to consider numerous factors before each act of
paddling. These factors include the course, distance, angle of the paddling and support
created by the paddling, and the degree of obstruction when the boat is moving onward.
By following hydrodynamics principles, paddlers can use the water’s assets to produce the
sturdiest driving force.

Well-executed paddling must uphold an optimum point of entry for the paddle to
enlarge the propulsion of the DB, even regarding variations in the water surface. However,
when manifold DBs are running similarly, each boat must struggle with its inherent water
surface variations and those affected by the paddles of nearby boats. This offers growth
at an imbalanced rate, which makes it most challenging for paddlers to maintain steady
paddling conditions. The optimum viewpoint at which the paddle arrives at the water can
expressively diminish this problem and improve overall performance.

The best paddle angle to entry is θB. Here, sinθ is used to compute the paddle’s depth
in the water, while cosθ helps measure the paddle’s water resistance during paddling. The
formulation for computing the imbalance rate is as follows.

H =

√
|cos(θ)|
I ∗ ψ

+ Hb (4)

Here, H signifies the imbalance rate, portraying the effect of the superposition wave from
the surface of the water and the wave produced by the growth of other DBs on the paddler. Hb

represents the basis imbalance rate created from the fundamental wave of the water surface.
The value of Hb is set to be 0.01 in this paper. θ signifies the entry angle of a paddle.

3.1.5. Strategies for Updating Crew State

The DB’s speedy forward movement depends upon the cooperation of the team. The
paddlers’ condition is represented as a matrix. When upgrading these conditions, the reference
object is the condition of the paddler in the equivalent location on the fastest DB. However,
a dissimilar upgrade plan is used for the paddlers on the fastest DB. The upgrade plans for
paddler conditions are classified into dual cases, such as one for the paddlers on the fastest
DB and another for the other DBs. The state upgrade tactics formulations are as follows:
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Paddlers =



g1
1 g1

2 · · · g1
k−1 g1

k
g2

1 g2
2 · · · g2

k−1 g2
k

... ...
. . .

...
...

gj−1
1 gj−1

2 · · · gj−1
k−1 gj−1

k

gj
1 gj

2 · · · gj
k−1 gj

k


(5)

G f = Paddlers [1, k] = g1
k , f = 1 (6)

Ge = Paddlers [j, k] = gj
k, e ̸= 1 (7)

R f = G f × λ (8)

Re =
c f + ce

2 × µ
× λ (9)

Here, Paddlers signify the state matrix of all paddlers. G f refers to the paddler’s state
on the fastest DB. Ge designates the paddler’s state on the other DB. R f represents the
state upgrade approach for paddlers on the fastest DB. Re indicates the other state upgrade
strategy for paddlers on the other DB.

3.1.6. Comparative Analysis of DBOA vs. Other Models

The comparative analysis between DBOA and other optimization algorithms, com-
prising GA, HHO, PSO, differential evolution (DE), shows crucial differences in their
performance. DBOA stands out in terms of search space diversity, convergence rate, com-
putational complexity, and success rate. DBOA gives a very high search space diversity
compared to other techniques, which assists in preventing premature convergence and
ensures that the algorithm explores a broader range of solutions. This feature makes
DBOA more effective at escaping local optima. In terms of convergence rate, DBOA is
more efficient, reaching optimal solutions faster than GA, which tends to converge more
slowly, particularly on larger problem sets. This faster convergence rate is a key advantage in
real-world applications where time is critical. Furthermore, DBOA offers low computational
complexity, making it more resource-efficient than GA, which usually requires large popula-
tions and various generations. As a result, DBOA has a clear advantage in computational cost.
Finally, DBOA achieves a very high success rate, outperforming GA and HHO in consistently
reaching optimal or near-optimal solutions across various test cases.

The integration of social psychology aspects into DBOA, inspired by the dynamics of a
DB race, additionally improves its performance. This teamwork-based approach promotes
synchronization and cooperation among agents, improving exploration and exploitation of
the solution space. By addressing social behavior patterns such as social loafing and social
incentives, DBOA increases the overall team performance, which is substantial for complex
optimization tasks. Conventional algorithms, which concentrates primarily on individual
optimization, often fall short in handling dynamic and multi-agent problems effectively.
Moreover, the capability of the DBOA model to adaptively adjust individual agent efforts
based on group dynamics allows for more effectual global exploration, mitigating the risk
of stagnation in local optima.

