
Electronics 2015, 4, 995-1017; doi:10.3390/electronics4040995
OPEN ACCESS

electronics
ISSN 2079-9292

www.mdpi.com/journal/electronics

Article

Runtime-Monitoring for Industrial Control Systems
Helge Janicke 1,*, Andrew Nicholson 2, Stuart Webber 1 and Antonio Cau 3

1 Software Technology Research Laboratory De Montfort University, Leicester LE1 9BH, UK;
2 Cyber Security Centre, WMG, University of Warwick, Coventry CV4 7AL, UK;
3 Leicester, UK

* Author to whom correspondence should be addressed; E-Mail: heljanic@dmu.ac.uk;
Tel.: +44-116-257-7617.

Academic Editor: Dhananjay S. Phatak

Received: 17 July 2015 / Accepted: 12 November 2015 / Published: 3 December 2015

Abstract: Industrial Control Systems (ICS) are widely deployed in nation’s critical national
infrastructures such as utilities, transport, banking and health-care. Whilst Supervisory
Control and Data Acquisition (SCADA) systems are commonly deployed to monitor
real-time data and operations taking place in the ICS they are typically not equipped
to monitor the functional behaviour of individual components. In this paper (This
paper expands on an earlier position paper presented at the International Symposium for
Industrial Control System and SCADA Cyber Security Research 2014), we are presenting a
runtime-monitoring technology that provides assurances of the functional behaviour of ICS
components and demonstrates how this can be used to provide additional protection of the
ICS against cyber attacks similar to the well-known Stuxnet attack.

Keywords: SCADA; ICS; cyber; security; run-time; monitoring; ITL; formal methods

1. Introduction

Industrial Control Systems (ICS) and their often proprietary technologies are underpinning many
systems we have come to rely on in our lives. Supervisory Control and Data Acquisition (SCADA)
systems are responsible for the monitoring and control of a wide range of a nation’s critical
infrastructures. Examples of these including electricity, gas supply, logistics services, banks and
hospitals. Cyber attacks against these infrastructures can have wide ranging consequences for the
nation’s economy, its political stability and indeed the well-being of its people. Whilst there have been



Electronics 2015, 4 996

no large-scale concerted cyber attacks against critical infrastructures, attacks such as the Maroochy water
treatment disaster [1], Stuxnet [2] and more recently the reported attack on a German steel furnace [3]
have highlighted the exposure of our infrastructure to these kind of attacks [4].

Today, many of these systems are directly or indirectly connected to the Internet [5] and can be easily
accessed through search tools such as Shodan [6]. Whilst the accessibility of the systems is enabling
cyber-attacks, this is not the only reason for them to be vulnerable. Radvanovsky [5] show that many
of these systems are insufficiently protected and only employ weak or in some cases no authentication.
The key reason for this lack of basic protection is the longevity of these systems, which means many
systems that are today in operation have not been designed with security in mind and in particular not
with the vision of them being integrated in a global internet that is accessible by millions through a
simple search. The other reason for the lack of authentication and encryption in these systems is the
need to facilitate access by a number of engineers that are tasked with the maintenance of these systems.
In many settings the roll-out of sophisticated authentication and key management services is adding
significantly to the operation costs. Additionally, authentication can increase delays that negatively
affect the productivity and in cases may also invalidate safety considerations. A more detailed review of
the current threat landscape and cyber security issues relating to SCADA systems is out of the scope of
this paper and can be found in existing literature (e.g., [4,7]).

Traditionally the protection for ICS and SCADA systems was achieved through obscurity.
Systems remained heterogeneous and significantly different in their implementations which required
adversaries to gain detailed knowledge of the system and rendering their ability to use commonly known
attack tools against ICS to a significant degree. Whilst this was no protection against a determined,
well resourced adversary, it increased the effort and expenditure required. An interesting side effect of
this was that many attacks were due to insider attacks, ie perpetrated by individuals with very detailed
knowledge of the proprietary infrastructure. Since then integrators and suppliers used commercial of the
shelf (COTS) hardware components in an effort to drive down the development costs and the delivery
time for SCADA systems. This means that these components are widely available and can easily be
purchased by determined individuals that analyse them for vulnerabilities. The reduction in cost and
time-to-market also has driven down the barriers for determined adversaries. Indeed some of these
vulnerabilities are now so well known they are integrated in point-and-click penetration tools, such
as Metasploit [8]. This is significantly reducing the level of expertise required to launch a successful
cyber attack against ICS. The increase in attacks on such systems is noticeable in statistics provided by
ICS-CERT [9]. ICS-CERT has tracked a large number of attacks against ICS systems (Figure 1) and
critical national infrastructure over recent years with a large portion of those being investigated, and
publicised, occurring in the energy sector.

Obviously the protection of systems that operate the majority of a nation’s critical infrastructure is
a primary concern for governments. The EU Cyber Security Strategy compels organisations to report
CNI incidents to a competent authority and in the US an order to promote the sharing of information
on incidents [10] has been signed. The UK’s CPNI [11], and the US DOE, advise that organisations
carefully monitor their networks for signs of intrusion or attack.



Electronics 2015, 4 997

INCIDENT RESPONSE/VULNERABILITY 
COORDINATION IN 2014
INCIDENT RESPONSE 

In Fiscal Year 2014, the Industrial Control Systems Cyber Emergency Response Team 

(ICS-CERT) received and responded to 245 incidents reported by asset owners and 

industry partners. 

The Energy Sector led all others again in 2014 with the most reported incidents.  

ICS-CERT’s continuing partnership with the Energy Sector provides many opportunities 

to share information and collaborate on incident response efforts. Also noteworthy in 

2014 were the incidents reported by the Critical Manufacturing Sector, some of which 

were from control systems equipment manufacturers. The ICS vendor community may 

be a target for sophisticated threat actors for a variety of reasons, including economic 

espionage and reconnaissance. Of the total number of incidents reported to ICS-CERT, 

roughly 55 percent involved advanced persistent threats (APT) or sophisticated actors. 

Other actor types included hacktivists, insider threats, and criminals. In many cases, the 

threat actors were unknown due to a lack of attributional data.  

The scope of incidents encompassed a vast range of threats and observed methods for 

attempting to gain access to both business and control systems infrastructure, including 

but not limited to the following:

•	 Unauthorized	access	and	exploitation	of	Internet	facing	ICS/Supervisory	Control	and	
Data Acquisition (SCADA) devices

Communications 14, 6%
Commerical Facilities 7, 3%

Chemical 4, 2%
Unknown 6, 2%

Water 14, 6%

Transportation 12, 5%

Nuclear 6, 2%

Information Technology 5, 2%

Healthcare 15, 6%

Government Facilities 13, 5%

Finance 3, 1%
Food and Ag 2, 1%

September 2014 – February 2015 

INCIDENT RESPONSE ACTIVITY

NCCIC
NATIONAL CYBERSECURITY AND 

COMMUNICATIONS INTEGRATION CENTER

INCIDENT RESPONSE ACTIVITY

ICS-CERT NEWS

RECENT PRODUCT RELEASES

OPEN SOURCE SITUATIONAL 
AWARENESS HIGHLIGHTS

COORDINATED VULNERABILITY  
DISCLOSURE 

UPCOMING EVENTS

CONTENTS

1

This product is provided “as is” for informational purposes only  

The Department of Homeland Security (DHS) does not provide 

any warranties of any kind regarding any information contained 

within  The DHS does not endorse any commercial product or 

service, referenced in this product or otherwise  

Contact Information
For any questions related to this report or to contact ICS-CERT:

Email: ics-cert@hq dhs gov

Toll Free: 1-877-776-7585

I Want To

Report an ICS incident to ICS-CERT

Report an ICS software vulnerability

Get information about reporting 

Downloading	PGP/GPG	Keys

https://ics-cert us-cert gov/sites/default/files/documents/ICS-

CERT asc

Joining the Secure Portal
ICS-CERT	encourages	U S 	asset	owners	and	operators	to	join	
the	Control	Systems	compartment	of	the	US-CERT	secure	
portal  Send your name, telephone contact number, email 

address,	and	company	affiliation	to	ics-cert@hq dhs gov

requesting consideration for portal access

ICS-CERT continuously strives to improve its products and 

services  You can help by answering a short series of questions 

about	this	product	at	the	following	URL:	https://forms us-cert
gov/ncsd-feedback/

Energy 79, 32%

Critical 
Manufacturing
65, 27%

•		Exploitation	of	zero-day	vulnerabilities	in	control	system	devices	and	software

 Figure 1. FY 2014 incidents reported by sector (245 total).
Figure 1. ICS-CERT Monitor report 2014/15 [9].

