

Electronics 2015, 4, 1018-1032; doi:10.3390/electronics4041018

electronics
ISSN 2079-9292

www.mdpi.com/journal/electronics

Article

CDL, a Precise, Low-Cost Coincidence Detector Latch

Ralf Joost * and Ralf Salomon

Department for Informatics and Electrical Engineering, Institute of Applied Microelectronics and

Computer Engineering, University of Rostock, Rostock 18051, Germany;

E-Mail: ralf.salomon@uni-rostock.de

* Author to whom correspondence should be addressed; E-Mail: ralf.joost@uni-rostock.de;

Tel.: +49-381-498-7255; Fax: +49-381-498-118-7251.

Academic Editor: Ignacio Bravo-Muñoz

Received: 26 August 2015 / Accepted: 17 November 2015 / Published: 3 December 2015

Abstract: The electronic detection of the coincidence of two events is still a key ingredient

for high-performance applications, such as Positron Emission Tomography and Quantum

Optics. Such applications are demanding, since the precision of their calculations and thus

their conclusions directly depend on the duration of the interval in which two events

are considered coincidental. This paper proposes a new circuitry, called coincidence detector

latch (CDL), which is derived from standard RS latches. The CDL has the following

advantages: low complexity, fully synthesizable, and high scalability. Even in its simple

implementation, it achieves a coincidence window width as short as 115 ps, which is more

than 10 times better than that reported by recent research.

Keywords: optical instrumentation and technology; coincidence detection; FPGA

coincidence logic

1. Introduction

Coincidence is a concept that is well understood on a theoretical level. All readers have probably

a fair understanding about the coincidence of two events: they simply occur at the same time. However,

things dramatically change, if it comes to physical, real-world events. Physical events are always

associated with time, which is a continuous parameter by its very nature. Measuring a continuous parameter,

such as time, requires some analog-to-digital conversion, which imposes certain quantization errors.

OPEN ACCESS

Electronics 2015, 4 1019

Technically, coincidence is referred to as the occurrence of two events, A and B, that happen within

a defined time span, called coincidence window, Tc. Given the timing information of both events,

tA and tB, coincidence is indicated when:

−Tc < tA − tB < Tc (1)

The definition in Equation (1) allows for an arbitrary order of both events.

The detection of certain physical events requires a very high resolution-in-time. A good example is

the emission of gamma-ray pairs from medical radioisotopes. These radioisotopes are injected into

a human body. The detection of a pair of the emitted gamma rays allows for conclusions about

a patient’s medical status. For this task, positron emissions tomography (PET) is an approach that detects

these rays [1]. The timing of the detection is crucial for determining the origin of the gamma rays, and

subsequent processing stages can reconstruct the position of the event. These post-processing stages are

usually implemented in software, and produce colored images that provide information about that

specific area of the body.

Since the gamma rays travel with the speed of light, timing requirements are strict. It should be clear

that the quality of the resulting image directly depends on the available time resolution, which is about

1 ns or below in state-of-the-art time-of-flight PET systems [2,3]. Since these resolutions are still quite

challenging for software-based systems, the field of PET systems still enjoys significant activity in the

development of hardware-based coincidence detectors. Some of these detection approaches are briefly

summarized in Section 2.

A common characteristic of the approaches reviewed in Section 2 is that they all employ certain logic

gates, e.g., AND gates, as their basic processing elements. It is well known that these gates process input

signals based on their actual voltage levels rather than on signal transitions. Section 3 proposes a

different approach that is based on a new type of RS latch: the latch processes the voltage changes of the

input signals and is thus edge-triggered to a certain extend. Thus, it is able to save the edge event rather

than losing it like an AND gate that goes low once its inputs go low. Section 3 illustrates how this special

latch structure is able to operate as a coincidence detector with a coincidence window of width Tc in the

range of about a few hundreds of picoseconds. Consequently, this type of latch is called coincidence

detector latch (CDL).

The proposed CDL was implemented in a field-programmable gate array (FPGA) and thoroughly

tested in a physical laboratory setup (i.e., not in simulation). All the parameters of the implementation

and the test procedure are summarized in Section 4.

The results are presented in Section 5 and indicate that the width of the coincidence window is Tc as

small as Tc ≈ 115 ps, which is at least about ten times smaller (more precise) than reported by other

research [4–7]. Finally, Section 6 concludes this paper with a brief discussion.

