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Abstract: We present a new method for time delay estimation using band limited frequency
domain data representing the port responses of interconnect structures. The approach
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The time delay extraction is constructed by incorporating a linearly varying phase factor
to the system of equations that determines the Fourier coefficients. The method is capable of
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1. Introduction

Identification and extraction of time delay is an important research problem in signal processing
and has applications in many fields, including radar [1], sonar [2,3], ultrasonics [4], microwave
imaging [5], geophysics [6], seismology [7,8], wireless communications [9], as well as modeling of
passive structures in electronic systems, in particular transmission line modeling [10,11], transient
simulation of interconnects [12] and co-simulation of passive structures with active devices in a time
domain using SPICE. Passive structures in electronic systems have been traditionally analyzed in the
frequency domain, while transient simulations are performed in the time domain using suitable models
that accurately capture the relevant electromagnetic phenomena. The models are obtained from either
direct measurements or electromagnetic simulations. Interconnect models are typically approximated
by rational transfer functions using the vector fitting algorithm in various implementations [13–19],
which is the standard macromodeling approach. As clock frequencies increase, the size of passive
structures becomes of the same order as the signal wavelength at the operating frequency, which causes
the distributed effects, such as the time delay, to play a significant role in the time domain simulations.
For this reason, time delay has to be included in macromodeling, in particular when causality is analyzed.
The connection between causality and time delay is in fact that time delays can pull a non-causal signal
into the causal region or vice versa pull a causal signal into the non-causal region, while causality,
in turn, can be expressed in terms of the Hilbert transform [20–22]. Several approaches can be
used to extract delays in the frequency domain, for example using the Hilbert transform [23–25], the
minimum phase all-pass decomposition [12,26,27], incorporating an optimal time delay into the vector
fitting algorithm [10,11], employing a modified Lie approximation to develop a passive and compact
macromodel [28], using a Gabor transform to develop delayed rational function macromodels for long
interconnects [19,29] or conducting a probabilistic analysis of the cepstrum in the presence of noise [30].
In the time domain, delayed rational functions [31,32] can be employed to extract delays. In this paper,
a novel approach is proposed in which time delay is determined in the frequency domain using a causality
argument. Causality is verified using the SVD-based causal Fourier continuation method developed by
the authors [33,34], while the time delay presence is incorporated by a linearly-varying phase factor to
the system of equations that determines Fourier coefficients. Preliminary results are reported in [35].

The rest of the paper is organized as follows. Section 2 provides a background on causality for linear
time translation-invariant systems and dispersion relations. In Section 3, we show the main steps in
the derivation of causal Fourier continuations using the truncated singular value decomposition (SVD)
method that was developed to access causality. We also provide error estimates that take into account
a possible presence of noise in the data. Section 4 extends the causality characterization method to
develop a technique for time delay extraction. The proposed method is tested in Section 5 using several
analytic and simulated examples. We also analyze the performance of the algorithm when only a limited
number of frequency responses is available and when noise/approximation errors are present in the data.
In Section 6, we present our conclusions. The Appendix section is devoted to the formulation of error
bounds for the causality characterization method based on causal Fourier continuations.
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2. Causality of Linear Time-Invariant Systems

Consider a linear and time-invariant physical system with the impulse response h(t) subject to
a time-dependent input f(t), to which it responds by an output x(t). Denote by:

H(w) =

∫ ∞
−∞

h(τ) e−iwτ dτ (1)

the Fourier transform of h(t), which is also called the transfer function.
The system is causal if the output cannot precede the input, i.e., if f(t) = 0 for t < T , the same must

be true for x(t). This primitive causality condition in the time domain implies h(t) = 0, t < 0. Hence,
the domain of integration in Equation (1) can be reduced to [0,∞).

Assume H(w) ∈ L2(R). Then, starting from Cauchy’s theorem and using contour integration, one
can show [22] that for any point w on the real axis, H(w) can be written (please note that we use the
opposite sign of the exponent in the definition of the Fourier transform from that in [22]) as:

H(w) =
1

πi
−
∫ ∞
−∞

H(w′)

w − w′
dw′, real w (2)

where:

−
∫ ∞
−∞

= P

∫ ∞
−∞

= lim
ε→0

(∫ w−ε

−∞
+

∫ ∞
w+ε

)
(3)

denotes Cauchy’s principal value. Separating the real and imaginary parts of Equation (2), we get:

ReH(w) =
1

π
−
∫ ∞
−∞

ImH(w′)

w − w′
dw′ (4)

ImH(w) = − 1

π
−
∫ ∞
−∞

ReH(w′)

w − w′
dw′ (5)

Equations (4) and (5) are called the dispersion relations or Kramers–Krönig relations. They show that
ReH and ImH are not independent functions, but instead, they are related to each other: ReH at one
frequency depends on ImH at all frequencies, and vice versa. This implies that if one of the functions
ReH or ImH is square integrable and known, then the other one can be completely determined by
causality. Recalling the definition of the Hilbert transform,

H[u(w)] =
1

π
−
∫ ∞
−∞

u(w′)

w − w′
dw′ (6)

we see that ReH and ImH are Hilbert transforms of each other, i.e.,

ReH(w) = H[ImH(w)], ImH(w) = −H[ReH(w)] (7)

In other words, ReH or ImH form a Hilbert transform pair. Dispersion relations provide the causality
condition in the frequency domain.

Evaluation of the Hilbert transform requires integration on (−∞,∞), which can be reduced to [0,∞)

by the spectrum symmetry of H(w) if h(t) is real valued. In practice, only a limited number of discrete
values of H(w) is available on [wmin, wmax]. Thus, the domain of integration has to be truncated. This
usually causes serious boundary artifacts due to the lack of out-of-band frequency responses. To reduce
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or even completely remove boundary artifacts, the authors recently developed causality characterization
methods based on periodic polynomial continuations [36,37] and causal Fourier continuations [33,34],
respectively. The approach was motivated by the example H(w) = e−iaw, a > 0, that is not square
integrable, but still satisfies the dispersion relations. The causality characterization method based on
causal Fourier continuations allows one to construct highly accurate approximations of a given transfer
function on the original frequency interval [wmin, wmax] with the uniform error that decreases as the
number of Fourier coefficients increases. The technique is applicable to both baseband and bandpass
cases and capable of detecting very small localized causality violations. The method can also be extended
to multidimensional cases.