Many monitoring proposals have focused on revising enterprise solutions, such as Intrusion Detection
Systems (IDS), for ICS/SCADA environments [12,13]. These approaches are successful at identifying
a limited range of attacks, but are often not capable of detecting the unique signatures of advanced
persistent threats (APT) due to the specialisation of the components and attack-tools utilised. In addition
their deployment in the settings of a real-time, critical system can severely impede the system operation
itself through the introduction of time delays that mean the system’s control programmes are not able to
respond in time to abnormal events. As a consequence the deployment of security solution in the ICS
space has been hampered and in many cases even known patches for security vulnerabilities of deployed
components are not rolled out, or on maintenance cycles that leave the system vulnerable for prolonged
periods of time. Many of the infrastructures are required to operate 24/7/365 and there are, in many
cases, no backup systems on which the effect of a patch deployment can be tested for emergent system
effects. This and the often proprietary nature of the protocols used in deployed infrastructures that lead
to an increased adoption cost. Finding a relatively low-cost solution that provides adequate assurance
without affecting the ICS network itself is one of the driving motivations of our research.

In this paper we are considering the particular threat of semantic attacks [14]. Semantic attacks
change the behaviour of critical systems components such as PLCs in a subtle way, making it difficult
for traditional IDS systems to detect. This change, however, can be leading to an overall degradation
of the system that is manifesting itself in increased tolerances during production or increased wear of
equipment used in the production line. A well known and widely reported case of a semantic attack was
the case with Stuxnet [2]. This type of attack might not be immediately recognised, unlike denial of
service (DoS) style attacks, when systems are noticeably non-functional.

In this paper we treat the security breach within an ICS as the malicious and intentional attempt to
subvert the safety of the system to cause harm to the operating organisation. This means our focus is on
the functional behaviour of the system and in its current form is not intended to address more traditional
security properties such as confidentiality. Our approach applies established runtime-monitoring
techniques that are based on the ITL/Tempura framework [15] and adapt them to provide an early
warning system that can be deployed in an ICS/SCADA environment.



Electronics 2015, 4 998

The approach offers the opportunity for real-time detection and response to unusual activities through
semantic monitoring of safety and security properties. The aim of runtime verification (RTV) is the
detection of violations of correctness properties [16]. We consider a run of a system to be a finite
sequence of system states. Most RTV approaches are checking correctness properties that are derived
from the system’s requirements by monitoring the execution of the system. The monitor will raise an
alert if the run is entering a state that violates the correctness property. This is one of the limitations
of our approach, as we consider the system specification, or an uncompromised version of the ladder
logic, to be available—which is not always the case as ICS and SCADA systems have typically been
evolved over time and access to adequate and accurate documentation in terms of asset management and
configuration management is not always maintained. However, our approach does not require complete
specifications and a good starting point are safety properties that are identified in safety cases used in the
certification of the deployed system.

The contribution of this paper is an approach to monitor safety properties of ICS components based
on a formal and verifiable specification of the component’s behaviour. The solution is designed to
be passive and is designed to be non-intrusive to the existing technology in recognition that existing
ICS/SCADA systems often accommodate fragile timing constraints. Our approach addresses the cyber
security challenge of ICS and SCADA through providing a low-cost and formally verifiable approach
to monitor component’s functional behaviour through the deployment of monitors in the control system
that verify the behaviour of e.g., PLCs in the system. The RTV monitor alerts operators to any violation
of the contained specification and thus providing additional situational awareness and fault detection
that could be the result of a semantic attack on the ICS infrastructure that would otherwise be difficult to
detect. In comparison with IDS approaches that are based on the learning of normal system behaviours,
our approach starts with the intended system behaviour specification and integrates in the configuration
management activities of the systems to provide failure alerts. This is advantageous when exceptional
system behaviours are considered that would in the case of IDS raise false alarms an lead to the protection
mechanisms to be disabled. An example would be the trigger of safety protocols that an IDS would not
consider normal behaviour. A cyber attack that is aided by physical intervention to trigger faults would
lead to the execution of safety protocols which would render an IDS approach vulnerable. This paper
expands significantly on earlier work [17] in that the runtime monitor is now implemented to run on a
Arduino device, making the deployment of this technology self-contained and reducing the opportunity
of an attacker to mount a man-in the middle attack against the monitoring framework.

The rest of this paper is structured as follows: Section 2 reviews related work while Section 3 covers
background material on SCADA architectures. Section 4 then introduces our runtime monitoring
approach. This includes an overview, introduction to syntax and our approach for implementation.
In Section 4.1 we provide the informal and formal semantics of PLC ladder logic constructs in ITL and
its executable subset Tempura. In Section 4.2 we provide the detailed implementation of a case study
that is used to evaluate the performance and functionality of our prototype. In Section 4.3 we present the
results of our evaluation in terms of performance and discuss limitations of the Arduino implementation
for RTV. Finally Section 5 concludes and identifies avenues for potential future work.



Electronics 2015, 4 999

2. Related Work

Earlier work on monitoring ICS/SCADA environments applied enterprise solutions to control system
infrastructures. For example [18] and others have created rulesets for IDS that are applicable to ICS
protocols. This requires extensive vulnerability assessments of ICS protocols [19]. This approach
is useful but limited when considering semantic attacks [14], e.g., an attack may adhere to protocol
standards, but may set a gauge to a value that is not allowed by the business/industrial rules, as was the
case with Stuxnet, this would not be detectable without the functional context of the system specification.
Alternative approaches to IDS have been proposed, such as model-based IDS [13,20].

In [16] a brief overview of runtime verification is given including a comparison with theorem proving,
model checking and testing. The main aim of runtime verification is the detection of violations of
correctness properties. A run of a system is a possible infinite sequence of system’s states. An execution
of a system is a finite prefix of a run. In theorem proving and model checkers one considers
all possible runs of a systems and in testing one considers a selected subset of all possible runs.
In runtime verification however one considers executions of a system A monitor is used to check
whether an execution satisfies a correctness property and the monitor is automatically generated from
this correctness property.

McLaughlin et al. [21] proposed SABOT, a tool that automatically maps PLC logic to a provided
specification to derive semantics. Similarly the ICS-Map project attempted to adapt network mapping
techniques to control systems to aid the discovery of system components to feed into the automated
asset discovery process. Both approaches are supplemental to our work and allow the specification of
the ICS and its components to be discovered, rather than assumed. Mohan et al. [22] proposed S3A, an
architecture deployed on an FPGA that detects malicious changes to state when execution times differ,
which addresses some of the real-time challenges identified. Our approach is capable of addressing
real-time properties, however, the focus is on semantic attacks against the logic of the PLCs rather than
exploitation of timing behaviours.

