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Abstract: This work reports fabrication details of heterojunction diodes and solar cells 

obtained by sputter deposition of amorphous GaAs on p-doped single crystalline Si. The 

effects of two additional process steps were investigated: A hydrofluoric acid (HF) etching 

treatment of the Si substrate prior to the GaAs sputter deposition and a subsequent 

annealing treatment of the complete layered system. A transmission electron microscopy 

(TEM) exploration of the interface reveals the formation of a few nanometer thick SiO2 

interface layer and some crystallinity degree of the GaAs layer close to the interface. It was 

shown that an additional HF etching treatment of the Si substrate improves the short circuit 

current and degrades the open circuit voltage of the solar cells. Furthermore, an additional 

thermal annealing step was performed on some selected samples before and after the 

deposition of an indium tin oxide (ITO) film on top of the a-GaAs layer. It was found that 

the occurrence of surface related defects is reduced in case of a heat treatment performed 

after the deposition of the ITO layer, which also results in a reduction of the dark saturation 

current density and resistive losses.  
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1. Introduction  

GaAs/Si heterojunctions could allow cost reduction and integration of fast electronic and optical 

devices on Si in different fields of electronics and have been of interest to the materials science 

community since the 1980s. The integration of GaAs on Si is still a challenge with respect to the 

fabrication of high quality devices, since a large lattice mismatch and different thermal expansion 

coefficients give rise to a network of misfit dislocations in the GaAs/Si interface [1]. In addition, 

interface charges and antiphase domain boundary defects can appear due to the polar-on-nonpolar 

nature of the GaAs/Si heterocontact [2].  

Several groups have investigated various methods concerning the deposition of GaAs on Si. 

Heterojunction (HJ) diodes based on n-GaAs/p-Si were fabricated by molecular beam epitaxy (MBE) 

and exhibited surprisingly ideal device characteristics, despite the high density of misfit dislocations in 

the interface region [3,4].  

Pulsed-laser deposition (PLD) techniques [5,6] as well as the deposition of p-GaAs on n-Si by laser 

pulses (355 nm, 532 nm, and 1064 nm) in the ns regime were used to manufacture rectifying and 

photosensitive diodes [7,8]. Furthermore, graded SiGe layers, prepared by chemical vapor deposition 

(CVD), molecular beam epitaxy (MBE) or low-energy plasma enhanced CVD (PECVD), were used as 

buffers between Si and GaAs in order to reduce the lattice mismatch [9–13].  

A two-stage GaAs deposition process based on metalorganic chemical vapor epitaxy (MOVPE) 

followed by thermal annealing was used to fabricate GaAs solar cells on Si leading to an efficiency jump 

from 14.5% [14] to 20% [15]. A two-step MOVPE process combined with a hydrogen-assisted plasma 

treatment was applied to fabricate GaAs based schottky diodes on Si [16]. Also good results were 

reported for GaAs/Si solar cells fabricated by the same method [17,18] resulting in a significantly 

decrease of the saturation current density of the passivated cell due to reduction of surface recombination 

velocity and increase of minority carrier lifetime as well as remarkable improvements of the spectral 

response. Moreover, Si/GaAs heterojunction solar cells were prepared with a standard low cost radio 

frequency (RF) PECVD system for the deposition of Si on a GaAs substrate at temperatures below  

200 °C [19]. 

On the other hand, Schottky barrier solar cells and diodes as well as GaAs/Si heterojunctions fabricated 

by magnetron sputter deposition techniques were reported in the past [20,21]. Especially magnetron 

sputtering allows the deposition of thin GaAs films with good quality at low temperatures [22], which 

also makes this technique interesting for large scale solar cell fabrication. In this work we describe 

fabrication details of diodes and solar cells prepared by sputter deposition of n-type GaAs on  

p-type single crystalline Si (c-Si) wafers focusing our research on two varying process steps: An HF 

etching treatment prior to the GaAs film deposition and a heat treatment afterwards. Therefore, we first 

investigate GaAs/Si diodes and their electronic properties (dark current behavior). Then, we are 

dealing with GaAs/Si based solar cells analyzing their photoelectrical behavior with respect to 

different preparation recipes (photo current behavior). 
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2. Device Preparation 

Thin films of amorphous GaAs (a-GaAs) with a typical thickness of 200 nm were deposited on 

single crystalline p-type Si(100) wafers (doping concentration about 5 × 1016 cm−3) at room 

temperature using an ESM100 Edwards & RFS5 Generator-300W sputtering system.  

Prior to the deposition, the single crystalline p-Si wafers were cleaned in acetone and isopropanol 

followed by a water rinse afterwards. The native oxide was etched off in 2% diluted HF for 2 min.  