In conclusion, DBOA outperforms GA, HHO, PSO, and DE across diverse critical
optimization criteria, making it a more effective and adaptable choice for solving complex,
dynamic problems. Table 2 illustrates the performance comparison study of the DBOA
with existing methods.
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Table 2. Performance comparison of DBOA with GA, HHO, and other approaches.

Algorithm Search Space
Diversity

Convergence
Rate

Computational
Complexity Success Rate Computational

Cost

GA Moderate Slow High Medium High

HHO Low Moderate Moderate High Moderate

PSO High Fast Moderate High Moderate

DE Moderate Moderate Moderate High Moderate

DBOA Very High Fast Low Very High Low

3.2. Process Involved in TCP-DBOA Technique

The proposed TCP-DBOA technique aims to minimize the overall execution time
and maximize APFD [3]. The TCP-DBOA technique is chosen for its dual focus on re-
ducing overall execution time while maximizing APFD, which ensures both efficiency
and effectiveness in TCP. By mitigating execution time, the model improves testing speed,
making it suitable for large-scale projects with tight deadlines. Simultaneously, maximizing
APFD ensures higher FDRs early in the testing process, improving software reliability.
The TCP-DBOA model strikes a better balance between speed and fault coverage than
other techniques, addressing the common trade-off in optimization tasks. Moreover, its
capability to handle complex test scenarios and adapt to diverse testing environments
gives it a distinct advantage over more conventional models that may prioritize one factor
over the other. This makes the TCP-DBOA technique ideal for achieving optimal testing
performance in dynamic conditions. Additionally, its flexibility in balancing exploration
and exploitation confirms that it can effectively address both simple and highly complex
optimization tasks without compromising efficiency.

This study presents a specific example to illustrate the problem of TCP. Assume that
there are five test cases and nine components to be enclosed. T1 − T3 are selected, and
all the components are covered as quickly as possible. Compared to the original series of
T1 − T2 − T3 − T4 − T5, the execution sequence of T1 − T3 − T2 − T5 − T4 is more effective.
The tester more quickly addresses the issue in the program. TCP is regularly employed in
software testing, which dramatically increases the efficacy of RT. The problem of TCP is
determined as the mapping from Pt to the actual number set is F, T denotes the test case,
and every possible prioritizing set of test cases in T is Pt. The prioritizing issue of the test
case is to locate T′εPt so that for T′′ εPt and T′ ̸= T′′ , there is | f (T′) ≥ f (T′′ )|.

Where f indicates the quantitative report of an objective to measure the performance
of prioritization, it is now determined that the better the effect, the larger the f will be. In a
real-time application, the tester sets various test objectives, viz., the test point’s coverage
velocity and the fault’s recognition rate. The SI method must determine TCP’s fitness
function, viz., f values. Based on the requirement, it is classified into single- and multiple-
objective optimizers.

The effective execution time (EET) of the test case series shows the time spent by
the test case once it obtains the maximal statement coverage for the first time. Moreover,
some optimization objectives for code coverage were introduced in the single-objective
optimization. For the black box testing, there are almost no mistakes if the elements are
enclosed for a significant amount of time. Thus, the study chooses the APTC as an optimizer
objective to represent the coverage speed for the testing point. The EET and APTC are
mathematically conveyed as follows:

EET =
N′

∑
i=1

ETi (10)
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APTC = 1 − TT1 + TT2 + · · ·+ TTM
M · N

+
1

2 · N
(11)

where N signifies the test case count, and ETi indicates the time utilized for implementing
ith test case. M shows the program statement counts, N′ refers to the count of test cases
implemented while the maximal statement coverage was obtained for the primary time,
and Ti indicates the test case location from the implementation series where the test point
was discovered for the initial time.

4. Result Analysis and Discussion
This section investigates the performance analysis of the TCP-DBOA method. The

suggested technique is simulated by employing Python 3.6.5 tool on PC i5-8600k, 250 GB
SSD, GeForce 1050 Ti 4 GB, 16 GB RAM, and 1 TB HDD. The parameter settings are provided
as follows: learning rate: 0.01, activation: ReLU, epoch count: 50, dropout: 0.5, and
batch size: 5.