In the next section, for the completeness of presentation, we show the main steps in the derivation
of the causal Fourier continuation method that can be used to access the causality of a given transfer
function whose values are available at a discrete set of frequencies. We also provide upper bounds of the
reconstruction error between the given function and its causal Fourier continuation. We use these error
estimates to understand how to extract the time delay when data with different resolutions are available
and when data are affected by noise or other approximation errors.

3. Causal Fourier Continuations

Consider a transfer function H(w) = ReH + i ImH , whose N discrete values are available on
[wmin, wmax], wmin ≥ 0. For real-valued impulse response functions h(t), ReH and ImH are even
and odd functions, respectively. This implies that H(w) has values on [−wmax,−wmin] by spectrum
symmetry. For convenience, we rescale the frequency interval [−wmax, wmax] to [−0.5, 0.5] by the
substitution x = 0.5

wmax
w, so the rescaled transfer function H(x) is defined on the unit length interval

with Ñ values where Ñ = 2N − 1 or Ñ = 2N depending on if H(x) is available at x = 0 or not. Both
baseband and bandpass cases can be considered.

The idea of a causal Fourier continuation is to construct an accurate Fourier series approximation of
H(x) by allowing the Fourier series to be periodic and causal in an extended domain. The result is the
Fourier continuation of H that we denote by C(H), and it is defined by:

C(H)(x) =
M∑

k=−M+1

αk e−
2πi
b
kx (8)

for an even number 2M of terms, whereas for an odd number 2M + 1 of terms, the index k varies from
−M to M . Throughout this paper, we assume that the number M of Fourier coefficients is even, for
simplicity. When M is odd, analogous results can be formulated. Here, b is the period of approximation.
For SVD-based periodic continuations, b is normally chosen as twice the length of the domain on which
function H is given, though the value b = 2 is not necessarily optimal. The optimal value b depends on
a function being approximated. In practice, several values b ∈ (1, 4) may be tried to get a slightly better
reconstruction of H(x) with a Fourier series.

Functions φk(x) = e−
2πi
b
kx, k ∈ Z, form a complete orthogonal basis in L2[− b

2
, b

2
]. It can be shown

that H{φk(x)} = i sgn(k)φk(x), which implies that functions {φk(x)} are the eigenfunctions of the
Hilbert transformHwith associated eigenvalues±iwith x ∈ [− b

2
, b

2
]. For a causal periodic continuation,

according to Equation (7), we need Im C(H)(x) to be the Hilbert transform of −Re C(H)(x). It can be
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shown [33] that this implies αk = 0 for k ≤ 0 in Equation (8). Hence, a causal Fourier continuation has
the form:

C(H)(x) =
M∑
k=1

αkφk(x) (9)

Evaluating H(x) at points xj , j = 1, . . . , Ñ , xj ∈ [−0.5, 0.5], produces a complex valued system:

M∑
k=1

αkφk(xj) = H(xj) (10)

with Ñ equations for M unknowns αk, k = 1, . . . ,M , Ñ ≥ M . If Ñ > M , System (10) is
overdetermined and has to be solved in the least squares sense. When Fourier coefficients αk are
computed, Formula (9) provides reconstruction of H(x) on [−0.5, 0.5]. The least squares problem is
extremely ill-conditioned. However, it can be regularized using a truncated SVD method when singular
values below some cutoff tolerance ξ close to the machine precision are being discarded.

Since ReH(x) and ImH(x) are even and odd functions of x, respectively, the Fourier coefficients:

αk =
1

b

∫ b/2

−b/2
H(x)φk(x)dx, k = 1, . . . ,M (11)

are real. Here, ¯ denotes the complex conjugate. To ensure that numerically computed Fourier
coefficients αk are real, instead of solving complex-valued system (10), one can separate the real and
imaginary parts of H(xj) and its causal Fourier continuation C(H)(xj) to obtain the real-valued system:

M∑
k=1

αk Reφk(xj) = ReH(xj)

M∑
k=1

αk Imφk(xj) = ImH(xj)

(12)

We show in [33] that the real formulation (12) provides slightly more accurate results than complex. In
what follows, we use the real formulation (12).

To have a better control on the ill-conditioning of matrix problem (10) or (12), at least twice
more data points Ñ than the Fourier coefficients M should be used [38]. This approach is called the
over-collocation. We use Ñ = 2M as an effective way to obtain an accurate and reliable approximation
of H(x) over the interval [−0.5, 0.5]. This relation corresponds (in [33], N denoted the number of points
on [−0.5, 0.5], while in this work, N is the number of points on [0, 0.5] or originally on [wmin, wmax]) to
N = M , where N is the number of data points available originally on [wmin, wmax].

To access the quality of the approximation of H(x) with its causal Fourier continuation C(H)(x), we
introduce reconstruction errors, ER(x) and EI(x), for real and imaginary parts of H(x):

ER(x) = ReH(x)− Re C(H)(x) (13)

EI(x) = ImH(x)− Im C(H)(x) (14)

on the original interval [−0.5, 0.5] where data are available.
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The error analysis performed in [33] (see also the Appendix) shows that the error between H(x) and
its causal Fourier continuation C(H+ε), under the presence of a noise ε, has the following upper bound:

||H − C(H + ε)||L2(Ω) ≤ εF + εn + εT (15)

Here:
εF = (1 + Λ2

√
2N(M −K))||H − ĤM ||L∞(Ω) (16)

is the error due to approximation of H with its causal Fourier series. It decays as O(M−k+1), where k is
the smoothness order of the transfer function H(x).

εT = Λ1

√
K/b||ĤM ||L∞(Ωc) (17)

is the error due to the truncation of singular values. It is typically small and close to the cut-off value ξ.

εn = (1 + Λ2

√
2N(M −K))||ε||L∞(Ω) (18)

is the error due to the presence of a noise or approximation errors in the given data, and it shows a level
of causality violation. In practice, the size of εn is close to the size of noise in the data. Function ĤM ,
constants Λ1, Λ2 and K, domains Ω and Ωc are defined in the Appendix. The constants Λ1, Λ2 and K
depend only on the continuation parameters N , M , b and ξ, as well as the location of discrete points xj
and not on the function H .