2. Background

In general, many coincidence detection systems used in medical applications, quantum physics,

and optics contain two major parts: single-event detectors and coincidence detectors (see Figure 1). PET

systems, for example, employ scintillation radiation detectors, while certain areas of quantum mechanics

research, on the other hand, resort to single photon counting modules (SPCM) that detect emitted

Electronics 2015, 4 1020

photons. The output ports of the detectors provide a signal pulse after the successful detection of an

event, i.e., photon or ray arrival.

Figure 1. General hardware setup for coincidence detection.

The second major part of the coincidence detection is a subsequent processing stage that observes the

output pulses of the aforementioned detectors. If pulses of two (or more) detectors arrive within

an arbitrarily defined time window, the system considers them as coincidental. Recent research has

strongly focused on implementing the second processing stage in field-programmable gate arrays

(FPGAs), since they are cost-efficient and provide sufficient resources to implement multiple coincidence

detectors on a single chip.

The basic method of determining coincidence is of surprisingly low complexity: The incoming events

(i.e., pulses that are emitted by the event detectors) are simply fed into an AND gate [8]. If two pulses

are observed at the same time, the output port of the AND gate is activated. However, this approach

faces several limitations. First of all, the length of the event pulses is critical with respect to the length

of the coincidence window. Some research [7] utilized event detectors that provide output pulses of

30 ns. The pulses’ lengths directly determine the coincidence window Tc. Thus, if one pulse arrives at

t = 0 ns and the second pulse arrives at t = 28 ns, the AND gate indicates coincidence, even though the

actual events that caused the emission of the event pulses are 28 ns apart and the overlay is merely 2 ns.

For many experiments in physics, shorter coincidence windows are required. To overcome the limitations

imposed by the external event detectors, others [4] illustrated a pulse shaping system that shortens the

length of the event pulses down to 7.5 ns. In this case, the signal propagation delays inside the

FPGA-internal structures were exploited. Pooser et al. [7] refer to a pulse shaping approach that includes

a digital latch that samples the incoming event pulse. Thus, the coincidence window is limited by the

applied clock frequency, which was as high as 400 MHz, resulting in a coincidence window of 2.5 ns.

The systems reviewed above involve synchronously operating subparts, such as digital counters to

evaluate the output information from the AND gates. Thus, if pulses from the external event detectors

are too short to be synchronously processed, they have to be stretched. In [6], an incoming event pulse

triggers a digital counter to count down to zero. For that count-down time, a high output value is generated

as a modified event pulse. Since the counter was driven by a 250 MHz clock signal, the resulting

Electronics 2015, 4 1021

coincidence window is at least 4 ns wide. If switched to double data rate mode in which not only rising

clock edges but also falling edges are utilized the coincidence window could be halved to 2 ns.

In summary, state-of-the-art research achieves coincidence windows as short as about 2 ns to 7.5 ns.

Since these values are highly coupled to the employed clock frequencies, higher frequencies are required

for shorter coincidence windows. Unfortunately, the clock generators (phase-locked loops and delay-locked

loops) of currently available FPGAs are limited to about 400 MHz. In order to overcome this intrinsic

limitation, the remainder of this paper proposes a new, asynchronously operating coincidence detector.

3. The Coincidence Detector Latch (CDL)

The coincidence detector latch (CDL) is basically a simple RS latch, which has undergone major

changes. Subsection 3.1 gives with a brief review of the original RS latch, and discusses why it is unable

to operate as a coincidence detector.

3.1. The RS Latch: A Brief Review

Figure 2 shows a simple NOR-gate-based implementation of the standard RS-latch along with its

truth table. Furthermore, the right part of Figure 2 shows the latch’s outputs as a response to its inputs.

The input combination S = 1 and R = 0 is called set, since it activates the output Q = 1. The input

combination S = 0 and R = 0 is called store as it saves the previous output state. The input combination

S = 0 and R = 1 is called reset and results in the output Q = 0, Q = 1. Particular emphasis should be put

on the forth input combination S = 1 and R = 1, which is commonly known as the illegal state, since both

outputs are Q = Q = 1; this state is considered illegal, since the constraint Q = 1 − Q does not hold anymore.

Figure 2. Original RS latch implementation utilizing NOR gates and its corresponding truth table.