In Table 3 and Figure 2, the experimental outcomes of the TCP-DBOA method in terms
of APFD in terms of the GZIP, GREP, TCAS, and CS-TCAS datasets are given [12]. The
results state that the TCP-DBOA technique reaches enhanced values of APFD. With five
iterations, the TCP-DBOA technique gains an increased APFD of 97.17%. At the same
time, the MHHO-TCP, Fault Analysis (FA), Percentage of Faults Detected (PSD), Location-
Based Services (LBS), and greedy approaches obtained decreased APFD of 95.51%, 95.17%,
94.28%, 94.74%, and 92.38%, respectively. Additionally, based on 20 iterations, the TCP-
DBOA technique achieves a boosted APFD of 97.13%, but the MHHO-TCP, FA, PSD, LBS,
and greedy methods get reduced APFD to 95.59%, 95.01%, 94.56%, 95.13%, and 94.39%,
respectively. Meanwhile, with 30 iterations, the TCP-DBOA technique gains an improved
APFD of 97.24%, although the MHHO-TCP, FA, PSD, LBS, and greedy techniques acquire
diminished APFD of 95.56%, 94.98%, 94.60%, 94.79%, and 93.09%, respectively.

Table 3. APFD analysis of TCP-DBOA technique with various iterations with GZIP dataset.

GZIP Dataset

Number of
Iterations TCP-DBOA MHHO-TCP FA

Techniques
PSD
Techniques

LBS
Techniques Greedy

1 96.88 95.36 95.15 94.05 94.05 92.39

2 96.59 95.21 94.80 94.19 94.82 92.49

3 96.91 95.31 94.80 94.03 93.87 93.22

4 97.18 95.61 95.37 93.62 95.39 93.10

5 97.17 95.51 95.17 94.28 94.74 92.38

6 97.20 95.56 95.36 93.06 93.78 92.59

7 96.66 95.33 95.15 94.98 95.06 93.56

8 96.49 95.17 94.82 94.35 94.52 93.38

9 97.23 95.59 95.37 94.14 94.62 92.37

10 97.02 95.56 95.33 94.91 95.30 93.29

11 96.69 95.48 94.55 93.89 93.81 93.57

12 96.97 95.64 95.51 93.83 95.06 93.38

13 96.94 95.37 94.83 93.41 93.76 94.24

14 96.76 95.44 95.00 94.55 94.79 93.12

15 96.79 95.56 95.20 93.15 94.59 93.56

16 97.16 95.58 95.28 93.72 93.83 92.29

17 97.07 95.57 95.05 94.03 94.80 93.22

18 97.24 95.86 95.72 94.78 94.43 92.56

19 97.29 95.85 95.71 94.29 94.93 93.53

20 97.13 95.59 95.01 94.56 95.13 94.39

21 97.02 95.69 94.78 94.06 93.93 93.28
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Table 3. Cont.

GZIP Dataset

Number of
Iterations TCP-DBOA MHHO-TCP FA

Techniques
PSD
Techniques

LBS
Techniques Greedy

22 96.85 95.59 95.40 93.64 95.42 93.11

23 96.85 95.48 95.21 94.36 94.77 92.41

24 96.97 95.57 95.27 93.12 93.81 92.56

25 97.19 95.49 95.08 95.01 95.02 93.52

26 97.10 95.65 95.52 93.83 95.09 93.34

27 97.27 95.57 94.80 93.40 93.78 94.23

28 97.22 95.74 95.52 93.76 95.11 93.39

29 97.21 95.55 94.82 93.34 93.74 94.26

30 97.24 95.56 94.98 94.60 94.79 93.09

Electronics 2025, 14, x FOR PEER REVIEW  12  of  20 
 

 

19  97.29  95.85  95.71  94.29  94.93  93.53 

20  97.13  95.59  95.01  94.56  95.13  94.39 

21  97.02  95.69  94.78  94.06  93.93  93.28 

22  96.85  95.59  95.40  93.64  95.42  93.11 

23  96.85  95.48  95.21  94.36  94.77  92.41 

24  96.97  95.57  95.27  93.12  93.81  92.56 

25  97.19  95.49  95.08  95.01  95.02  93.52 

26  97.10  95.65  95.52  93.83  95.09  93.34 

27  97.27  95.57  94.80  93.40  93.78  94.23 

28  97.22  95.74  95.52  93.76  95.11  93.39 

29  97.21  95.55  94.82  93.34  93.74  94.26 

30  97.24  95.56  94.98  94.60  94.79  93.09 

 

Figure 2. APFD outcome of TCP-DBOA technique on GZIP dataset. 