The error bound (15) shows that the reconstruction errors ER and EI decrease as M increases due to
the causal Fourier series approximation error with the error bound εF until either the level ε of a noise
or level εT due to the truncation of singular values is reached. If only round-off errors are present in
the data, the errors will level off at εT . If reconstruction errors level off at some value ε > εT as the
resolution increases, the data are declared non-causal with the error approximately at the order of ε.
More information about the error analysis for the causality characterization methods based on causal
Fourier continuations can be found in [33].

4. Time Delay Estimation

The above approach for causality assessment can be transformed into a delay estimation algorithm
by observing the following. Suppose that h(t) is non-zero only from time T0 ≥ 0, and we would like to
identify the time delay T0. Consider the Fourier transform H(w) of h(t):

H(w) =

∫ ∞
t=T0

e−iwt h(t)dt =

∫ ∞
t=T0

e−i
x
a
t h(t)dt (19)

where we used the substitution x = aw, a = 0.5
wmax

. Introducing τ = t
a
, we can write:

H(w) = a

∫ ∞
T0
a

e−ixτ h(aτ)dτ (20)

or with u = τ − T0
a

, we obtain:

H(w) = a e−ix
T0
a

∫ ∞
0

e−ixt h(T0 + au)du = a e−ix
T0
a G(x) (21)
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where G(x) is the Fourier transform of a causal function with no time delay. This implies that when
0 ≤ T ≤ T0, the transfer functionH(x) eix

T
a is causal, but when T ≥ T0, the transfer functionH(x) eix

T
a

has a non-causal component. Therefore, T̃0 = T0/a is the time delay for H(x), and the delay T0 for the
original function H(w) is recovered by multiplying T̃0 by a. Since one can add any integral multiple of
2π to xT/a, it is enough to restrict our investigations to the interval:

0 ≤ T

a
≤ Tmax =

2π

xmax
=

2π

0.5
= 4π (22)

Then, for each potential time delay 0 ≤ T
a
≤ Tmax, we solve the following modified system:

M∑
k=1

αkφk(xj) = eixj
T
a H(xj), j = 1, . . . , Ñ (23)

or its equivalent real-valued formulation. For T < T0, the reconstruction errors ER, EI should be
small and approximately of the same order. As T increases and becomes greater than some critical
transition time close to the time delay T0, the reconstruction errors should start to increase. The goal
is to approximate T0. The difficulty is that the reconstruction errors grow gradually as T ≥ T0, so the
transition is not sharp. Moreover, the order of reconstruction errors for T < T0 depends on the resolution
of data and threshold ξ used in the truncated SVD method, which, in turn, affects a transition time. In
addition, a noise in the data, if present, also affects when reconstruction errors start growing. A similar
approach was used in [25] to estimate the time delay for square integrable transfer functions. In this
contribution, we extend the approach to more general transfer functions. In addition, we use a different
causality measure than in [25] and take into account different resolutions of given data and the possible
presence of noise. The approach can be extended to multi-port and mixed-mode networks by applying it
to each element of the transfer matrix.

5. Numerical Examples

In this section, we apply the proposed technique to several analytic and simulated examples when
the time delay is either known exactly or can be estimated using other techniques. We also consider the
effect of noise presence on the accuracy of time delay estimation.

5.1. Four-Pole Example

Consider a transfer function with four poles and time delay T0, defined by:

H(w) = e−iwT0 H̃(w) (24)

with:
H̃(w) =

r1

iw + p1

+
r̄1

iw + p̄1

+
r2

iw + p2

+
r̄2

iw + p̄2

(25)

where r1 = 1 + 2i, p1 = 1 + 3i, r2 = 2
3

+ 1
2
i, p2 = 1

2
+ 5i, and T0 = 0.25. Since the poles of H̃(w) are

located in the upper half w-plane at ±3 + i and ±5 + 1
2
i, this function is causal as a sum of four causal

transforms and has no time delay. Therefore, the function H(w) is a causal function delayed with offset
T0. H is sampled on [0, wmax] at N frequency points varying from N = 50 to 1500 with wmax = 6.
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The real and imaginary parts of H(w) are shown in Figure 1. After rescaling with x = 0.5
wmax

w and
reflecting to negative frequencies, we obtain a rescaled transfer functionH(x) defined on x ∈ [−0.5, 0.5],
for which we construct a causal Fourier continuation C(H) defined in Equation (9) using M = N

Fourier coefficients. Hence, the number M of Fourier coefficients also varies between 50 and 1500.
ReH(x) and ImH(x) of the rescaled and reflectedH(x) together with their causal Fourier continuations
with M = 300 are depicted in Figure 2. Even though given H(x) and its causal Fourier continuation
approximation look indistinguishable, the actual reconstruction errors ER and EI in both the real and
imaginary parts, which are defined in (13) and (14), are on the order of 10−6, and they decrease as M
increases (with M = N ). For example, with M = 800, the errors are on the order of 10−13. Since both
errors ER and EI are of the same order, it is enough to analyze one of the errors, for example ER. The
results using EI are similar.
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Figure 1. ReH(w) and ImH(w) in the four-pole example.
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Figure 2. ReH(x) and ImH(x) of the rescaled and reflected by symmetry transfer function
H(x) in the four-pole example together with their causal Fourier continuations Re C(H) and
Im C(H), respectively, with M = 300 Fourier coefficients.

To estimate the time delay, we analyze the evolution of ||ER||∞, the ∞ norm of ER, shown in
Figure 3, for various values M .
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Figure 3. Evolution of the reconstruction error ||ER||∞ as a function of T in the four-pole
example. The dashed line corresponds to the exact delay T0 = 0.25.