Our work is most closely aligned with [14] who proposed analysing the internal state of PLCs for
safety and security monitoring, using existing network traffic, to identify semantic attacks. Our work
differs by the choice of formal language; we propose the use of ITL and Tempura and low cost
micro-controller deployment. This is advantageous, as the formal semantics can be used to simulate
and analyse the formal specification and thus reason about boundary cases.

One technique of generating such monitors is by translating the correctness property into an
automaton, either deterministic [23], non-deterministic [24,25], with counters [24] or alternating [26–28].
The construction of a non-deterministic, with counters or alternating automaton for a correctness
property reduces the size and speeds up the monitoring performance. The execution of the system
is then fed to the automaton corresponding to the correctness property. If the automaton accepts the
execution then this execution satisfies the correctness property. There are several ways of defining
this acceptance condition. Via the standard final state definition one needs to consider the whole
execution to determine whether the automaton accepts or not. This can be relaxed via the introduction
of unconditionally accepting and unconditionally non-accepting states and constructing the complement
automaton for the correctness property [24] then in certain cases one does not need to consider the



Electronics 2015, 4 1000

whole execution. Our approach is based on rewriting and reduction steps. The specification is rewritten
into a form that specifies the current state of system and the behaviour from the next state onward.
The underlying Tempura engine that was adapted to run on Arduino technology rewrites a formula in
checking that the current state of the system conforms to the specification before reducing the formula
to the future part, in effect advancing to the next state. Concrete details and a more theoretical treatment
can be found in [29]. This approach is shared with a number of other works that are based on rewrite
systems [29–33]. The correctness property is first rewritten into a normal form and the rewrite system
is used to constantly rewrite the property as one checks the execution of the system. The rules in this
rewrite systems are such that one part deals with what should hold now (current state) and another part
with what should hold in the next state. The part what should hold now is used to check the current in
the execution while the other part is used to rewrite the property.

A third technique of generating a monitor is by rewriting the correctness property into a dynamic
programming algorithm [30,34]. It is a compiled version of the rewrite system with optimisations.
The execution of the system is then fed to this algorithm.

The difference between the techniques described above and our technique is that we rewrite
the execution of the system into a normal form instead of manipulating the correctness property.
This technique is thus orthogonal to the techniques of generating a monitor corresponding to a
correctness property.

3. Background

ICS and SCADA systems have been common in industry and manufacturing since the 1940’s [4].
They are found in many diverse industries, such as transportation, manufacturing, chemical processing,
power generation and water processing making them a key component in a countries CNI.

Historically, ICS deployments were electro-mechanical relays and switches that required direct
operator control. The operator received feedback on the status of a process through analogue dials and
similar methods of feedback. In the 1960’s [4]. as technology progressed, mini-computers were used
to perform the decision making and control of the systems, though these systems were very centralised,
relying on mainframe computers for control and data acquisition functions.

The next development of ICS systems was in the 1990’s where micro-controllers are integrated into
the control system. The use of general purpose operating systems, and open standards such as LAN
protocols has allowed formerly centralised systems to become more distributed, allowing control to be
located closer to the field devices [4].

Modern SCADA architectures are composed of three segments: the corporate network segment,
SCADA network segment and field devices segment [4]. Alternative architectural frameworks describing
common SCADA infrastructures are eg. found in the Purdue model [35] or its variants [36].

3.1. Corporate Network Segment

The Corporate network segment is a common ICT infrastructure that supports the general business
functions of the organisation. In here are administrative services such as accounting, communications,
email and marketing located. This segment is normally connected to the internet to perform its functions.



Electronics 2015, 4 1001

Traditionally air-gapped from the SCADA network segment today the requirements of business to have
full visibility of real-time production lead to a corrosion of these airgaps. This segment is also often
connected to external providers for services such as cloud storage of hosting. As a consequence this
segment shares much of the attack surface with general IT networks that are the traditional target of
cyber attacks through phishing, web-vulnerabilities and generic malware infections.

3.2. SCADA Network Segment

This segment is used by operators to interact with field devices. It typically contains Human Machine
Interfaces (HMI) that allow operators to control field devices such as PLCs and RTUs and maintain
general control of the system through Supervisory Control and Data Acquisition (SCADA) functions.
The HMIs allow operators to monitor and change values of the field devices that lead to physical changes
in the system, such as the change of motor speeds. Software-based input validation is typically deployed
to prevent operator errors to avoid accidental or malicious (sabotage) changes that would endanger the
plant and potentially lead to the loss of human life. To acquire and store data Historian systems are used
that provide an audit trail of operational data. This database may contain information from thousands of
devices and needs to be capable of processing and storing these in real-time.

3.3. Field Devices

This segment is comprised of Programmable Logic Controllers (PLCs), Remote Terminal Units
(RTUs) and Intelligent Electronic Devices (IEDs). PLCs are small computers that are able to automate
control decisions through a control logic, commonly described in terms of Ladder logic, although other
languages exists and are often proprietary to the vendor. The PLCs are fed data by RTUs that monitor and
control the IEDs. The IEDs are sensors and actuators that are implemented on microprocessor devices,
examples are motors and circuit-breakers. The RTUs and PLCs can control some of the ICS through the
IEDs directly, e.g., by regulating valves or activating switches. The control decisions are taken on the
basis of either sensor-data, or as a result of direct operator input from the control centre. The resulting
control action then flows to the IED to make the change to the system. These components are physically
connected by Ethernet, fibre-optic cabling, telephone lines, or wireless technologies such as microwave,
satellite or radio, depending on their physical distribution.

Figure 2 shows a typical SCADA environment and presents the segments, machines and devices that
have been discussed.

As ICS are today relying on general purpose operating systems, such as Windows, and common
LAN and WAN technology, they are almost indistinguishable from common IT systems. One may
consider that if this is the case then the issues of cyber security can be discounted, as many of the
common problems that plagued IT systems over the last 20 years have been addressed by the IT industry.
However, it would be a dangerous conclusion to arrive at, as the subtle differences between what could
be dubbed Operational Technology and traditional IT mean that securing an OT network is not the same
as securing an IT network [38].



Electronics 2015, 4 1002

Figure 2. Typical SCADA System Architecture [37].

In this paper we are considering mainly the monitoring of Operational Technology such as field
devices where the use of IDS technologies and internal protection mechanisms such as AV is not feasible
due to the lack of computation power, or not well established.

4. Runtime Monitoring Interval Temporal Logic

Interval Temporal Logic (ITL) is a flexible notation for both propositional and first-order reasoning
about periods of time found in descriptions of hardware and software systems [29]. Unlike most temporal
logics, ITL can handle both sequential and parallel composition and offers powerful and extensible
specification and proof techniques for reasoning about properties involving safety, liveness and projected
time. Timing constraints are expressible and furthermore most imperative programming constructs
can be viewed as formulas in a slightly modified version of ITL. Tempura provides an executable
framework for developing and experimenting with suitable ITL specifications. In addition, ITL and
its mature executable subset Tempura have been extensively used to specify the properties of real-time
systems where the primitive circuits can directly be represented by a set of simple temporal formulae.
In addition, various researchers have applied Tempura to hardware simulation [39] and other areas where
timing is important.

4.1. Syntax and Informal Semantics

In this section we revisit the standard semantics of Interval Temporal Logic [15] (albeit restricted
to the finite case) ITL is the underlying formalism of the AnaTempura Runtime Verification
Framework [29] which uses an executable subset of ITL called Tempura developed by [40,41].