Let us assume for a moment that an RS latch is used as an event detector in a PET system. If both

sensors detected an event, they would activate both the R and S input of the latch. The latch would in

turn end up in the illegal state. A subsequent processing stage would then be easily able to determine the

occurrence of both events by evaluating Q = Q = 1.

This approach is plausible. However, the illegal state would not be able to provide any information

of whether both events occurred coincidently or were separated in time. In other words, regardless of the

actual timing of the two inputs, the latch would always end up in the same state Q = Q = 1, and would

not provide any timing information about the occurrence of the two events. This information is essential

for the type of applications under consideration.

Subsection 3.2 proposes some modifications with which the RS latch overcomes this limitation.

Electronics 2015, 4 1022

3.2. The Modified RS Latch

For the sack of simplicity, it is useful to modify the NOR-gate-based implementation so that the output

negations are moved to the inputs of the subsequent gates. Figure 3 shows these two functionally

identical implementations with Q and Q rewritten as Q2 and Q1.

Figure 3. Two functionally identical RS latches. Moving the output inverters of both NOR

gates to the input of the partner gate does not change the latch’s behavior. Please note that

the output labels Q and Q have been exchanged with Q2 and Q1.

In a further modification, two AND-gates are added to the inputs of every OR-gate as shown in

Figure 4. The OR-gate’s output is fed back to the input of the upper AND-gate. If the hold input is active,

a Q value of 1 would sustain itself because of the positive feedback; only a deactivation of the hold input

would lead to a reset. The lower AND-gate (which is connected to the second input of the OR-gate)

combines an input and a disable signal. A value of 1 at the input would lead to Q = 1, provided that the

disable input is not active.

Figure 4. Modifying the OR gates to achieve self-sustaining functionality.

In the final CDL, two of these modified OR-gates are cross-coupled like the standard RS latch,

as shown in Figure 5. Because of the cross-coupling, the CDL cannot assume the illegal state since

the activation of either OR-gate disables the input (S1 or S2) of the other one. The only exception consists

in the simultaneous activation of both inputs S1 and S2. In that case, they would force an activation of

their OR-gates’ outputs before their inputs are disabled by the partner gate.

The complete functionality of the coincidence detector latch is summarized in Table 1. After reset

(i.e., hold = S1 = S2 = 0), the latch is in its ground state Q1 = Q2 = 0. The coincidence detection

functionality is activated when the hold input is set to hold = 1. Then, if input S1 is activated prior to S2,

the CDL ends up in the state Q1 = 1, Q2 = 0. Conversely, if input S2 is activated prior to S1, the final

output state is Q1 = 0, Q2 = 1. The forth output state, Q1 = Q2 = 1, is reached only if both inputs are

activated within a narrow time window.

In summary, the final output state condenses the input behavior of the two input signals S1 and S2.

This timing information remains in the detector even if the two input signals S1 and S2 are deactivated,

Electronics 2015, 4 1023

i.e., S1 = 0 and S2 = 0. In that regard, the proposed coincidence detector latch can be considered

an edge-triggered circuit with a particular coincidence window. The experimental determination of this

window is given below.

Figure 5. Complete Coincidence Detector Latch (CDL) based on the RS latch functionality,

modified with a self-saving mechanism. The dotted lines indicate the border of one logic element.

Table 1. Functional behavior of the Coincidence Detector Latch (CDL).

Description S1 S2 Hold Q1 Q2

Reset 0 0 0 0 0
Armed 0 0 1 0 0

S1 and not S2 1 0 1 1 0
S2 after S1 and |Δt| > Tc 1 1 1 1 0

S2 and not S1 0 1 1 0 1
S1 after S2 and |Δt| > Tc 1 1 1 0 1

S1 and S2 and −Tc < Δt < Tc 1 1 1 1 1

4. Methods

In order to evaluate the timing characteristics of the CDL, an Altera DE2-70 Development Board

serves as a test platform [9]. The board contains a Cyclone II FPGA that provides 70,000 configurable

logic elements. Furthermore, the low-cost development board is equipped with various communication

interfaces, memories, and display elements, such as a Seven-Segment-Display, an LCD, and various LEDs.