Since the error due to a causal Fourier series approximation decreases with M (see error bound
(16)), the reconstruction error between the given transfer function H and its causal Fourier continuation
C(H) also decreases as M increases until it either reaches the level ξ of filtering of singular values or
a level ε of noise/causality violations (see error bounds (17) and (18), respectively). For each fixed
M , as time T increases, the errors ER and EI first are small and about of the same order until some
transition time close to the time delay T0 is approached. After that, the errors grow approximately as a
power function on the log-log scale. For smaller T , the errors are dominated by a causal Fourier series
approximation error. Then for T greater than some transition time, they are dominated by causality
violations since this value T provides a large enough negative time delay and shifts a causal function
into a non-causal area. A transition value T = Tc, we call it a critical time, from a plateau region to a
growth region is different for each M . It decreases as the resolution or number of Fourier coefficients
increases if the error is dominated by the causal Fourier series approximation error. The critical times Tc
approach the time delay T0 as M increases. The goal is to estimate T0 using the error curves shown in
Figure 3. Analyzing graphs of the error curves for M > 800, we observe some non-monotonic behavior
at T close to T0. This behavior is due to the filtering of the singular values below the threshold ξ = 10−13

that we used in our experiments. By increasing the value of ξ, the non-monotonic behavior will be
present at smaller values of M . This suggests that portions of error curves close to threshold ξ are
affected by filtering and may be inaccurate and difficult to use for time delay estimation as we find in our
experiments. To estimate critical times Tc of transition from the plateau region to the growth region, we
approximate the growing region by a quadratic function on the log-log scale. Specifically, we assume
that lnT ≈ a2 (ln ||ER||∞)2 + a1 ln ||ER||∞ + a0 ≡ f(ln ||ER||∞), where coefficients a0, a1 and a2 are
determined in the least squares sense. The resulting quadratic function f(ln ||ER||∞) is then evaluated
at the value of ||ER||∞ at T = 0 that is assumed to be the “most causal” time. By taking the exponential
function of the result, we find a critical transition time Tc for a given M . This procedure produces
estimates of the time delay T0 for various values of M . The graph of the critical transition times Tc as a
function of M is shown in Figure 4. One can clearly see that the critical times approach the exact time
delay T0 = 0.25 as M increases. A good approximation of T0 is achieved at M = 800.
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Figure 4. Critical transition times Tc in the four-pole example that approach T0 as M
increases. The dashed line corresponds to the exact delay T0 = 0.25.

The values of Tc for M ≥ 200 are presented in Table 1. The results indicate that the approximations
become more accurate as M increases. The error with M = 900 is less than 1%. At the same time, the
error with M = 1500 is about 3%, which is due to the fact that the results in this case are more affected
by the filtering of singular values. In the cases when M is high and the resulting error is not flat for
T < T0, instead of evaluating a fitted quadratic curve at the value of ||ER||∞ at T = 0, we evaluate it at
ξ, the threshold of filtering singular values, to avoid using results affected by filtering.

Table 1. Critical transition times Tc in the four-pole example that approach T0 = 0.25 as
M increases.

M Tc M Tc

200 1.4604 700 0.3394

300 1.1294 800 0.2529

400 0.9077 900 0.2497

500 0.6655 1000 0.2472
600 0.4759 1500 0.2576

In practice, the number N of samples of the transfer function H(w) is usually limited, which sets
the bound for the number M = N of Fourier coefficients, so it may not always be possible to use large
enough M to obtain critical time Tc close enough to the actual time delay T0. A good method should
be capable of producing an accurate approximation of T0 even with a small number of data points.
We achieve this by employing another approach for time delay estimation. Using the obtained fitted
quadratic error curves, we extrapolate them to the value ξ of the filtering of singular values, which is
typically chosen to be close to the machine precision. This corresponds to finding time T at which the
error reaches the value ξ. This choice is natural, since the errors below ξ are most likely affected by
filtering and may not be accurate enough to use. The results of such extrapolation are shown in Figure 5
for M = 200, 400, 600 and 800. An intersection of the extrapolated curve corresponding to M = 200 is
at a value T = 0.45451, which is a bit far from the exact T0 = 0.25. At the same time, intersections of
extrapolated curves with higher values of M are much closer; see Table 2 for details.
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Figure 5. ||ER||∞ in the four-pole example with M = 200, 400, 600 and 800 together
with their extrapolated quadratic fits. The vertical dashed line indicates the exact time delay
T0 = 0.25, while the horizontal dashed line indicates the level of filtering of singular values
given by ξ = 10−13.

Table 2. Approximations of T0 in the four-pole example using extrapolation. The exact
value T0 = 0.25, averaged value T (aver)

0 = 0.24805.

M T0 Approximation M T0 Approximation

200 0.45451 700 0.24734

300 0.27235 800 0.24969

400 0.25297 900 0.24974

500 0.25053 1000 0.24724
600 0.24633 1500 0.25759

Results shown in Table 2 indicate that as M increases, the extrapolated quadratic curve intersects the
horizontal line with the value ξ at times closer to T0. Obtained approximations of T0 can be averaged
producing T0 ≈ T

(aver)
0 = 0.24805. The approach with extrapolation provides a faster convergence and

good approximations of T0 even for small values of M , i.e., less data points are needed to approximate
T0.

We also consider the effect of noise on the time delay estimation. To study this, we impose
a sine perturbation:

a sin(10πx) (26)

of various amplitudes a that we add to ReH , while keeping ImH unchanged. We choose N = 800 and
vary a from 10−10–10−3. For the convenience of the reader, the perturbed profiles of ReH are shown
in the left panel of Figure 6 using the signal-to-noise ratio (SNR) format, where we consider ratios of
ReH + a sin(10πx) to the amplitude a of the perturbation, presenting them in dB units, i.e., plotting
20 · log10(ReH + a sin(10πx)/a). The reconstruction error ER with no perturbation for early times
T < T0 is of the order of 10−13, as shown in the right panel of Figure 6, that corresponds to the level
of the filtering of singular values. When the perturbation is added, the reconstruction errors for T < T0
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are higher and approximately of the order of a. Once some critical transition time greater than T0 is
passed, reconstruction errors start growing. They grow at the same rate and coincide almost perfectly
with each other. This observation suggests that the proposed approach can also be used in the cases
when data have a noise, which is typical in real-life applications, when data have either measurement
or simulation errors. For noise with a smaller amplitude, the region close to T0 will be less affected by
noise, and a bigger growing region will be available for fitting, so we expect better accuracy of time delay
estimation in such cases. When more noise in data is present, the less growing region will be available
for fitting, and the extrapolation of fitted quadratic error curves may be less accurate. We demonstrate
this by considering two cases: with a = 10−5 (noisier case) and a = 10−8 (less noisy case).
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Figure 6. Left panel: profiles of perturbed ReH in the signal-to-noise ratio (SNR) format,
i.e., (ReH+a sin(10πx))/a, plotted in dB. Right panel: evolution of ||ER||∞ in the four-pole
example with added sine perturbation a sin(10πx). The vertical dashed line corresponds to
the exact delay T0 = 0.25.
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Figure 7. Left panel: evolution of ||ER||∞ in the four-pole example with the added
perturbation 10−5 sin(10πx). The dashed line corresponds to the exact delay T0 = 0.25.
Right panel: error curves ||ER||∞ in the four-pole example with the added perturbation
10−5 sin(10πx) and M = 200, 400, 600 and 800 together with their extrapolated quadratic
fits. The vertical dashed line indicates the exact time delay T0 = 0.25, while the horizontal
dashed line indicates the level of filtering of singular values given by ξ = 10−13.