The sputter conditions were: (1) chamber pressure 5 × 10−1 Pa; (2) Ar flux 10 sccm; (3) RF input 

power 50 W; (4) as sputter target, a four inch n-type GaAs(100) wafer (Si doping concentration about  

7 × 1017 cm−3) was used; (5) target-to-substrate distance 6.5 cm; and (6) all depositions were made 

under continuous rotation. After the deposition of GaAs, aluminum was sputtered at room temperature 

on the back side of the Si(100) wafers to get an ohmic back contact [23]. Then, the samples with a size 

of 1 cm2 were annealed in N2 atmosphere at 425 °C for 20 min. This treatment reduces the As content 

on the a-GaAs film, thereby compensating preferential sputtering of As which otherwise would result 

in GaAs layers with a low Ga content [24]. Moreover, this process step favors recrystallization [25–27]. 

The device fabrication was finalized by sputtering a 200 nm thick Au layer as front contact on the 

GaAs film. The baseline process for the fabrication of solar cells was identical to the process described 

above with an additional 80 nm thick ITO film, which was deposited by sputtering on the top of the 

GaAs layer to provide an additional conducting and antireflection surface layer. An additional Au 

contact on the ITO was verified to provide a good ohmic contact by measurements carried out in our 

laboratory. Several samples with an area of 1 cm2 were fabricated in this second batch with a gold grid 

covering 3.5% of the solar cell area. 

Our scientific work is focused on the investigation of the variation of two fundamental process 

steps: (1) some of the samples were prepared without HF etching of the Si substrate prior to the GaAs 

deposition; and (2) for some of the samples the thermal annealing step was performed before doing the 

ITO deposition instead of doing it afterwards. 

For all devices, the J-V characteristics were measured under dark conditions and under standard 

irradiance conditions (STC), which are equivalent to AM1.5. The impact of the two process steps  

(1) and (2) is discussed in the following. 

3. Results and Discussion  

3.1. Diode Current-Voltage Characteristics  

Typical measurements of the J-V characteristics of a diode based on an a-GaAs/c-Si heterocontact 

reveal an explicit rectification trend as shown in Figure 1 where forward and reverse bias regions can 

be clearly distinguished. 

Further J-V curves of a-GaAs/c-Si heterojunction were also measured at different temperatures 

ranging from 286.8 K to 448 K using an HP4124B DC source/monitor system. The results are shown 

in a semilogarithmic plot in Figure 2 where the slope of the forward current remains constant for all 

temperatures in the low voltage regime. This behavior indicates that for low voltages, the forward 

current is dominated by a tunneling mechanism [21]. For a larger forward bias voltage, the dependence 

of the current can be written as follows [21]: 
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where A is a constant that is independent on the temperature. In Figure 3, the dark saturation current 

density Jo determined from the data shown in Figure 2 is plotted as a function of 1000/T. The linear 

behavior in this semilogarithmic plot indicates that Jo can be modeled by [21]: 
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where ΔEaf as activation energy. 

 

Figure 1. J-V characteristics of an a-GaAs/c-Si heterocontact diode measured at 300 K.  

 

Figure 2. J-V characteristics of an a-GaAs/c-Si heterocontact diode measured at different 

temperatures in the forward bias voltage regime. 
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Figure 3. Jo of an a-GaAs/c-Si heterocontact diode as a function of 1000/T. 

A least square fit provides a value of the activation energy of 0.18 eV ± 0.02 eV. The result is 

considerably smaller than previously reported values for GaAs/c-Si heterojunctions fabricated by 

sputtering [19,20], which range from 0.34 to 0.43 eV. This can be explained by different deposition 

processes: Our samples were deposited at room temperature and sintered later in N2 atmosphere at 425 °C 

for 20 min, while in the cited works GaAs was deposited at substrate temperatures of 150 °C [20,21].  

 

Figure 4. Reverse saturation current density of an a-GaAs/c-Si heterocontact diode 

measured for different temperatures as a function of V1/2.  

Figure 4 shows the reverse saturation current density plotted as a function of (V)1/2 for several 

temperatures with some kind of a linear behavior on the semilogarithmic scale in the reverse bias 

voltage regime (–2 V to −0.4 V). This result indicates that the reverse saturation current density is 

probably limited by generation-recombination processes [29,30]. 
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3.2. Solar Cell Photovoltaic Characteristics  

The HF treatment has a strong effect on the interface quality of the heterojunction as it can be seen 

in Figure 5a. The device without HF treatment (sample B) shows a dark saturation current density 

value that is roughly two orders of magnitude lower than that of the device where the HF treatment 

was applied (sample A). 

 

(a) 

 

(b) 

Figure 5. J-V characteristics of an a-GaAs/c-Si heterocontact solar cell under dark 

conditions (a) and under standard illumination conditions (b). 

J-V measurements under STC are shown in Figure 5b. For the HF treated device an increase of the 

short circuit current density is observed whereas the open circuit voltage is decreased. The open circuit 

voltages under illumination are 173 mV and 234 mV for samples A and B, respectively, which is 

consistent with the values of the saturation current density.  
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The values of the short circuit current density are 2 × 10−5A/cm2 and 3.7 × 10−6 A/cm2 for samples 

A and B, showing that the HF treatment improves the photocurrent. This result can be explained by the 

quality of the GaAs/c-Si interface. In Figure 6, a TEM picture of the GaAs/c-Si heterocontact region of 

a sample prepared without HF treatment is shown in cross section geometry. A thin amorphous SiOx 

can be observed at the GaAs/c-Si interface, which is due to the native oxide at the surface of the Si. 