This makes it perfectly suited to host the coincidence detector latch as well as a monitoring system to

gather the output of the CDL. A NIOSII soft-core processor served as a monitor system. The processor

stored the CDL-output during measurements and transferred it for further processing to a personal

computer via a serial RS232 connection.

Beside this processing, the personal computer also controlled the characteristics of the signal generation,

which was done by a Keysight 81150A Function Pulse Generator [10]. The function pulse generator

offers an easy-to-use remote programming interface.

The function generator triggers the signal outputs on both channels. The generator’s output signal is

a single positive pulse with a width of 200 ns. The rising edge of that pulse is treated as an event in

the coincidence detector system. In order to provide different event timings, the function generator

applies different user-defined time offsets on every channel. The accuracy of these offsets is limited

Electronics 2015, 4 1024

to ±25 ps according to the data sheet [10]. Thus, the rising pulse edge on both channels can be set to

different points in time. For the remainder of this paper, the event delay Δt is calculated as the timing

difference between the rising edges of channels 1 and 2 as follows:

Δt = trise (Channel 2) − trise (Channel 1) (2)

Thus, a positive Δt indicates that Channel 1 is activated prior to Channel 2, whereas negative values

refer to an activation of Channel 2 prior to Channel 1. According to the definition of coincidence in

Section 1, coincidence is given when the absolute value of Δt is smaller than the coincidence window Tc

of the CDL.

Because of the system layout and its various processing stages, some further remarks should be made

in order to help understand the results presented in Section 5. The actual event timing is given

by the signal source (i.e., the Keysight function generator) at the system input. However, the actual

coincidence detection takes place at a certain geometric position within the FPGA. Due to additional

signal paths, drivers, path transistors, etc., the actual event timing controlled by the function generator

differs significantly from the timing observed by a CDL.

According to the coincidence definition in Equation (1), one would expect the CDL to be 100%

effective at detecting coincidence from −Tc < Δt < +Tc. In other words, if one plotted detection efficiency

vs. Δt, the plot would look like a square of width 2Tc centered on Δt = 0. This is illustrated in Figure 6

as the idealized coincidence detection. However, the time of arrival of both signals at the CDL inside the

FPGA is highly influenced by architectural signal delays. Figure 6 illustrates three different origins of timing

modification: transmission line delays caused by wires, connectors, etc.; on-chip delays caused by input

pins, drivers, pads, and routing; and logic delays that refer to the structural characteristics of the CDL.

For the logic delay, the length of the feedback paths inside the CDL is of special importance. A minor

influence might originate from slightly changing technical characteristics of the FPGA’s logic elements,

e.g., their specific propagation delays.

Figure 6. (A) The timing characteristics and the various types of delays; (B) The top panel

shows the idealized coincidence detection with no logic delay and equal chip and transmission

delays between the two signals. The bottom panel shows a more typical coincidence

detection with non-ideal delays.

Electronics 2015, 4 1025

The combination of these additional delays leads to a shifted coincidence graph. The particular values

of the delays depend on the physical location of the logic on the FPGA and therefore differ when the

CDL is mapped to different regions within the FPGA.

Taking these additional delays into account, Equation (1) is augmented by a system-based timing

offset that incorporates the delay variables shown in Figure 6:

−Tc < Δt + Tsystem < Tc (3)

Tsystem = (τTransA − τTransB) + (τChipA − τChipB) (4)

Equations (3) and (4) describe the real-world (i.e., shifted) coincidence detection plots. The more the

additional delays differ, the larger the shift of the coincidence detection plot.

Furthermore, the coincidence window width, Tc, itself can change with differing delay values.

In particular, when the two logic elements that form the CDL are placed at different locations, the lengths

of the feedback signals are changed. The longer the distance between those two logic elements,

the larger the logic delay, τc, is. This is caused by the functional behavior of the RS latch. According to

Figure 5, a signal change on input S1 activates the output Q1. The output of one logic element travels

along the feedback path to its counterpart. There, Q1 “locks” the second logic element. If signal S2 is

activated before Q1 arrives, the CDL states coincidence. Thus, the larger the logic delay τLogic, the longer

the coincidence window Tc. The actual width of the coincidence window for different CDL positions is

evaluated in Section 5.