The key notion of ITL is an interval. An interval σ is considered to be a non-empty, finite sequence
of states σ0, σ1 . . . , σn, where a state σi is a mapping from the set of variables Var to the set of values
Val . The length |σ| is equal to n.



Electronics 2015, 4 1003

4.1.1. Syntax

The syntax of ITL is defined below, where µ is an integer value, v is a variable, g is a function symbol
and p is a predicate symbol.

Expressions:
e ::= µ | v | g(e1, . . . , en) | ©v | fin v

Formulae:
f ::= p(e1, . . . , en) | ¬ f | f1 ∧ f2 | ∀v r f |skip | f1 ; f2 | f ∗

4.1.2. Informal Semantics

The informal semantics of the most interesting constructs are as follows:

• skip: unit interval (length 1, i.e., an interval of two states).
• f1 ; f2: holds if the interval can be decomposed (“chopped”) into a prefix and suffix interval, such

that f1 holds over the prefix and f2 over the suffix. Note the last state of the interval over which f1
holds is shared with the interval over which f2 holds.

. . . . . .
σ0 σk σ|σ|

f1 f2

• f ∗: holds if the interval is decomposable into a finite number of intervals such that for each of
them f holds.

. . . . . . . . . . . .
σ0 σi σj σk σ|σ|

f f f

• ©v: value of v in the next state when evaluated on an interval of length at least one, otherwise an
arbitrary value.
• fin v: value of v in the final state when evaluated on a finite interval, otherwise an arbitrary value.

ITL is well suited to specify sets of intervals that describe the components behaviour. In effect an
ITL formula will specify the acceptable behaviour of a device in the control system. Our approach is
monitoring the behaviour of these components and verify that the behaviour exhibited by the component
(the current trace) satisfies its specification in form of an ITL formula. These properties can express
safety properties of the system, e.g., the following formula:

�(©x = x)

would denote that x remains constant over the interval. The formula:

�(©x ≥ x) ∧ halt (interrupt) ; �(©x = x)

would denote that the value of x is monotonic increasing until the point at which an interrupt
occurs. Subsequently the value of x remains stable as in the first example. In the above examples
the formula �f =̂ ¬♦¬ f =̂ ¬(true ; (¬ f)) denotes that f holds for all suffix intervals;
the formula halt (w) =̂ �(empty ≡ w) denotes that the interval ends with the first occurrence of
w. The concatenation of the two specifications using ; shows the compositional nature of these
specifications. For readability we introduce a number of derived constructs that are used in Section 4.2.



Electronics 2015, 4 1004

4.1.3. Derived Constructs

The following lists some of the derived constructs used in the remainder of this paper. The Boolean
operators ∨ (or) and ⊃ (implication) are derived as usual.

©f =̂ skip ; f next f , f holds from the next state. Example: ©(X = 1): Any interval such that the
value of X in the second state is 1 and the length of that interval is at least 1.

more =̂ ©true non-empty interval, i.e., any interval of length at least one.
empty =̂ ¬more interval, i.e., any interval of length zero (just one state).
♦f =̂ true ; f sometimes f , i.e., any interval such that f holds over a suffix of that interval. Example:

♦X 6= 1: Any interval such that there exists a state in which X is not equal to 1.
�f =̂ ¬♦¬ f always f , i.e., any interval such that f holds for all suffixes of that interval. Example:

�(X = 1): Any interval such that the value of X is equal to 1 in all states of that interval.
fin f =̂ �(empty ⊃ f) final state, i.e., any interval such that f holds in the final state of that interval.
∃v r f =̂ ¬∀v r ¬ f Existential quantification.

fn =̂


false if n < 0

empty if n = 0

f ; fn−1 if n > 0

f repeats n times.

len(e) =̂ skipe holds if the length of the interval is e.

4.1.4. Formal Semantics

Let Z stand for the set of integer numbers, and Var the set of integer variables. We denote by E → F

the set of all total functions from E to F . We assume that a total function ĝ ∈ Zn → Z is associated
with each n-ary function symbol g, and a total function p̂ ∈ Zn → {tt, ff} is associated with each
n-ary relation symbol p. Function symbols, e.g., + and −, and relation symbols, e.g., ≥ and =, have
their standard meanings. In particular, the truth-values tt and ff are associated with true and false,
respectively.

An interval is a finite nonempty sequence of states σ =̂ σ0 . . . σn, where each state σi is a value
assignment which associates an integer number with each variable:

σi ∈ Σ =̂ Var → Z

We denote by Σ+ the sets of finite intervals. For any i, j ∈ N and an interval σ such that i ≤ j ≤ |σ|,
we write σ[i, j] to denote the subinterval σi . . . σj of σ. Given two intervals σ, σ′ ∈ Σ+, we write σ ∼v σ′
if the intervals σ and σ′ are identical with the possible exception of their mappings for the variable v,
i.e., |σ| = |σ′| and v 6= v′ ⇒ σi(v

′) = σ′i(v
′) for i = 0, 1, . . . , |σ|. The semantics of an expression e is

a function
E [[e]] ∈ Σ+ → Z



Electronics 2015, 4 1005

defined inductively on the structure of expressions by

E [[v]](σ) = σ0(v)

E [[g(e1, . . . , en)]](σ) = ĝ(E [[e1]](σ), . . . , E [[en]](σ))

E [[©v]](σ) =

σ1(v) if |σ| > 0

χ(Z) otherwise

E [[ fin v]](σ) = σ|σ|(v)

where χ denotes a choice function which maps any nonempty set to some element in the set.
The semantics of a formula f is a function

M[[f ]] ∈ Σ+ → {tt, ff}

defined inductively on the structure of formulae below, where the following abbreviation is used:

σ |= f =̂ M[[f ]](σ) = tt

σ 6|= f =̂ M[[f ]](σ) = ff

The definition ofM[[f ]] is

σ |= p(e1, . . . , en) iff p̂(E [[e1]](σ), . . . , E [[en]](σ))

σ |= ¬ f iff σ 6|= f

σ |= f1 ∧ f2 iff σ |= f1 and σ |= f2

σ |= ∀v r f iff σ′ |= f, for all σ′ such that σ ∼v σ′

σ |= skip iff |σ| = 1

σ |= f1 ; f2 iff σ[0, k] |= f1 and σ[k, |σ|] |= f2,

for some k ∈ N, 0 ≤ k ≤ |σ|)
σ |= f ∗ iff exist l0, . . . , ln ∈ N such that:

l0 = 0 ≤ . . . ≤ ln = |σ|
and σ[li, li+1] |= f, 0 ≤ i < n

ITL has got a sound and compositional proof system. Interested readers are referred to [15,42] for the
proof system and further details about the logic. We have implemented a prototype of this system on a
Arduino micro-controller that is able to recognise behaviour deviation due to fault or malicious change
of the internal logic, through the rewriting of such formulae.

4.2. Approach

To validate our approach we used embedded micro-controllers (Arduino) boards with Ethernet
compatibility as shown in Figure 3. Our SCADA laboratory contains a number of popular PLCs from
Siemens (Berlin, Germany) and ABB (Zurich, Switzerland). We chose the Siemens S7-1200 as it
is widely used and supported (shown in Figure 3). Siemens S7-1200 controllers use the proprietary



Electronics 2015, 4 1006

S7 communications protocol. An existing library, Snap7 and Settimino was selected to interface with
the PLCs and minimal modification was required.

Figure 3. (a) Arudino microcontroller and (b) Siemens S7-1200 PLC.

To explain our approach in detail we provide first the semantic framework for specifying PLC Ladder
Logic and then proceed to the concrete example of a PLC program.