Table 4 and Figure 3 describe the experimental outcomes of the TCP-DBOA method 

under the GREP dataset with respect to APFD. These acquired outcomes indicated that 

the TCP-DBOA method obtains improved values of APFD. According to the five  itera-

tions, the TCP-DBOA method attains a raised APFD of 97.41%, whereas the MHHO-TCP, 

FA, PSD, LBS, and greedy methods obtain a diminished APFD of 95.89%, 95.64%, 94.08%, 

95.21%, and 93.46%, respectively. In addition, based on 20 iterations, the TCP-DBOA tech-

nique provides a higher APFD of 97.33%; however, the MHHO-TCP, FA, PSD, LBS, and 

greedy methods obtain a lessened APFD of 95.67%, 95.48%, 93.23%, 93.89%, and 92.58%. 

Likewise, based on 30  iterations,  the TCP-DBOA  technique achieves a higher APFD of 

97.36%, but the MHHO-TCP, FA, PSD, LBS, and greedy methods acquire a reduced APFD 

of 95.72%, 95.58%, 94.27%, 94.78%, and 92.46%, respectively. 

Figure 2. APFD outcome of TCP-DBOA technique on GZIP dataset.

Table 4 and Figure 3 describe the experimental outcomes of the TCP-DBOA method
under the GREP dataset with respect to APFD. These acquired outcomes indicated that the
TCP-DBOA method obtains improved values of APFD. According to the five iterations, the
TCP-DBOA method attains a raised APFD of 97.41%, whereas the MHHO-TCP, FA, PSD,
LBS, and greedy methods obtain a diminished APFD of 95.89%, 95.64%, 94.08%, 95.21%,
and 93.46%, respectively. In addition, based on 20 iterations, the TCP-DBOA technique
provides a higher APFD of 97.33%; however, the MHHO-TCP, FA, PSD, LBS, and greedy
methods obtain a lessened APFD of 95.67%, 95.48%, 93.23%, 93.89%, and 92.58%. Likewise,
based on 30 iterations, the TCP-DBOA technique achieves a higher APFD of 97.36%, but
the MHHO-TCP, FA, PSD, LBS, and greedy methods acquire a reduced APFD of 95.72%,
95.58%, 94.27%, 94.78%, and 92.46%, respectively.

Table 4. APFD analysis of TCP-DBOA technique with diverse iterations on the GREP dataset.

GREP Dataset

Number of
Iterations TCP-DBOA MHHO-TCP FA

Techniques
PSD
Techniques

LBS
Techniques Greedy

1 96.93 95.63 95.19 94.73 95.31 94.59

2 97.32 96.02 95.90 95.01 94.57 92.60

3 97.40 95.88 95.47 93.93 94.00 92.44
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Table 4. Cont.