For the experiments, both signal channels were connected to the FPGA development board via

the available general purpose input/output (GPIO) pins. To synchronize the signal generation with

the CDL-readout, the NIOSII was programmed with the following measurement scheme. First,

the processor reset the CDL by deactivating the hold input (see Figure 5). The hold input is then set

again to activate the CDL. In the next step, the processor triggered the function generator to output

a pulse on every channel. Finally, the processor read the output state of the CDL. After 1000 measurements, it

sent the counted values of the four possible output states {(0,0), (0,1), (1,0), (1,1)} to the personal

computer, which in turn wrote them into a file. After a user-defined number of received data sets,

the personal computer changed the delay setting.

The coincidence detector latch shown in Figure 5 was implemented in VHDL. The actual synthesis

and routing was automatically done by the software tool chain, i.e., Altera Quartus II 13.0 SP1 [11]. The

two logic elements forming the CDL were placed in the center of the FPGA in between the logic elements

that belong to the NIOS II processor in order to minimize signal path lengths from the CDL to

the processor.

Given that the determination of the coincidence of two events is affected by the path lengths involved,

the experimental evaluation also considers different CDL placements on the FPGA device. These

alternatives are labeled CDL 2 to CDL 6 in Figure 6 and resulted in different path lengths.

These placements were obtained by manual position assignments in the Quartus project settings file.

They were arbitrarily chosen and satisfied the following constraints:

1. Intermediate distance to the NIOS II processor for noise and cross-talk reduction (CDL 2)

2. Maximum distance to the NIOS II processor (CDL 3)

3. shortest path length from the FPGA’s input ports to the CDL’s input ports (CDL 4)

Electronics 2015, 4 1026

4. maximum path length from the FPGA’s input ports to the CDL’s input ports (CDL 5)

5. increasing the cross coupling paths’ length between the CDL’s two logic elements (CDL 6)

Figure 7 also shows the input pads for the two signals S1 and S2 that belong to those GPIO pins

that are connected to the Keysight function generator. Since the FPGA is mounted on a development

board, the options to choose FPGA pins as signal inputs are limited. All pins are hardwired to

components on the board. The designer can only chose among those pins that connect to the on-board

GPIO pin header.

Figure 7. Test positions for the CDL on the Cyclone II field-programmable gate array

(FPGA). The NIOS II processor and the signal inputs are shown for illustration.

5. Results

The first experimental objective was to provide a proof-of-concept for the functional behavior of

the aforementioned CDL structure. The Keysight function generator generated a delay range from

−200 ps to 400 ps in steps of 5 ps. At every delay setting, the FPGA evaluated the output of the CDL

1000 times. The result for the automatically placed CDL 1 (see, also, Figure 7) is shown in Figure 8.

0

25

50

75

100

-200 -100 0 100 200 300 400

Figure 8. Timing behavior of the proof-of-concept implementation of a CDL.

As can be seen, starting from an event delay of −140 ps, i.e., the signal on Channel 2 is emitted 140 ps

ahead of the signal on Channel 1, the CDL begins to indicate coincidence in some of the measurements

Electronics 2015, 4 1027

at that particular delay setting. At −90 ps, the 50% level is reached; half of the 1000 measurements

indicated coincidence, whereas the remaining 500 measurements did not. The 50% level is marked with

the black bars in Figure 8. From −50 ps on, the CDL stated coincidence in all measurements.

This behavior ends at 270 ps, where the output probability for coincidence starts to decrease down

to zero. The 50% point is reached at 305 ps; delays larger than 340 ps never lead to coincidence

indication. The remainder of this paper defines the duration of the coincidence window Tc as half of the

time between the 50% points. In Figure 8 this length is Tc = (305 ps − (−90 ps))/2 ≈ 200 ps.

The second set of experiments evaluated five different locations of the CDL within the FPGA.

The results for these variants (i.e., CDL 2 to CDL 6) are summarized in Figure 9. For illustration

purposes, the time axis is identical throughout all graphs. Furthermore, the result for the automatically

placed CDL 1 is included for comparison. The measurement range was extended to provide delays

−700 ps < Δt < 700 ps in steps of 5 ps. Table 2 provides the detailed measurement results.