4.2.1. Semantics of PLC Ladder Logic

To use Tempura to monitor control systems components such as PLC, we needed to define the
semantics of their programming. The following presents the ITL/Tempura definition of a Siemens
S7-1200 PLC ladder logic. Tempura is a restricted (executable) subset of ITL [40]. In the following
we will provide the definition of the Tempura constructs using ITL as they occur in the Semantics of the
PLC Ladder Logic, where this is not immediately obvious.

LAD Contacts

/* In --| |-- */

define NO(In) = {if In=0 then 0 else 1}.

/* In --|/|-- */

define NC(In) = {if In=1 then 0 else 1}.

/* --| NOT |--- */

define NOT(In) = {if In = 1 then 0 else 1}.

And, Or and Xor

/* In1 In2

--| |----| |-- AND(In1,In2) */

define AND(In1,In2) = {if (In1 =1 and In2=1) then 1 else 0}.

define AND_IL(In) = {if (forall i<|In| : In[i]=1) then 1 else 0}.

/* In1

|--| |--|----- Or(In1,In2)

| |

| In2 |

|--| |--| */

define OR(In1,In2) = {if (In1=0 and In2=0) then 0 else 1}.

define OR_IL(In) = {if (forall i<|In| : In[i]=0) then 0 else 1}.

define XOR(In1,In2) = {

if (In1=0 and In2=1) or (In1=1 and In2=0) then 1 else 0}.

define XOR_IL(In) =



Electronics 2015, 4 1007

{if |In| < 2

then { format("Error: at least two inputs\n") }

else {if |In| = 2

then { XOR(In[0],In[1]) }

else { XOR([In[0],XOR_IL(In[1..|In|])]) } }

}.

And, Or and Xor can be applied to lists of inputs (_IL). In Tempura lists are dereferenced using the
commonly used l[i] to access the ith element of the list. The length of a list is denoted by |l|. The
bounded quantification forall i<|In| : f is defined as ∀i r i < |In| ⊃ f .

Output Coil

/* Out

--( )-- */

define COIL(In,Out) = { Out := In }.

/* Out

--(/)-- */

define NCOIL(In,Out) = { Out := NOT(In) }.

The Tempura operator Out := In (unit assignment) is defined as ©Out = In.

Set and Reset

/* Out

--(S)-- */

define SET(In, Out) = { Out := if In=1 then 1 else Out}.

/* Out

--(R)-- */

define RESET(In, Out) = { Out := if In=1 then 0 else Out}.

Latches

/* Set-dominant and Reset-dominant bit latches */

/* Out

---------

| RS |

-|R |

| Q|-

-|S1 |

--------- */

define RS_LATCH(R,S1,Out,Q) = {

Q is Out and

Out := if (S1=0 and R=0) then Out

else

if (S1=0 and R=1) then 0

else

if (S1=1 and R=0) then 1

else

if (S1=1 and R=1) then 1



Electronics 2015, 4 1008

}.

/* Out

---------

| SR |

-|S |

| Q|-

-|R1 |

--------- */

define SR_LATCH(S,R1,Out,Q) = {

Q is Out and

Out := if (S=0 and R1=0) then Out

else

if (S=0 and R1=1) then 0

else

if (S=1 and R1=0) then 1

else

if (S=1 and R1=1) then 0

}.

The Tempura construct Q is Out is defined as �(Q = Out).

Edge Instructions

/* In

--|P|--

M */

define POS_EDGE_ADDRESS(M,In) = { if M=0 and In=1 then 1 else 0}.

/* In

--|N|--

M */

define NEG_EDGE_ADDRESS(M,In) = { if M=1 and In=0 then 1 else 0}.

Edge Instructions with Coil

/* Out

--(P)--

M */

define POS_Edge_RLO(In,M,Out) = {

M:=In and

Out:= if M=0 and In=1 then 1 else 0

}.

/* Out

--(N)--

M */

define NEG_EDGE_RLO(In,M,Out) = {

M:=In and

Out:= if M=1 and In=0 then 1 else 0

}.



Electronics 2015, 4 1009

Triggers

/* ---------------

| P_TRIG |

-| CLK Q|-

---------------

M */

define P_TRIG(CLK,M,Q) = {

M:=CLK and

Q:= if M=0 and CLK=1 then 1 else 0

}.

/* ---------------

| N_TRIG |

-| CLK Q|-

---------------

M */

define N_TRIG(CLK,M,Q) = {

M:=CLK and

Q:= if M=1 and CLK=0 then 1 else 0

}.

These constructs are defined in the s7-1200-basic.t file in the latest Tempura distribution. http:
//antonio-cau.co.uk/ITL/software/tempura-3.2-preview2.tar.gz. The following is using these building
blocks to define the ladder logic of the example PLC program we use in this paper.

4.2.2. Example PLC Program

This program has a single external input PB and four outputs PL0-3 that are connected to the following
ladder. These were executed on a Siemens S7-1200 PLC in our experiment.

/* PL3 PL0

|---| |-----( )---|

| |

| PL2 PL1 |

|---| |-----( )---|

| |

| PB PL2 |

|---| |-----( )---|

| |

| PL1 PL3 |

|---| |-----( )---|

| | */

define plc(PB,PL) = {

/* let’s output the value of PB and PL in each state */

always ( format("PB=%d, PL=%t\n",PB,PL) ) and

{ /* the first rung */

{ COIL(NO(PL[3]),PL[0]) and skip and no_ch(PB,PL[1],PL[2],PL[3]) };

/* the second rung */

{ COIL(NO(PL[2]),PL[1]) and skip and no_ch(PB,PL[0],PL[2],PL[3]) };

/* the third rung */

http://antonio-cau.co.uk/ITL/software/tempura-3.2-preview2.tar.gz
http://antonio-cau.co.uk/ITL/software/tempura-3.2-preview2.tar.gz


Electronics 2015, 4 1010

{ COIL(NO(PB),PL[2]) and skip and no_ch(PB,PL[0],PL[1],PL[3]) };

/* the fourth rung */

{ COIL(NO(PL[1]),PL[3]) and skip and no_ch(PB,PL[0],PL[1],PL[2]) }

}

}.

Here skip is a unit interval. The abbreviation no_ch(...) means that all variables in ... remain
unchanged during the interval. The “chop” (;) is a crucial element of the specification and the main
motivator for using ITL. Rungs need to be evaluated sequentially, which makes the compositional
definition using “chop” natural.

To test our RTV approach we launched two exploits against the PLC. First we used an existing
publicly available exploit that sets the PLC run mode to OFF. Tempura detects this as the PLC does
not enter the next expected state in the duration of time expected. This type of exploit could be trivially
detected by an existing monitoring system such as IDS and presents a proof of concept for our approach.

The second exploit is more advanced; we maliciously uploaded new program code that is slightly
different to the original code, in effect changing the drill activity on a Fisher-Technik assembly line that
was used to simulate our real production system. This simulates a assembly line in which a drill is used
on work-products as the progress on the conveyor belt. In this case we are violating one of the safety
precautions and simulate drilling even if no product is placed. This is detected by Tempura as the state
transition does not match the Tempura formula that was specified for the PLC. This semantic attack
might not be detected by an existing system as the signature matches normal behaviour and instead
breaks operational safety rules.

4.3. Results

The monitoring technique captures a snapshot of the current state of the PLC, as shown in Table 1.
Values for Markers, Digital Inputs and Outputs, Counters and Timers are captured. Historic data is stored
on an SD card for backup and offline analysis through a sliding window. This is facilitating forensic
analysis after a critical breach an can provide additional information that is not normally reported to
or stored by Historian databases, as it directly relates to the action taken by the controller rather than
monitoring and archiving sensor data. Table 1 shows an example of the data trace (Run) that is captured
by the Arduino device and fed into the runtime-monitoring software.