The error curves with a higher amplitude a = 10−5 are presented in the left panel of Figure 7. It is
clear that the error does not become smaller than 10−5 as M ≥ 300 gets larger because of the noise.
We use available growing regions and extrapolate fitted error curves to find their intersection with the
horizontal line with value ξ. This gives us time T when the error reaches the value ξ for each considered



Electronics 2015, 4 811

M . The results of such extrapolation for M = 200, 400, 600 and 800 are shown in the right panel of
Figure 7. Clearly, extrapolated error curves reach value ξ at times around T0, but not close enough to T0

and without established convergence, but rather in a spread-out manner around T0.
Approximations of T0 for the values of M that we investigated are shown in Table 3. Averaging

these approximations, we obtain T (aver)
0 = 0.26586. The extrapolated curves can be made more focused

around T0 by narrowing down the fitted region. The results of this procedure are shown in Figure 8. This
improves the average time delay to T (aver)

0 = 0.24216.

Table 3. Approximations of T0 in the four-pole example with perturbation 10−5 sin(10πx)

using extrapolations with original fitting regions for various M . The exact value T0 = 0.25,
averaged value T (aver)

0 = 0.26586.

M T0 Approximation M T0 Approximation

200 0.40158 700 0.39113

300 0.25578 800 0.28392

400 0.19863 900 0.26543

500 0.14311 1000 0.20293
600 0.45358 1500 0.32837
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Figure 8. ||ER||∞ in the four-pole example with the added perturbation 10−5 sin(10πx) and
M = 200, 400, 600 and 800 together with their extrapolated quadratic fits constructed using
more narrow fitting region. The vertical dashed line indicates the exact time delay T0 = 0.25,
while the horizontal dashed line indicates the level of filtering of singular values given by
ξ = 10−13.

Next, we show the results when a smaller noise of amplitude a = 10−8 is added. The evolution of
||ER||∞ as T increases is shown in the left panel of Figure 9. We can see that the plateau error region in
this case is at about the 10−9 level, so the error growth region is bigger than in the previous case, which
should make fitting and extrapolation more accurate.
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Indeed, extrapolated quadratic curves intersect the horizontal line with value ξ in a more localized
region about T0, as shown in the right panel of Figure 9, while averaging of obtained approximations
to T0 produces T (aver)

0 = 0.25436, which is more accurate than in the case with a higher amplitude
a = 10−5. Approximations of T0 for various M are shown in Table 4.
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Figure 9. Left panel: evolution of ||ER||∞ in the four-pole example with the added
perturbation 10−8 sin(10πx) of a smaller amplitude. The dashed line corresponds to the exact
delay T0 = 0.25. Right panel: ||ER||∞ in the four-pole example with the added perturbation
10−8 sin(10πx) and M = 200, 400, 600 and 800 together with their extrapolated quadratic
fits. The vertical dashed line indicates the exact time delay T0 = 0.25, while the horizontal
dashed line indicates the level of filtering of singular values given by ξ = 10−13.

Table 4. Approximations of T0 in the four-pole example with perturbation 10−8 sin(10πx)

using extrapolations for various M . The exact value T0 = 0.25, averaged value
T

(aver)
0 = 0.25436.

M T0 Approximation M T0 Approximation

200 0.46392 700 0.25502

300 0.27635 800 0.26081

400 0.25683 900 0.2444

500 0.26798 1000 0.25582
600 0.26391 1500 0.25292

5.2. Transmission Line Example

We consider a uniform transmission line segment with the following per unit-length parameters:
L = 7.574 nH/inches, C = 2.61166 pF/inches, R = 16.278 mΩ/inches, G = 5.58 µS/inches and
length L = 5 inches. The frequency is sampled on the interval (0, 5.0] GHz. The scattering matrix of
the structure is computed using MATLAB function rlgc2s. We consider the element H̃(w) = S11(w)

and impose the time delay T0 = 1.25 ns by multiplying H̃(w) by exp(−iwT0) to get the delayed transfer
function H(w) = exp(−iwT0)H̃(w). The real and imaginary parts of H(w) are given in Figure 10.
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Figure 10. ReH(w) and ImH(w) in the transmission line example.

The error curves for different M are shown in the left panel of Figure 11, indicating that the
reconstruction error decreases quickly as M increases and reaches the level close to machine precision
at M = 600.
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Figure 11. Left panel: evolution of ||ER||∞ in the transmission line example as M varies.
The vertical dashed line indicates the time delay T0 = 1.25 ns. Right panel: estimation of
the delay time in the transmission line example using critical transition times Tc as M varies.
The dashed line corresponds to the exact delay T0 = 1.25 ns.
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Figure 12. ||ER||∞ in the transmission line example with M = 200, 400, 600 and 800
together with their quadratic fits. The vertical dashed line indicates the exact time delay
T0 = 1.25 ns, while the horizontal dashed line indicates the level of filtering of singular
values given by ξ = 10−13.
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Constructing fitted quadratic error curves and finding their intersections with ||ER||∞ at T = 0 or
finding times when these fitted error curves reach the value ξ of the error forM ≥ 600, we get a sequence
of critical transition times Tc, which we show in the right panel of Figure 11. Clearly, critical times Tc
converge to T0 and provide a good approximation of T0 for M ≥ 500. Using an alternative approach
when we extrapolate the fitted quadratic error curves to find their intersections with the error threshold
ξ, we also obtain good approximations of T0. Some of these curves for M = 200, 400, 600 and 800 are
depicted in Figure 12.