The three columns Tc100, Tc, and Tcmax state the width of the coincidence window. The subscript indicates

the boarders of the coincidence window: Tc100 only refers to that part of the graph that shows a 100%

probability for coincidence detection. The Tcmax values include all output values greater than zero into

the coincidence window calculation. The coincidence window Tc is based on those output values that

show a coincidence detection probability equal to or greater than 50%. The two columns Δtmin and Δtmax

state the lowest and the highest function generator delay setting that caused a positive coincidence

detection output. Thus, the term (Δtmax − Δtmin)/2 provides the value for the maximum coincidence

window width Tcmax.

0

20

40

60

80

100

-700 -500 -300 -100 100 300 500 700
0

20

40

60

80

100

-700 -500 -300 -100 100 300 500 700

0

20

40

60

80

100

-700 -500 -300 -100 100 300 500 700
0

20

40

60

80

100

-700 -500 -300 -100 100 300 500 700

0

20

40

60

80

100

-700 -500 -300 -100 100 300 500 700
0

20

40

60

80

100

-700 -500 -300 -100 100 300 500 700

Figure 9. Coincidence windows for different setups of the CDL on a Cyclone II FPGA. The

time axis for all tests is defined by the Keysight function generator.

Electronics 2015, 4 1028

Table 2. Coincidence window times and timing characteristics of different CDL implementations.

Name Tc100 (ps) Tc (ps) Tcmax (ps) Δtmin (ps) Δtmax (ps)

CDL 1 160 197.5 240 −140 340
CDL 2 72.5 115 157.5 −85 230
CDL 3 137.5 170 207.5 100 515
CDL 4 72.5 120 165 −350 −20
CDL 5 75 115 157.5 −365 −50
CDL 6 445 485 525 −565 485

As can be seen, the diagrams presented in Figure 9 are not all symmetric about Δt = 0. The reasons

for this have already been discussed in Section 4. CDLs 3 and 4 provide good examples for asymmetric

on-chip delays, τchip. The length of the signal path from S1 to CDL 4 is nearly as long as the signal path

from signal input S2 to CDL 4. The center of the coincidence window of CDL 4 is at −185 ps. The path

from S1 to CDL 3 is significantly longer than its path from S2. Thus, the absolute value of the system

timing constant Tsystem (see Equation (4)) increases and the coincidence window is shifted to the right

with the center at +270 ps.

The transmission line delays are unknown. However, they are constant throughout all experiments.

Furthermore, the aforementioned CDL 4 is centered at −185 ps, although both of its signal paths do not

differ that much in length. This indicates that the transmission lines from the function generator to

the FPGA’s input pins have caused this shift.

The width of the coincidence window Tc varies slightly from CDL 1 to CDL 5. The 50% values are

in the range of 115–200 ps. CDL 2, 4, and 5 provide especially narrow coincidence windows. On

the other end, the coincidence window Tc for CDL 6 is significantly larger.

CDLs 1 to 5 were designed such that their two parts were placed into the very same logic array block

which ensures short feedback paths between them. By contrast, the two logic elements of CDL 6 were

separated. The logic element that connects to signal S1 (left part of CDL 6 in Figure 7) is placed in

column 85 of the FPGA, whereas the other logic element (right part of CDL 6 in Figure 7) is placed in

column 90. This heavily affects the system timing constant τlogic, and thus affects the coincidence window

Tc as announced in Section 4.

The separation of the two logic elements that form CDL 6 thus provide a design opportunity for

arbitrarily formed coincidence windows. Figure 10 compares the coincidence windows of three variations of

CDL 6. The signal input S2 always connects to a logic element at position (90,50,0) (The coordinate of

a logic element comprises: column, row, element number inside the logic array block), whereas the

second logic element (that connects to S1) was placed at positions (85,50,0), (80,50,0), and (75,50,0).

Thus, the geometric distances within these three variants were 5, 10, and 15 columns of logic elements

inside the FPGA. Transforming these geometric distances into propagation delay values would require

exact knowledge about the on-chip structural elements, such as the layout of the utilized routing resources,

the characteristics of the involved pass transistors, and the final signal mapping to local and global

routing resources. Since this discussion would exceed the scope of this paper by far, a rule-of-thumb

would be: Every traversed column of logic elements induces an additional propagation delay of about

50–100 ps.

Electronics 2015, 4 1029

0

50

100

-1000 0 1000 -1000 0 1000 -1000 0 1000

Figure 10. Comparison of different feedback path lengths for CDL 6. The S2 logic element

resides at position (90,50,0). Thus the feedback path length is 5, 10, 15 columns of logic

elements inside the Cyclone IV FPGA (from left to right).