Our initial prototype [17] sent these data to a Tempura programme on an x86 Linux workstation.
We implemented a modified version of Tempura to execute directly on the Arduino Yun using MIPS
and the Atheros 71XX toolchain with the Arduino Yun now being able to verify properties without the
need of an external toolchain. This means that the Arduino can now be deployed to sit alongside the
system component it is monitoring, such as the PLC, not requiring a separate high power computing
device. A remaining limitation of the current prototype is that it actively receives data from the PLC
over its Profinet interface. This can be overcome with alternative passive monitoring techniques such
as used in [14]. However, our current approach is feasible as the computation times for the ladder logic
in Section 4.2.2 are within the typical scan-cycle of PLCs (1–300ms). Exemplar execution times are
shown in Figure 4 where the execution of our Arduino based implementation and our previous work [17]
are compared.



Electronics 2015, 4 1011

Table 1. Sensor captures PLC state transitions

State 1 Base State

MK: 00 00 00 00 00 00 00 00 00 00 00 00 00 00
DI: 01 00 00 00 00 00 00 00 00 00 00 00 00 00
DO: 04 00 00 00 00 00 00 00 00 00 00 00 00 00
CT: 04 00 00 00 00 00 00 00 00 00 00 00 00 00
TI: 04 00 00 00 00 00 00 00 00 00 00 00 00 00

State 2 PB pushed and PL2 set
MK: 00 00 00 00 00 00 00 00 00 00 00 00 00 00
DI: 01 00 00 00 00 00 00 00 00 00 00 00 00 00
DO: 06 00 00 00 00 00 00 00 00 00 00 00 00 00
CT: 0F 00 00 00 00 00 00 00 00 00 00 00 00 00
TI: 0F 00 00 00 00 00 00 00 00 00 00 00 00 00

State 3 PB pushed and PL3,2,1 set
MK: 00 00 00 00 00 00 00 00 00 00 00 00 00 00
DI: 01 00 00 00 00 00 00 00 00 00 00 00 00 00
DO: 0E 00 00 00 00 00 00 00 00 00 00 00 00 00
CT: 0F 00 00 00 00 00 00 00 00 00 00 00 00 00
TI: 0F 00 00 00 00 00 00 00 00 00 00 00 00 00

State 4 PB pushed and PL3,2,1,0 set
MK: 00 00 00 00 00 00 00 00 00 00 00 00 00 00
DI: 01 00 00 00 00 00 00 00 00 00 00 00 00 00
DO: 0F 00 00 00 00 00 00 00 00 00 00 00 00 00
CT: 0F 00 00 00 00 00 00 00 00 00 00 00 00 00
TI: 0F 00 00 00 00 00 00 00 00 00 00 00 00 00

State 5 PB released and PL3,1,0 set
MK: 00 00 00 00 00 00 00 00 00 00 00 00 00 00
DI: 00 00 00 00 00 00 00 00 00 00 00 00 00 00
DO: 0B 00 00 00 00 00 00 00 00 00 00 00 00 00
CT: 0F 00 00 00 00 00 00 00 00 00 00 00 00 00
TI: 0F 00 00 00 00 00 00 00 00 00 00 00 00 00

1

3

5

7

9

11

13

15

17

19

21

23

25
0 10 20 30 40

Arduino Workstation

Figure 4. Comparison of execution times.



Electronics 2015, 4 1012

In our experiment we aimed to establish the effect that the number of inputs and outputs has on a
typical ladder (using AND). The resulting ladder structure is depicted in Figure 5.

Electronics 2015, 4 18

shown in Figure 4 where the execution of our Arduino based implementation and our previous work [17]
are compared.

1

3

5

7

9

11

13

15

17

19

21

23

25
0 10 20 30 40

Arduino Workstation

Figure 4. Comparison of execution times

In our experiment we aimed to establish the effect that the number of inputs and outputs has on a
typical ladder (using AND). The resulting ladder structure is depicted in Figure 5.

In0.0 In|In|.8 Out0.0

|---| |---| | ... | |-----------( )-------|

| | |

| In0.0 In|In|.8 Out0.1 |

|---| |---| | ... | |-----------( )-------|

| | |

| In0.0 In|In|.8 Out0.2 |

|---| |---| | ... | |-----------( )-------|

| | |

| In0.0 In|In|.8 Out0.3 |

|---| |---| | ... | |-----------( )-------|

| | |

...

| In0.0 In|In|.8 Out|Out|.8|

Figure 5. Ladder logic for experiment

The experiment increases the number of inputs and outputs in exponential steps as shown in Table 2.
The initial run (1) has 8 inputs (8 ∗ 20) and 8 outputs (8 ∗ 20); the second run has 8 inputs and 16 outputs
(8 ∗ 21); increasing in powers of 2 until run 5 has 128 (8 ∗ 24) outputs. Each run continues over
25 scan-cycles of the PLC to get a view of the performance behaviours over time.

Figure 5. Ladder logic for experiment.

The experiment increases the number of inputs and outputs in exponential steps as shown in Table 2.
The initial run (1) has 8 inputs (8∗20) and 8 outputs (8∗20); the second run has 8 inputs and 16 outputs (8∗
21); increasing in powers of 2 until run 5 has 128 (8∗24) outputs. Each run continues over 25 scan-cycles
of the PLC to get a view of the performance behaviours over time.

Table 2. Arduino vs. Workstation Execution times.

Arduino vs Workstation

Run (25 cycles) width rungs Arduino (in s) Workstation (in s) Arduino Cycle Time
1 8 8 1.098652 0.284879 0.04394608
2 8 16 1.383761 0.289258 0.05535044
3 8 32 2.474498 0.321464 0.09897992
4 8 64 5.983378 0.411479 0.23933512
5 8 128 18.352708 0.652042 0.73410832
6 16 8 1.214912 0.288827 0.04859648
7 16 16 1.561846 0.292534 0.06247384
8 16 32 2.702835 0.320951 0.1081134
9 16 64 6.376643 0.418389 0.25506572

10 16 128 19.232659 0.652068 0.76930636
11 32 8 1.394678 0.287716 0.05578712
12 32 16 1.870166 0.302580 0.07480664
13 32 32 3.308286 0.345304 0.13233144
14 32 64 7.254494 0.439429 0.29017976
15 32 128 20.950088 0.695534 0.83800352
16 64 8 1.828162 0.300098 0.07312648
17 64 16 2.520783 0.320074 0.10083132
18 64 32 4.374399 0.379231 0.17497596
19 64 64 9.367750 0.491460 0.374710
20 64 128 24.755715 0.785922 0.9902286
21 128 8 2.755121 0.343993 0.11020484
22 128 16 3.954991 0.385808 0.15819964
23 128 32 6.752542 0.451242 0.27010168
24 128 64 13.664713 0.592664 0.54658852
25 128 128 33.034423 0.957798 1.32137692

Run 6 then continues to increase the number of inputs to cycles through the number of outputs
analogous to the first sequence (run 1-5), but now with the number of inputs remaining at 16 (8 ∗ 21).
This scheme continues until the last run (25) where the ladder contains 128 inputs and 128 outputs
(8 ∗ 24).