Approximations of T0 using the extrapolation procedure for various values of M ranging from
M = 200 to 1500 are given in Table 5. An accurate approximation of T0 is obtained even with
M = 300. As before, approximations of T0 become better as M increases, but for very large values
of M ≥ 1000 when the reconstruction error falls below the filtering threshold ξ and filtering affects the
results more, extrapolation becomes less accurate. Averaging obtained approximations of T0 produces
T

(aver)
0 = 1.2498 ns, which is very close to the exact value T0 = 1.25 ns.

Table 5. Approximations of T0 (in ns) in the transmission line example using extrapolations
for various M . The exact value T0 = 1.25 ns, averaged value T (aver)

0 = 1.2498 ns.

M T0 Approximation M T0 Approximation

200 1.5194 700 1.2531

300 1.3147 800 1.2512

400 1.2793 900 1.2678

500 1.2506 1000 1.2348

600 1.2668 1500 1.2242

5.3. Dawson’s Integral Example

We consider here another analytic example [25] modeled by the transfer function:

H(w) = e−iwT0 H̃(w) (27)

where:
H̃(w) = e−w

2 − 2i√
π
D(w) (28)

D(w) is Dawson’s integral:

D(w) = e−w
2

∫ w

0

et
2

dt =

√
π

2
e−w

2

erfi(w) (29)

and erfi(w) is the imaginary error function. Since [21] (please note that we use the opposite sign in the
definition of the Hilbert transform than that in [21] and [25]):

H[Re H̃] = H(e−w
2

) =
2√
π
D(w) = − Im H̃ (30)



Electronics 2015, 4 815

function H̃(w) is causal. Hence, the function H(w) is a causal function delayed with offset T0. We use
T0 = 0.125 and sample H(w) on [0, wmax] with wmax = 20 using various numbers of points ranging
from N = 100 to 600. Real and imaginary parts of H are shown in Figure 13.

0 5 10 15 20
−0.5

0

0.5

1

w

R
e
H

0 5 10 15 20
−0.8

−0.6

−0.4

−0.2

0

0.2

w

I
m
H

Figure 13. ReH(w) and ImH(w) in Dawson’s integral example using N = 300

sample points.

The evolution of ||ER||∞ for various M is shown in the left panel of Figure 14. It is clear from the
graphs that critical transition times Tc approach T0.
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Figure 14. Left panel: ||ER||∞ in Dawson’s integral example as M varies. The vertical
dashed line indicates the time delay T0 = 0.125. Right panel: evolution of the relative error
||Erel

R ||∞ in Dawson’s integral example as M varies. The vertical dashed line indicates the
time delay T0 = 0.125.

Constructing fitted quadratic error curves and extrapolating them to find their intersections with the
horizontal line corresponding to the error value ξ produce a set of approximations of T0, shown in Table 6.
Averaging obtained approximations of T0 for M ≥ 200, once some convergence is established, gives
T

(aver)
0 = 0.12528.

It is interesting to note the behavior of the relative error Erel
R in this example. The evolution of its

∞ norm is shown in the right panel of Figure 14. It is clear that all profiles, even for small values of
M , have a unique local maximum at T = T0. The 2-norm has a similar behavior. Even though the
behavior of the relative error Erel

R can be used to determine the time delay in this example, we did not
find the same pronounced behavior in the other examples we considered. At the same time, extrapolating
fitted quadratic curves of∞ norms of the absolute error ER was a robust approach in all examples that
we considered.
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Table 6. Approximations of T0 in Dawson’s integral example using extrapolations of fitted
error curves for variousM . The exact value T0 = 0.125, averaged value is T (aver)

0 = 0.12528

for M ranging from 200 to 600.

M T0 Approximation M T0 Approximation

150 0.16735 240 0.12362

170 0.13116 300 0.12661

180 0.12964 400 0.12233

200 0.12753 500 0.12578
230 0.12333 600 0.12414

5.4. Stripline Example

We simulated an asymmetric stripline modeled in [39] with length L = 8 in, width W = 14 mils,
distances from the trace to reference planes H1 = 10 mils, H2 = 20 mils, substrate dielectric
Megtron6-1035, laminate with a dielectric constant εr = 3.45 using a Cadence software tool with an
FEM full-wave field solver. The scattering matrix S is obtained on [0, wmax] with wmax = 2 GHz. We
analyze element H(w) = S11(w) of the transfer matrix. The real and imaginary parts of H are shown in
Figure 15.
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Figure 15. ReH and ImH in the stripline example with N = 1000.

The evolution of ||ER||∞ for various M is depicted in Figure 16. Even for high values of M , the
error in causality does not go to the machine precision or the filtering level ξ and, instead, levels off
around 10−6. This indicates that our finite element simulation results are accurate only within 10−6.
For causality characterization, this implies that data have noise/approximation errors with an amplitude
around 10−6. Graphs of ||ER||∞ suggest that for M ≤ 2000, the error is dominated by Fourier series
approximation error, while for higher M , the error is dominated by the noise/approximation errors from
the finite element method.
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Figure 16. ||ER||∞ in the stripline example for variousM . The vertical dashed line indicates
the closed form microwave theory time delay approximation T0 = 1.25809 ns.

In this example, the time delay is estimated using a closed form microwave theory approximation as
T0 = 8 × 0.0254/(c0/

√
εr) = 1.25809 ns, where c0 = 3 × 108m/s is the speed of light and 0.0254 is a

conversion factor to convert from inches to meters. The error curves were fitted to quadratic curves, as
explained above. Because of the relatively high errors in the data, the fitted regions are not long enough.
Besides, there is more nonlinear behavior of the error curves for high values of T > T0. All this makes it
difficult to estimate the time delay, as shown in the left panel of Figure 17. As can be seen, extrapolated
quadratic curves do not focus at T0, but instead spread out around T0, similarly to the four-pole example
with an imposed noise of relatively large amplitude considered in Section 5.1.
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Figure 17. Left panel: extrapolated quadratic curves based on the initial fitting range in the
stripline example. Right panel: extrapolated quadratic curves based on a more narrow fitting
range in the stripline example. The average time delay is T (aver)

0 = 1.2669 ns.

This problem can be corrected by decreasing the fitting range and going further away from transition
regions. The results are shown in the right panel of Figure 17.