GREP Dataset

Number of
Iterations TCP-DBOA MHHO-TCP FA

Techniques
PSD
Techniques

LBS
Techniques Greedy

4 97.22 95.66 95.13 94.64 94.97 93.19

5 97.41 95.89 95.64 94.08 95.21 93.46

6 97.12 95.78 95.42 95.05 95.41 93.44

7 97.05 95.54 94.88 93.26 94.72 93.45

8 97.20 95.70 95.44 94.51 93.93 92.68

9 97.31 95.78 95.58 93.74 95.62 93.18

10 96.95 95.64 94.96 94.25 94.98 92.67

11 97.26 95.95 95.82 94.38 95.12 93.66

12 97.11 95.64 95.22 94.17 94.95 93.38

13 97.04 95.61 95.32 93.25 94.78 93.63

14 97.00 95.41 94.93 93.53 93.94 94.33

15 96.92 95.26 94.70 94.04 93.93 93.68

16 97.28 95.70 95.51 94.20 94.74 92.44

17 97.11 95.78 95.20 95.11 95.16 93.65

18 97.28 95.62 95.33 94.47 94.90 92.48

19 97.16 95.54 94.94 94.17 94.01 93.30

20 97.33 95.67 95.48 93.23 93.89 92.58

21 97.24 95.77 95.55 93.74 95.54 93.21

22 96.91 95.53 94.91 94.29 94.98 92.65

23 97.40 95.96 95.86 94.38 95.13 93.66

24 97.38 95.81 95.19 94.19 94.96 93.36

25 97.27 95.73 95.15 94.69 94.96 93.17

26 97.24 95.83 95.64 94.02 95.21 93.49

27 97.15 95.70 95.31 93.25 94.76 93.66

28 97.13 95.51 94.92 93.51 93.87 94.38

29 97.05 95.58 94.68 94.07 94.04 93.71

30 97.36 95.72 95.58 94.27 94.78 92.46
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Table 5 and Figure 4 describe the experimental analysis of the TCP-DBOA technique
under the TCAS dataset with respect to APFD. These accomplished findings indicate that
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the TCP-DBOA technique obtains superior values of APFD. According to 5 iterations, the
TCP-DBOA technique provides boosted APFD of 95.67%, although the MHHO-TCP, FA,
PSD, LBS, and greedy techniques attain reduced APFD of 94.05%, 94.02%, 94.52%, 92.63%,
and 89.81%, respectively. Moreover, based on 20 iterations, the TCP-DBOA method achieves
an improved APFD of 95.67%, but the MHHO-TCP, FA, PSD, LBS, and greedy techniques
acquire minimized APFD of 94.10%, 94.10%, 92.75%, 94.12%, and 91.62%, respectively.
Also, with 30 iterations, the TCP-DBOA method achieves an improved APFD of 95.68%.
However, the MHHO-TCP, FA, PSD, LBS, and greedy techniques obtain a reduced APFD
of 94.05%, 94.09%, 93.79%, 90.58%, and 92.87%.

Table 5. APFD outcome of TCP-DBOA technique with various iterations under TCAS dataset.

TCAS Dataset

Number of
Iterations TCP-DBOA MHHO-TCP FA

Techniques
PSD
Techniques

LBS
Techniques Greedy

1 96.35 94.70 94.66 92.43 93.21 91.19

2 95.37 93.77 93.80 93.03 92.42 89.92

3 96.16 94.37 94.35 93.32 93.11 91.70

4 96.69 94.95 94.94 92.81 91.63 91.14

5 95.67 94.05 94.02 94.52 92.63 89.81

6 95.32 93.79 93.80 94.76 90.89 89.77

7 94.35 92.79 92.81 94.64 94.18 90.17

8 96.40 94.76 94.80 91.55 91.34 90.15

9 95.14 93.58 93.61 93.93 93.23 88.52

10 94.97 93.18 93.22 92.19 93.29 91.54

11 96.10 94.42 94.41 93.02 93.33 89.84

12 96.97 95.17 95.21 93.38 91.38 89.55

13 93.87 92.28 92.30 91.41 91.02 92.46

14 95.51 93.97 93.96 93.35 91.49 89.76

15 94.44 92.87 92.87 93.28 89.87 91.50

16 96.79 95.24 95.26 93.57 91.69 90.54

17 96.23 94.46 94.48 94.10 93.60 90.66

18 95.03 93.48 93.45 91.55 92.68 89.42

19 96.07 94.44 94.41 93.78 93.39 92.54

20 95.67 94.10 94.10 92.75 94.12 91.62

21 95.13 93.34 93.34 94.22 92.47 90.59

22 94.89 93.14 93.15 92.83 91.08 90.16

23 94.90 93.17 93.19 94.31 92.24 91.55

24 95.51 93.99 93.99 92.83 91.63 90.02

25 94.74 92.98 93.02 91.62 92.56 90.64

26 96.84 95.25 95.25 94.49 92.45 91.59

27 94.80 93.02 93.00 94.48 93.71 89.48

28 96.89 95.23 95.24 92.13 92.99 90.29

29 95.57 93.79 93.82 93.36 93.82 89.62

30 95.68 94.05 94.09 93.79 90.58 92.87

A wide-ranging experimental analysis of the TCP-DBOA technique in terms of APFD
under the CS-TCAS dataset is determined in Table 6 and Figure 5. These achieved out-
comes showed that the TCP-DBOA technique obtains increased values of APFD. With five
iterations, the TCP-DBOA technique acquires an enhanced APFD of 95.97%, although the
MHHO-TCP, FA, PSD, LBS, and greedy approaches obtain a diminished APFD of 94.4%,
94.4%, 94.75%, 91.47%, and 91.18%. Furthermore, based on 20 iterations, the TCP-DBOA
method provides a raised APFD of 94.43%. However, the MHHO-TCP, FA, PSD, LBS,
and greedy methodologies obtain a reduced APFD of 92.73%, 92.74%, 92.96%, 92.6%, and
93.93%, respectively. In addition, with 30 iterations, the TCP-DBOA method achieves a
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higher APFD of 95.56%, but the MHHO-TCP, FA, PSD, LBS, and greedy methodologies
obtain a lessened APFD of 93.99%, 93.99%, 93.49%, 90.69%, and 92.89%, respectively.
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Table 6. APFD analysis of TCP-DBOA technique with varying iterations on CS-TCAS dataset.