Electronics 2015, 4 1013

This scheme was chosen to identify the performance behaviour corresponding to the size of the ladder
in terms of width and number of rungs. Figure 4 clearly shows some peaks for the Arduino, namely in
runs (5,10,15,20,25) during which the Tempura engine performs an internal garbage collection. This is
the effect that can be seen with the default Tempura compilation settings. The current version of Tempura
allows to restrict the running of the garbage collector to specific times to better control this effect; an
alternative is to analyse the memory usage of the concrete ladder beforehand and adjust the memory
allocation during compile-time.

Table 2 shows the concrete execution times of this experiment including the ladder width and number
of rungs. Whilst the Arduino is performing significantly (Factor 10) worse than the original workstation
solution [17], we consider a cycle time of 300 ms or less to mean that the solution is applicable.
The advantage of the native arduino approach is the reduced cost and improved deployment factor that
was one of our main aims of investigation. This means that this is only limiting the application where
ladders are exceeding 64 inputs and 64 outputs which are not often encountered.

From a functional point of view the results of both the Arduino and the Linux implementation are
identical in all test cases we have run (including other examples from the current Tempura distribution,
such as the large scale EP3 example). This means that when Tempura notices that the output does not
match the formal description, an alert is raised and an audible warning sound emits from the Arduino
micro-controller. In a real deployment this of course could be enhanced by sending a text message to a
Factory Manager or alerting the security operations centre (SOC) for the organisation.

This approach means that any update or new deployment of ICS components requires to modify the
specification of the attached runtime monitoring device. This requires the integration of the mechanism
into existing configuration management processes of the plant. The applications of this technology are
therefore wider than just the monitoring of safety properties for enhancing the situational awareness
and detectability of semantic level cyber attacks. The runtime monitors also play a vital role in the
management of the evolution of the system in flagging up adhoc changes to programme code that do not
satisfy previously defined component specification. This is a valuable addition to pre-deployment tests
and provides additional assurances on the functioning of the system.

Whilst the approach does not prevent cyber attacks, it is a critical component of any incident response
support to identify current stages and compromised nodes of a system under attack. The presented
run-time monitoring system is capable of providing this situational awareness. An obvious risk is
that both the Arduino and the system are compromised by an high capability adversary. Whilst this
cannot be completely ruled out, we seeing the deployment of the Arduino based monitors in isolation
of the network (ie, the arduino is not accepting input from the control network) through separation of
networking channels. Whilst this does not offer complete protection, it significantly raises the required
resources to launch an undetected semantic attack against a ICS component.

5. Conclusions

We presented a run-time monitoring framework that is deployed on Arduino Yun devices and based on
a formal rewriting mechanisms that establishes whether the behaviour of a ICS component complies with
a given specification. This specification is build upon the safety case for the system and distinguishes



Electronics 2015, 4 1014

itself by the compositional nature that allows to reason about the parts of the monitoring specification
and infer properties of the whole. We have provided the motivation and implementation of the existing
Tempura framework based on Arduino technology and developed a prototype that is demonstrating the
feasibility of the approach. Our experiments have demonstrated that this approach to safety and security
monitoring in ICS environments is feasible. However, this approach is by no means a silver-bullet
solution and should be incorporated as part of a multilayer security architecture and should be seen as
an additional capability and safeguard to protect the system against semantic attacks. To some extend
this technology also makes insider attacks more difficult to achieve, as a remote access to an engineering
workstation is no longer sufficient to update the control logic as part of a semantic attack. The attacker
in addition must gain access to the monitor and replace the monitor in conjunction with the code update.
As these are separate channels and the monitor requires physical access or access to a different network
this is significantly harder to achieve without raising an alarm through the monitor when compared to
systems that do not employ run-time monitors.

Future work should validate the approach alongside other techniques and assess the added resilience
to semantic attacks and measure the security benefit of deploying such a solution. This is currently not
feasible due to the lack of adequate metrics to measure the effectiveness in a realistic setting, which we
are actively investigating. Other work we are pursuing is the distributed monitoring of these systems and
allowing monitors to share their activity, with the view of including sleep-wake cycles to further reduce
the surface for an attacker to identify and side-step the monitoring technology.

The approach presented is a step towards the more security aware management of CNI and their ICS.
Whilst our technology is targeting the popular Siemens S7-1200 series of PLC, the approach is clearly
transferable to other Vendor and System types. The monitoring devices used in our approach are low
cost, simple to configure, deploy and monitor, they could be a disruptive technology to monitor safety
and security properties in ICS environments.

Author Contributions

Helge Janicke and Andrew Nicholson have undertaken the initial research and developed the
presented RTV framework; Antonio Cau and Stuart Webber worked on the Tempura port to the Arduino
platform and evaluated the performance of the approach.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Abrams, M.; Weiss, J. Malicious Control System Cyber Security Attack Case Study: Maroochy
Water Services, Australia; The MITRE Corporation: McLean, VA, USA, 2008.

2. Langner, R. Stuxnet: Dissecting a cyberwarfare weapon. IEEE Secur. Priv. 2011, 9, 49–51.
3. Zetter, K. A Cyberattack Has Caused Confirmed Physical Damage for the Second Time Ever. 2015.

Available online: http://www.wired.com/2015/01/german-steel-mill-hack-destruction/ (accessed
on 1 May 2015).

http://www.wired.com/2015/01/german-steel-mill-hack-destruction/


Electronics 2015, 4 1015

4. Nicholson, A.; Webber, S.; Dyer, S.; Patel, T.; Janicke, H. SCADA security in the light of
Cyber-Warfare. Comput. Secur. 2012, 31, 418–436.

5. Radvanovsky, B.; Brodsky, J. InformationWeek.com. 2013. Available online: http://www.
informationweek.co.uk/government/security/thousands-of-industrial-control-systems/240146091
(accessed on 2 May 2013).

6. Bodenheim, R.; Butts, J.; Dunlap, S.; Mullins, B. Evaluation of the ability of the Shodan search
engine to identify Internet-facing industrial control devices. Int. J. Crit. Infrastruct. Prot. 2014,
7, 114–123.

7. Knowles, W.; Prince, D.; Hutchison, D.; Disso, J.F.P.; Jones, K. A survey of cyber security
management in industrial control systems. Int. J. Crit. Infrastruct. Prot. 2015, 9, 52–80.

8. Zetter, K. Hoping to Teach a Lesson, Researchers Release Exploits for Critical Infrastructure
Software; 2012. Available online: http://www.wired.com/2012/01/scada-exploits/ (accessed on 5
April 2013).

9. ICS-CERT. ICS-CERT Monitor Newsletter. 2015. Available online: https://ics-cert.us-cert.gov/si
tes/default/files/Monitors/ICS-CERT_Monitor_Sep2014-Feb2015.pdf (accessed on 3 September
2015).

10. Euractiv. EU, US go separate ways on cybersecurity; 2013. Available online: http://www.euractiv.
com/specialreport-cybersecurity/eu-us-set-different-approach-cyb-news-518252 (accessed on 3
May 2013).

11. Her Majesty’s Government. A Strong Britain in an Age of Uncertainty: The National Security
Strategy; Her Majesty’s Government: London, UK, 2010.

12. Zhu, B.; Sastry, S. SCADA—Specific intrusion detection/prevention systems: A survey and
taxonomy. In Proceedings of the 1st Workshop on Secure Control Systems (SCS), Stockholm,
Sweden, 12 April 2010.

13. Maglaras, L.A.; Jiang, J.; Cruz, T.J. Integrated OCSVM Mechanism for intrusion detection in
SCADA systems. Electron. Lett. 2014, 50, 1935–1936.

14. Hadziosmanovic, D.; Sommer, R.; Zambon, E.; Hartel, P. Through the Eye of the PLC: Towards
Semantic Security Monitoring for Industrial Control Systems; Technical Report; International
Computer Science Institute: Berkeley, CA, USA, 2013.