The approximations of T0 are given in Table 7. Averaging them for values of M up to 3000 produces
T

(aver)
0 = 1.2669 ns, which agrees well with an analytically estimated time delay using a closed form

formula. As in other examples, results with very high values of M > 3000, which are more affected by
noise and approximation errors in data, are less accurate.



Electronics 2015, 4 818

Table 7. Approximations of T0 (in ns) in the stripline example using extrapolations of fitted
quadratic error curves for various M . The closed form approximation of the time delay is
T0 = 1.25809 ns, and the averaged value is T (aver)

0 = 1.2669 ns for M ranging up to 3000.

M T0 Approximation M T0 Approximation

80 1.266 700 1.1987

100 1.2312 800 1.2179

200 1.2553 900 1.2593

300 1.2797 1000 1.2205
400 1.2826 2000 1.246
500 1.2413 3000 1.5878
600 1.1833 4000 1.0168

5.5. Finite Element Model of a DDR4 Module with a DRAM Package

In this example, we use a scattering matrix S generated by a finite element modeling of a DDR4
module with a DRAM package (courtesy of Micron Technology, Inc.). The package is attached to the
module using ball grid array (BGA) technology. The model includes a no-die DRAM package on a
printed circuit board (PCB). The model contains 110 input and output ports. The simulation process
is performed for 100 equally spaced frequency points ranging from wmin=0 to wmax = 5 GHz using
ANSYS Electromagnetics Suite. For time delay analysis, we consider a group of address buses A8–A4
from module pins to package die-side pins. The port assignment for this group is as follows. Port 1 is
placed at the junction of the package and PCB or the BGA; Port 2 is placed at the die-side pin of the
package; and Port 3 is placed at the module pin. Hence, S21 represents how the signal is transmitted
on the address bus from the BGA to the die; S31 shows how the signal is transmitted from the BGA
to the module pin; while S32 represents how the signal is transmitted from the die to the module pin.
The magnitudes of these scattering parameters in a signal-to-noise ratio format are shown in Figure 18
assuming that the data accuracy is 10−5, as justified below.

We chose the element H(w) = S32(w) to test the performance of the proposed method. The real
and imaginary parts of H are shown in Figure 19. Since the number N = 100 of data points is fixed
in this example, we first use M = 100 Fourier coefficients. The evolution of ||ER||∞ reveals that the
causality for early times is satisfied only within 10−4, suggesting either low data resolution or relatively
high approximation errors in the data. Approximating the time delay T0 by extrapolating only one error
curve to the filtering threshold ξ = 10−13 may be inaccurate, so we decided to construct causal Fourier
series approximations for several numbers M of Fourier coefficients ranging from M = 100 to 600

while keeping the same resolution with N = 100 to get several approximations of the time delay T0.
Using more than M = 100 Fourier coefficients did not significantly affect the causality accuracy, as can
be seen in the left panel of Figure 20. The results indicate that the data are only accurate within 10−5

at most, which is consistent with the expected accuracy of the finite element simulations of the model.
It should be noted that with M ≥ 300, causal Fourier series approximations become more oscillatory,
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and the amplitude of the oscillations increases as M increases. In fact, for M ≥ 300, we construct
trigonometric interpolants with very small errors at collocation data points, but large oscillations between
the collocation points. The presence of such spurious oscillations is the reason why over-collocation [38]
is suggested for SVD-based Fourier continuations. With over-collocation, the number of data points
should exceed the number of Fourier coefficients, and it is recommended to use at least twice more
collocation data points than the number M of Fourier coefficients. We have 2N data points because of
the spectrum symmetry, and we use N = M Fourier coefficients to get accurate and non-oscillatory
causal Fourier series approximations. Even though using more Fourier coefficients M in this example
than the number N of collocation points affected causal Fourier series approximations, the qualitative
dynamics of the error curves has not changed. At the same time, having several error curves that can be
extrapolated to the level ξ provided several approximations of the time delay T0, which we can use to get
an average time delay.

0 1 2 3 4 5

x 10
9

95

95.5

96

96.5

97

M
a
g
n
it
u
d
e
 i
n
 S

N
R

 (
d
B

)

Frequency (Hz)

 

 

S
31

, Net A8−A4 from module to BGA

S
32

, Net A8−A4 from module to chip

S
21

, Net A8−A4 from BGA to chip

Figure 18. Magnitudes of elements S21, S31 and S32 in dB using the signal-to-noise ratio
(SNR) format in the DDR4 module with a DRAM package example with 10−5 data accuracy.
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Figure 19. ReH and ImH of the element H(w) = S32(w) from the DDR4 module with a
DRAM package example.

In the right panel of Figure 20, we show several error curves together with their extrapolated quadratic
fits. The fits were obtained using a more localized fitting range, since the data have a relatively high level
of error.
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Figure 20. Left panel: evolution of ||ER||∞ for various M in the DDR4 module with
a DRAM package example. The vertical dashed line indicates the time delay T0 = 0.04 ns
estimated using alternative methods. Right panel: error curves ||ER||∞ together with their
extrapolated quadratic curves, and the horizontal dashed line indicates the level of filtering
of singular values given by ξ = 10−13. The average time delay is T (aver)

0 = 0.040841 ns.

The approximation of the time delay T0 using various values of M is shown in Table 8. Averaging
them, we obtain T (aver)

0 = 0.040841 ns.

Table 8. Approximations of T0 (in ns) in the DDR4 module with a DRAM package
example using extrapolations of fitted quadratic error curves for various M . An estimate
of the time delay obtained using alternative methods is T0 = 0.04 ns. The average time
delay obtained using various numbers of Fourier coefficients ranging from 100 to 600 is
T

(aver)
0 = 0.040841 ns.