Moreover, the GaAs film appears to be amorphous as well. The fill factors (FF), series (Rs), and shunt 

resistances (Rp) of samples A and B are given in Table 1. 

 

Figure 6. Transmission electron microscopy TEM micrograph of GaAs/Si interface.  

Table 1. Summary of solar cell parameters of samples A and B. 

 
Sample A  

(with HF) 

Sample B  

(without HF) 

Rs (Ω) 1880 4390 

Rp(Ω) 112 240 

FF (%) 25.6 10.36 

We have also analyzed the effect of the annealing step performed before or after the ITO deposition 

on samples that were treated with HF prior to the GaAs sputtering. Figure 7 shows a typical image  

of the sputtered GaAs surface after the heat treatment without any ITO layer using a VEECO Mic 

Interferometer. 
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Figure 7. Front surface details of the GaAs absorber of an a-GaAs/c-Si heterocontact solar 

cell after an annealing (details in the text). 

As it can be seen in Figure 7, many structures up to a diameter of 25 µm are visible on the front side 

of the a-GaAs/c-Si heterocontact solar cell similar to oval defects and mounds which are observed on 

MBE grown GaAs where gallium droplets are formed [31–33]. Even under arsenic-rich growth 

conditions gallium droplets can be seen in the GaAs surface [21,33]. Furthermore, the thermal 

treatment causes a reduction of the As concentration in the GaAs film favoring its recrystallization, 

which can promote the apparition of gallium droplets due to stoichiometry changes [25–28]. Excessive 

As tends to migrate to the surface of the sample and sublimates during the thermal step [27]. 

In our research, we also focused on the effect of an annealing step before or after the ITO deposition 

procedure. The results are shown in Figure 8a,b. As it can be seen, the density of defect like structures 

on the front side of the solar cell is considerably reduced in case the ITO layer is deposited prior to the 

annealing. This fact has also implications on the electrical performance of the solar cells as shown in 

Figure 9. There, an increase of the open circuit voltage to a value of 250 mV is observed along with an 

increase of the short circuit current density to 4.2 × 10−5 A/mm2 and an improved fill factor. We 

conclude that both, the saturation current density and the layer resistance are significantly reduced by 

protecting the GaAs layer with the ITO layer prior to the heat treatment. As it can be seen in Figure 9 

the series resistance of sample 1 is lower than the series resistance of sample 2. The solar conversion 

efficiencies are 0.26% and 0.09% for samples 1 and 2, respectively. These values, even if they are low, 

exceed efficiencies that were recently reported for heterojunction solar cells on a highly doped GaAs 

Substrate with an intermediate undoped epitaxial Si layer followed by a doped amorphous Si absorber 

both deposited by PECVD [19]. 

The spectral response (SR) measurements of these samples are shown in Figure 10. The 

photogenerated current is clearly increased on the sample with the ITO layer deposited before the 

thermal treatment.  
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Figure 8. Details of the front contact region of the a-GaAs/c-Si heterocontact solar cell. 

(a) Thermal treatment before ITO deposition. (b) Thermal treatment after ITO deposition. 

The vertical bars in the figure are Au collecting fingers. 

 

Figure 9. J-V characteristics of an a-GaAs/c-Si heterocontact solar cell under standard 

illumination conditions. Sample 1: Annealing after ITO deposition; Sample 2: Annealing 

before ITO deposition.  
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Figure 10. Spectral response (SR) of different samples with the thermal treatment taken 

place before (sample 1) and after (sample 2) the ITO deposition.  

4. Conclusions  

Thin films of a-GaAs were deposited by sputtering on p-Si(100) to fabricate heterojunction diodes 

and solar cells.  

The amount of surface defects on the GaAs layer was reduced by the deposition of an ITO capping 

layer prior to the heat treatment of the interface. This interface shows a very thin layer of silicon 

dioxide, which can be removed by an HF treatment. However, the first few nanometers of the 

deposited GaAs film present an unexpected good crystallinity. The results show important changes in 

the dark saturation density current and on the interface resistance due to the HF treatment. The 

photovoltaic properties of the fabricated solar cells are significantly improved by a thermal annealing 

step of the a-GaAs/c-Si layer system prior to the deposition of the thin ITO film. 

The heterojunction diodes show marked rectification characteristics, with forward currents 

dominated by tunneling mechanisms, while reverse currents are limited by the generation of carriers in 

the depletion region. An activation energy of 0.18 eV was obtained from I–V measurements at different 

temperatures which is relatively small compared to previously reported values. We attribute this to 

different deposition conditions leading to a changed interface with a reduced conduction band offset. 
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