15. Cau, A.; Moszkowski, B.; Zedan, H. The ITL homepage; 2015. Available online: http://antonio-ca
u.co.uk/ITL/ (accessed on 15 October 2015).

16. Leucker, M.; Schallhart, C. A brief account of runtime verification. J. Logic Algebraic Program.
2009, 78, 293–303.

17. Nicholson, A.; Janicke, H.; Cau, A. Position Paper: Safety and Security Monitoring in ICS/SCADA
Systems. In Proceedings of the 2nd International Symposium on Industrial Control System and
SCADA Cyber Security Research (ICS-CSR’14), St Polten, Austria, 11–12 September 2014.

18. Yang, D.; Usynin, A.; Hines, J.W. Anomaly-based intrusion detection for SCADA systems.
In Proceedings of the 5th International Topical Meeting on Nuclear Plant Instrumentation,
Control and Human Machine Interface Technologies (NPIC&HMIT 05), Albuquerque, NM, USA,
12–16 November 2006; pp. 12–16.

http://www.informationweek.co.uk/governmen t/security/thousands-of-industrial-control -systems/240146091
http://www.informationweek.co.uk/governmen t/security/thousands-of-industrial-control -systems/240146091
http://www.wired.com/2012/01/scada-exploits/
http://www.euractiv.com/specialreport-cybe rsecurity/eu-us-set-different-approach-cyb -news-518252
http://www.euractiv.com/specialreport-cybe rsecurity/eu-us-set-different-approach-cyb -news-518252


Electronics 2015, 4 1016

19. Igure, V.M.; Laughter, S.A.; Williams, R.D. Security issues in SCADA networks. Comput. Secur.
2006, 25, 498–506.

20. Cheung, S.; Dutertre, B.; Fong, M.; Lindqvist, U.; Skinner, K.; Valdes, A. Using model-based
intrusion detection for SCADA networks. In Proceedings of the SCADA Security Scientific
Symposium, Miami, FL, USA, 23–25 June 2007; pp. 1–12.

21. McLaughlin, S.; McDaniel, P. SABOT: specification-based payload generation for programmable
logic controllers. In Proceedings of the 2012 ACM Conference on Computer And Communications
Security (ACM), Raleigh, NC, USA, 16–18 October 2012; pp. 439–449.

22. Mohan, S.; Bak, S.; Betti, E.; Yun, H.; Sha, L.; Caccamo, M. S3A: Secure System Simplex
Architecture for Enhanced Security of Cyber-Physical Systems; Cornel University: Ithaca, NY,
USA, 2012.

23. Gordon, M.; Hurd, J.; Slind, K. Executing the Formal Semantics of the Accellera Property
Specification Language by Mechanised Theorem Proving. In Correct Hardware Design and
Verification Methods; Lecture Notes in Computer Science; Springer: Berlin, Germany, 2003;
Volume 2860; pp. 200–215.

24. Gheorghita, S.V.; Grigore, R. Constructing checkers from PSL properties. In Proceedings of the
15th International Conference on Control Systems and Computer Science, Bucharest, Romania,
15 May 2005; pp. 757–762.

25. Boule, M.; Zilic, Z. Efficient Automata-Based Assertion-Checker Synthesis of SEREs for
Hardware Emulation. In Proceedings of the 2007 Asia and South Pacific Design Automation
Conference (ASP-DAC’07), Pacifico Yokohama, Japan, 23–26 January 2007; IEEE Computer
Society: Washington, DC, USA, 2007; pp. 324–329.

26. Finkbeiner, B.; Sipma, H. Checking Finite Traces Using Alternating Automata. Form. Methods
Syst. Des. 2004, 24, 101–127.

27. Jin, N.; Shen, C.; Chen, J.; Ni, T. Engineering of An Assertion-based PSLSimple-Verilog Dynamic
Verifier by Alternating Automata. Electron. Notes Theor. Comput. Sci. 2008, 207, 153–169.

28. Tabakov, D.; Vardi, M.Y. Optimized temporal monitors for SystemC. In Proceedings of the First
International Conference on Runtime Verification (RV’10), St. Julians, Malta, 1–4 November
2010; Springer-Verlag: Berlin, Germany, 2010; pp. 436–451.

29. Zhou, S.; Zedan, H.; Cau, A. Run-time analysis of time-critical systems. J. Syst. Arch. 2005, 51,
331–345.

30. Havelund, K.; Rosu, G. Efficient monitoring of safety properties. Int. J. Softw. Tools Technol. Transf.
2004, 6, 158–173.

31. Rosu, G.; Havelund, K. Rewriting-Based Techniques for Runtime Verification. Autom. Softw. Eng.
2005, 12, 151–197.

32. Barringer, H.; Rydeheard, D.E.; Havelund, K. Rule Systems for Run-time Monitoring: From Eagle
to RuleR. J. Logic. Comput. 2010, 20, 675–706.

33. Kristoffersen, K.J.; Pedersen, C.; Andersen, H.R. Runtime Verification of Timed LTL using
Disjunctive Normalized Equation Systems. Electronic Notes Theor. Comput. Sci. 2003, 89,
210–225.



Electronics 2015, 4 1017

34. Rosu, G.; Havelund, K. Synthesizing Dynamic Programming Algorithms From Linear Temporal
Logic Formulae; Technical Report; Automated Software Engineering Group, NASA Ames
Research Center: Mountain View, CA, USA, 2001.

35. Williams, T. The Purdue enterprise reference architectur. Comput. Ind. 1994, 24, 141–158.
36. United States Department of Homeland Security, U.D. Recommended Practice: Improving

Industrial Control Systems Cybersecurity with Defense-In-Depth Strategie; United States
Department of Homeland Security: Washington, DC, USA, 2009.

37. Pacific Northwest National Laboratory, U.S. Department of Energy. The Role of Authenticated
Communications for Electric Power Distribution; Pacific Northwest National Laboratory, U.S.
Department of Energy: Washington, DC, USA, 2006.

38. CPNI. Security for Industrial Control systems, Good practice guide. 2015. Available online:
https://www.cpni.gov.uk/Documents/Publications/2015/12-May-2015-SICS%20-%20Framework
%20Overview%20Final%20v1%202.pdf (accessed on 15 July 2015)

39. Cau, A.; Zedan, H.; Coleman, N.; Moszkowski, B.C. Using ITL and Tempura for large scale
specification and simulation. In Proceedings of the 4th Euromicro Workshop on Parallel and
Distributed Processing, Braga, Portugues, 24–26 January 1996.

40. Moszkowski, B. Executing Temporal Logic Programs; Cambridge University Press: Cambridge,
UK, 1986.

41. Hale, R.W.S. Programming in Temporal Logic. Ph.D. Thesis, The Trinity College, University of
Cambridge: Cambridge, UK, 1988.

42. Moszkowski, B. Compositional Reasoning Using Interval Temporal Logic and Tempura.
In Compositionality: The Significant Difference; Roever, W.P.D., Langmaack, H., Pnueli, A., Eds.;
Springer Verlag: Berlin, Germany, 1998; Volume 1486, pp. 439–464.

c© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).


	Introduction
	Related Work
	Background
	Corporate Network Segment
	SCADA Network Segment
	Field Devices

	Runtime Monitoring Interval Temporal Logic
	Syntax and Informal Semantics
	Syntax
	Informal Semantics
	Derived Constructs
	Formal Semantics

	Approach
	Semantics of PLC Ladder Logic
	Example PLC Program

	Results

	Conclusions