M T0 Approximation M T0 Approximation

100 0.034741 240 0.038346

150 0.038733 300 0.042901

170 0.039733 400 0.0403

180 0.036878 500 0.04391

200 0.044321 600 0.046096

For comparison, the time delay T0 is estimated using two other alternative methods. In the first
method, since S parameters have units of voltage amplitudes, S32 is considered as a minimum-phase
transfer function [26]. The plot of the phase of S32, shown in the left panel of Figure 21, reveals that the
phase of S32 is approximately a linear function for the frequencies we consider (for higher frequencies,
it is expected to have a more nonlinear behavior). Its slope can be used to approximate the time delay.
For example, from DC to 3.939 GHz, the phase of S32 has changed −0.9996 radians. This implies that
the time delay T0 ≈ ∆θ

∆ω
= 0.9996

2π∗3.939∗109
≈ 0.0404 ns. Alternatively, the slope of the phase of S32 can

be approximated by using the linear least squares fitting. We find the slope to be −0.251567 × 10−9.
Dividing it by 2π gives T0 ≈ 0.251567× 10−9/(2π) ≈ 0.04004 ns.
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Another way to estimate the time delay from S-parameters is by using the time domain transmission
(TDT). The input step function is initialized with the sample time Ts = 0.1 ps and rise time Tr = 1 ps,
and it is shown in the right panel of Figure 21 using a solid blue line. The transfer function S32 is fit
to a rational function using the vector fitting method implemented in the MATLAB function rationalfit.
Since the bandwidth of S32 is only 5 GHz and the transfer function does not decay enough, we extend the
bandwidth of the fitted rational function to 50 GHz to avoid aliasing according to the Nyquist criterion.
Then, we use the inverse fast Fourier transform to compute the response of the system to the unit step
function due to S32 in the time domain. This response is shown in the right panel of Figure 21 using
a dashed red line. Measuring times at which the input step function and the output step response reach
50% of their maximum values and taking their difference, we obtain an approximation to the time delay
T0 ≈ 0.04065 ns− 0.0006 ns = 0.04005 ns.

The average time delay T (aver)
0 = 0.040841 ns obtained using the proposed method is consistent with

other alternative approximations of the time delay, which demonstrates the robustness of our technique.
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Figure 21. Left panel: phase of S32 as a function of frequency in the DDR4 module with
a DRAM package example. Its slope is −0.251567 × 10−9, which gives an approximation
of the time delay T0 = 0.251567× 10−9/(2π) ≈ 0.04004 ns.

6. Conclusions

We proposed a new method for time delay extraction from tabulated frequency responses. The
approach uses the spectrally accurate causality enforcement technique constructed using SVD-based
causal Fourier continuations, that was recently developed by the authors. The time delay is incorporated
into the causality characterization approach by introducing a linear varying phase factor to the system
of equations that defines Fourier coefficients. Varying time until a threshold time, which depends on
the maximum frequency at which the transfer function is available, results in the reconstruction error
between the given data and their causal Fourier continuations to go from an almost constant small value
to a rapidly growing function at some critical transition time. The critical transition times depend on the
resolution and approach the time delay as the resolution increases. Several sets of frequency responses
with increasing resolution can be used to establish convergence and get an approximation of the time
delay. Alternatively, when only a limited number of samples is available, a growing portion of the
error curve can be extrapolated to find an approximation of the time delay. The method is applicable to
data that have noise or other approximation errors. A few sets of frequency responses can be used to
improve the accuracy of time delay approximation by averaging the obtained results. The technique can
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be extended for multi-port and mixed-mode networks. The performance of the method is demonstrated
using several analytic and simulated examples, including data with noise, for which time delay is known
exactly or can be estimated using other alternative approaches.
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Appendix

Error Analysis of the Causality Characterization Method Based on Causal Fourier Continuations

In this section, we provide an upper bound of the reconstruction error between a given transfer
function H(x) and its causal Fourier continuation C(H)(x) in the presence of noise ε in the data.

Denote by ĤM any function of the form:

ĤM(x) =
M∑
k=1

α̂kφk(x) (A1)

where φk(x) = e−
2πi
b
kx, k = 1, . . . ,M .

Let A = UΣV ∗ be the full SVD decomposition [40] of the matrix A with entries Akj = φk(xj),
j = 1, . . . , Ñ , k = 1, . . . ,M , where U is an Ñ × Ñ unitary matrix, Σ is an Ñ ×M diagonal matrix of
singular values σj , j = 1, . . . , p, p = min(Ñ ,M), V is an M ×M unitary matrix with entries Vkj and
V ∗ denotes the complex conjugate transpose of V , Ñ = 2N − 1 or Ñ = 2N . Here N is the number of
data on [a, 0.5] or originally on [wmin, wmax].

The following result is true [33].

Theorem . Consider a rescaled transfer functionH(x) defined by symmetry on Ω = [−0.5,−a]∪[a, 0.5],
where a = 0.5wmin

wmax
, whose values are available at points xj ∈ Ω, j = 1, . . . , Ñ . Then, the error in
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approximation of H(x), which is known with some error ε, by its causal Fourier continuation C(H)(x)

defined in Equation (9) on a wider domain Ωc = [−b/2, b/2], b ≥ 1, has the upper bound:

||H − C(H + ε)||L2(Ω) ≤ (1 + Λ2

√
2N(M −K))

×
(
||H − ĤM ||L∞(Ω) + ||ε||L∞(Ω)

)
+ Λ1

√
K/b||ĤM ||L∞(Ωc)

and holds for all functions of the form (A1). Here:

Λ1 = max
j: σj<ξ

||vj(x)||L2(Ω), Λ2 = max
j: σj>ξ

||vj(x)||L2(Ω)

σj

and functions vj(x) =
∑M

k=1 Vkjφk(x) are each an up to M term causal Fourier series with coefficients
given by the j-th column of V ; K denotes the number of singular values that are discarded, i.e., the
number of j for which σj < ξ, where ξ is the cut-off tolerance.

It can be seen that constants Λ1, Λ2 and K depend only on the continuation parameters N , M , b and
ξ, as well as the location of discrete points xj , and not on the function H .

For brevity, we can write the above error estimate as:

||H − C(H + ε)||L2(Ω) ≤ εF + εn + εT .

Here:
εF ≡ (1 + Λ2

√
2N(M −K))||H − ĤM ||L∞(Ω)

is the error due to a causal Fourier series approximation, and it decays at least as fast as O(M−k+1); k
is the smoothness order of H(x), which can be estimated numerically using reconstruction errors with
different resolutions (see [33]).

εT = Λ1

√
K/b||ĤM ||L∞(Ωc),

that is the error due to the truncation of singular values. It is typically small and close to the cut-off
value ξ.

εn = (1 + Λ2

√
2N(M −K))||ε||L∞(Ω)

is the error due to noise ε in the data. Numerical experiments reveal that εn has the order of noise ε
in the data.
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