CS-TCAS Dataset

Number of
Iterations TCP-DBOA MHHO-TCP FA

Techniques
PSD
Techniques

LBS
Techniques Greedy

1 96.51 94.79 94.77 92.27 93.33 93.03

2 95.83 94.3 94.29 92.17 93.98 92.26

3 94.88 93.22 93.19 94.27 93.25 93.42

4 95.72 94.06 94.03 94.74 91.75 90.08

5 95.97 94.4 94.4 94.75 91.47 91.18

6 95.46 93.72 93.73 92.15 94.33 90.64

7 94.98 93.18 93.16 92.16 93.52 92.64

8 94.43 92.85 92.86 92.38 93.06 92.03

9 94.99 93.33 93.34 94.39 92.09 90.82

10 95.14 93.57 93.58 92.09 92.23 92.69

11 95.02 93.26 93.25 92.06 91.14 91.13

12 94.62 93.04 93.01 91.97 93.61 92.92

13 94.89 92.23 92.22 93.83 91.93 90.72

14 96.74 95.07 95.07 92.41 94.24 90.29

15 96.08 94.47 94.46 92.94 91.98 89.68

16 96.44 94.73 94.76 93.93 91.38 92.48

17 94.86 93.16 93.15 92.69 91.89 90.9

18 96.04 94.42 94.41 92.69 92.77 91.74

19 96.52 94.76 94.79 94.42 92.37 89.95

20 94.43 92.73 92.74 92.96 92.6 93.93

21 95.97 94.17 94.15 93.15 91.67 92.75

22 95.04 93.33 93.3 92.35 93.56 92.82

23 95.22 93.5 93.47 92.71 94.06 93.55

24 95.27 93.69 93.72 94.04 91.85 90.82

25 96.9 95.1 95.06 94.08 93.27 93.32

26 95.84 94.16 94.15 94.66 94.01 92.55

27 95.15 93.63 93.62 92.76 94.43 91.91
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Table 6. Cont.

CS-TCAS Dataset

Number of
Iterations TCP-DBOA MHHO-TCP FA

Techniques
PSD
Techniques

LBS
Techniques Greedy

28 95.19 93.56 93.55 92.55 93.77 91.25

29 95.98 94.2 94.2 93.92 91.07 90.51

30 95.56 93.99 93.99 93.49 90.69 92.89
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The average time execution (ATE) results of the TCP-DBOA technique are provided
with recent models in Table 7 and Figure 6. The results show that the PSD model has a
worse performance with maximum ATE values, whereas the FA and Greedy approaches
have shown slightly reduced ATE values. Along with that, the MHHO-TCP and LBS
techniques obtain reasonable ATE values. However, the TCP-DBOA technique performs
better with minimal ATE values of 1.50 min, 1.95 min, 4.69 min, and 7.53 min, under GZIP,
GREP, TCAS, and CS-TCAS datasets, respectively.

Table 7. ATE analysis of TCP-DBOA technique with other methods under four datasets.

ATE (min)