Figure 10 shows that the longer the geometric distance between the two logic elements is, the wider

their coincidence windows will be. Since the logic element connected to S1 was moved, the system

timing constant, TSystem, also changed. Thus, the coincidence windows were shifted. As already shown

above, a significant elongation of the S1 signal path leads to a shift in the positive direction. The detailed

measurement results are presented in Table 3.

Table 3. Coincidence window Tc depending on the distance between the CDL’s logic elements.

S1 Logic Element Position (85,50,0) (80,50,0) (75,50,0)

S2 logic element position (90,50,0) (90,50,0) (90,50,0)
Feedback path length 5 columns 10 columns 15 columns

Center of coincidence window −30 ps 10 ps 300 ps
Tc in ps 485 ps 680 ps 1150 ps

6. Discussion

This paper has proposed a coincidence detection latch “CDL” that provides a promising new option

for achieving high-precision, low-cost coincidence detection with coincidence window times shorter

than 400 ps. Another appealing aspect is that the hardware structure of the CDL is based on the

well-known RS-latch. The CDL can be formed by standard VHDL constructs and is fully synthesizable

by common synthesis tools. Despite utilizing six logic gates, it consumes only two logic elements

on an off-the-shelf FPGA. Even a vintage Cyclone II FPGA development board could host tens of

thousands of CDLs.

The smallest evaluated coincidence window was only 115 ps wide. The experiments indicate that on

both ends, the coincidence window has some transient areas where coincidence detection is sporadic.

The widths of these areas vary. At the beginning of the window, they usually last for approximately 90 ps to

100 ps. At the end of the window, they are slightly smaller, i.e., approximately 70 ps to 90 ps. These

transient areas might be caused by external effects. The Keysight function generator, for example, provides

limited precision during its delay generation. The data sheet states an accuracy of ±25 ps ± 50 ppm [10].

Furthermore, on-chip as well as on-board noise might be sources of the observed effect. Therefore,

the default TTL inputs of the FPGA were driven in LVDS mode to provide better robustness against

noise and voltage variation.

Electronics 2015, 4 1030

When comparing the individual results, Figure 9 indicates an effect that might be considered

a limitation by some: the location of the coincidence window on the X-axis (the time base) varies among

the various CDL implementations. Since the CDL evaluates the signals at its gate inputs,

the electrical connections to the CDL’s inputs are part of the external wiring along with the cables

to the function generator. As already illustrated in Figure 6, this external wiring affects the location of

the coincidence window but not the duration of its window. The FGPA synthesis process assigns

individual signal routing resources to every CDL. Thus, every particular CDL exhibits an individual

coincidence window, with a timing that depends on the physical location on the FPGA device. But this

is not a flaw of the developed system, as every timing system has to be calibrated within its actual

physical environment.

For experiments that require multi-channel coincidence detection, the use of multiple instances of the

CDL on the very same FPGA is possible. Future experiments will investigate this, especially

the use of nested multi-channel CDL structures. Furthermore, CDL chains might lead to an even higher

time resolution in coincidence detection with the benefit of eliminating the offset limitation discussed

above. The experiments indicate that a CDL’s coincidence window Tc and its center point, depends on

structural and configurable FPGA parameters. Every single CDL can thus be configured to its required

demands. When multiple CDLs are placed on the FPGA, they might be configured in such way that all

CDLs evaluate the same signal channel pair. The combination of two CDLs with different center points

and overlapping coincidence windows can be used to form a virtual coincidence window that

is smaller than a single coincidence window. For example, two CDLs with Tc1 = Tc2 =150 ps and

tCenter1 = 0 ps and tCenter2 = 100 ps form a virtual combined coincidence window of Tc = 100 ps and

a center point at tCenter = 50 ps. This can be extended for nearly arbitrarily many CDLs.

Unfortunately, it is impossible to calculate precise timing characteristics of a single CDL in advance,

i.e., prior to the synthesis process. They depend on a wide variety of parameters. Beside the aforementioned

geometric position, also other variables, such as the total number of CDLs, the size and placement of

additional control logic, the placement of the input ports, etc., have to be taken into account. Even the

very same CDL might behave differently on different FPGAs of the same type. However, the possibility

for multiple CDLs operating in parallel might overcome this limitation. The designer can implement

hundreds of CDLs, and refer just to those CDLs that provide the desired timing behavior.