Methods GZIP GREP TCAS CS-TCAS

TCP-DBOA 1.50 1.95 4.69 7.53

MHHO-TCP 3.12 3.75 6.37 9.29

FA Techniques 4.05 4.76 7.67 10.63

PSD Techniques 5.92 6.88 14.38 21.09

LBS Techniques 3.96 4.89 7.61 10.95

Greedy 4.57 4.96 8.73 11.76

The mean APFD results of the TCP-DBOA technique are provided with recent models
in Table 8 and Figure 7. The results show that the TCP-DBOA technique gains enhanced
mean APFD values. With the GZIP dataset, the TCP-DBOA technique reports an increased
mean APFD of 96.92%, while the MHHO-TCP, FA, PSD, LBS, and greedy models obtain a
decreased mean APFD of 95.56%, 95.16%, 94.05%, 94.57%, and 93.22%, respectively. Also,
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based on the GREP dataset, the TCP-DBOA method describes an improved mean APFD of
96.90%, although the MHHO-TCP, FA, PSD, LBS, and greedy techniques achieve a lessened
mean APFD of 95.72%, 95.32%, 94.16%, 94.76%, and 93.33%, respectively. Additionally,
with the TCAS dataset, the TCP-DBOA method indicates a boosted mean APFD of 94.80%,
but the MHHO-TCP, FA, PSD, LBS, and greedy models obtain a reduced mean APFD of
93.65%, 93.12%, 92.40%, 92.07%, and 90.60%. Finally, based on the CS-TCAS dataset, the
TCP-DBOA method exhibits an improved mean APFD of 94.80%, although the MHHO-TCP,
FA, PSD, LBS, and greedy models obtain a diminished mean APFD of 93.57%, 93.13%,
92.74%, 92.07%, and 91.74%, respectively.
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Table 8. Mean APFD analysis of TCP-DBOA technique with other methods under four datasets.

Mean APFD

Methods GZIP GREP TCAS CS-TCAS

TCP-DBOA 96.92 96.90 94.80 94.80

MHHO-TCP 95.56 95.72 93.65 93.57

FA Techniques 95.16 95.32 93.12 93.13

PSD Techniques 94.05 94.16 92.40 92.74

LBS Techniques 94.57 94.76 92.07 92.07

Greedy 93.22 93.33 90.60 91.74

Table 9 and Figure 8 illustrate the computational time (CT) analysis of the TCP-DBOA
approach with existing models. The TCP-DBOA approach demonstrates the most efficient
performance across all datasets, with the lowest CT of 7.95 s for GZIP, 6.34 s for GREP,
8.23 s for TCAS, and 6.40 s for CS-TCAS. In comparison, the MHHO-TCP method illustrates
significantly higher CT, ranging from 10.97 s for GZIP to 22.83 s for TCAS. The FA, PSD,
LBS, and greedy methods also exhibit higher CTs, with the PSD Techniques particularly
showing longer CTs, particularly on GREP with 17.85 s and CS-TCAS with 11.72 s. Overall,
the TCP-DBOA method provides superior efficiency, completing all tasks faster than the
other techniques in all four datasets.
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Table 9. CT evaluation of TCP-DBOA technique with existing models under four datasets.

CT (s)

Methods GZIP GREP TCAS CS-TCAS

TCP-DBOA 7.95 6.34 8.23 6.40

MHHO-TCP 10.97 14.42 22.83 19.88

FA Techniques 13.43 15.73 10.51 22.06

PSD Techniques 23.86 17.85 12.35 11.72

LBS Techniques 19.34 27.21 12.36 23.68

Greedy 11.84 11.61 22.29 11.35
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These results show that the TCP-DBOA technique performs better than recent approaches.
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5. Conclusions
In this article, the TCP-DBOA method for software quality testing is proposed. The

main purpose of the TCP-DBOA method is to minimize total implementation time and
maximize the APFD. In addition, the TCP-DBOA technique picks the average percentage
of test point coverage APFD as an optimizer objective to represent the coverage speed
to the test point. The TCP-DBOA technique is recognized as a vast search space for
finding an optimum organization of test cases. The performance analysis of the TCP-DBOA
approach is carried out, and the results are investigated using dissimilar measures. The
experimental values highlighted that the TCP-DBOA approach attains better performance
over recent approaches. The TCP-DBOA approach’s limitations include focusing on a
specific set of benchmarks, which may not fully represent the diversity of real-world
testing environments. Moreover, the scalability of the approach to handle massive datasets
with more complex test cases remains unaddressed. The model also does not incorporate
dynamic changes in software or real-time adaptability, which limits its application in agile
or continuously evolving development processes. Furthermore, while the study emphasizes
fault detection, it does not explore the impact of various environmental factors, such as
hardware discrepancies or network conditions, on TCP. Future work may improve the
model’s scalability, integrate real-time adaptability, and extend its applicability to a wide
range of testing scenarios. Further research into hybrid models that incorporate diverse
optimization strategies could enhance performance across various software environments.

Funding: This study is supported via funding from Prince Sattam bin Abdulaziz University, project
number (PSAU/2025/R/1446).
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