In conclusion, this paper has presented a possible approach to design coincidence detectors with

a coincidence window of less than 200 ps. Even though the practical experiments were done on

an Altera 90 nm Cyclone II FPGA, the results show significant progress towards high precision coincidence

detection. The discussion presented above indicates that for a CDL’s final timing characteristics,

the involved path delays are more important than the look-up table’s propagation delays. Thus, switching

to modern FPGA families, e.g., the 28 nm Cyclone V, might have only minor impacts on a CDL’s overall

timing behavior.

Furthermore, the purpose of the practical experiments was to provide a proof-of-concept of

the proposed approach. The integration of the proposed CDLs into a commercial system requires,

for example, the cooperation with a selected PET system developer, which is beyond the scope of

this paper. Nevertheless, such a system integration would include long-term stability tests in order to

evaluate the effects of temperature changes, radiation exposure, the event detector precision. It might

Electronics 2015, 4 1031

well be that these long-term stability tests reveal some dependencies, which impose some sporadic

re-calibration (e.g., one a week or once a month).

7. Conclusions

This paper has proposed a new circuitry for the detection of the coincidence of two (independent)

signals. This detector originates from the well-known, standard RS latch, and provides four different,

stable states at its two outputs. Due to its internals, this detector provides very precise coincidence

windows as short as 120 ps. Its compact and regular architecture facilitates the massively parallel

realization of a large number of these detectors on FPGAs, resulting in practically usable detector arrays.

Acknowledgments

The authors gratefully thank Matthias Hinkfoth for fruitful discussions and support. Furthermore,

the authors’ thanks are dedicated to Christian Haubelt for providing access to the Keysight Function

Pulse Generator.

Author Contributions

Both authors were working together very tightly. The theoretical work on the design of the described

coincidence detectors were mainly driven by Ralf Salomon. The transformation of the ideas into

FPGA-synthesizable constructs was done by Ralf Joost. Ralf Joost was also responsible for performing

the experiments. Both authors analyzed the experimental results and wrote the paper together.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Ziegler, S.I. Positron Emission Tomography: Principles, Technology and Recent Developments.

Nucl. Phys. A 2005, 752, 679c–687c.

2. Conti, M. Improving time resolution in time-of-flight PET. Nucl. Instrum. Methods Phys. Res. A

2011, 648, 194–198.

3. Cates, J.W.; Vinke, R.; Levin, S.L. Analytical calculation of the lower bound on timing resolution

for PET scintillation detectors comprising high-aspect-ratio crystal elements. Phys. Med. Biol. 2015,

60, 5141–5161.

4. Branning, D.; Bhandari, S.; Beck, M. Low-cost coincidence-counting electronics for undergraduate

quantum optics. Am. J. Phys. 2009, 77, 667–670.

5. Branning, D.; Beck, M. An FPGA-based module for multiphoton coincidence counting. In

Proceedings of the Advanced photon counting techniques VI, Baltimore, MD, USA, 25–26 April

2012; p. 83750F.

6. Ko, G.B.; Yoon, H.S.; il Kwon, S.; Hong, S.J.; Lee, D.S.; Lee, J.S. Development of FPGA-based

coincidence units with veto function. Biomed. Eng. Lett. 2011, 1, 27–31.

Electronics 2015, 4 1032

7. Pooser, R.C.; Earl, D.D.; Evans, P.G.; Williams, B.; Schaake, J.; Humble, T.S. FPGA-based gating

and logic for multichannel single photon counting. J. Mod. Option 2012, 59, 1500–1511.

8. Kim, T.; Fiorentino, M.; Gorelik, P.V.; Wong, F.N.C. Low-cost nanosecond electronic coincidence

detector. arXiv:physics/0501141, 2005.

9. Altera DE2-70 User Manual, version 1.08; Terasic Inc.: HsinChu, Taiwan, 2010.

10. 81150A and 81160A Pulse Function Arbitrary Noise Generators—Data Sheet, version 1.2;

Keysight Technologies: Santa Rosa, CA, USA, 2015.

11. Altera Quartus II Handbook, Version 13.0; Altera Corp.: San José, CA, USA, 2013.

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/4.0/).

