i}% electronics @\py

Article

Parallel Simulation of Loosely Timed SystemC/TLM
Programs: Challenges Raised by an Industrial
Case Study "

Denis Becker 23*, Matthieu Moy %> and Jérome Cornet !

STMicroelectronics, F-38019 Grenoble, France; Jerome.Cornet@st.com

Univ. Grenoble Alpes, VERIMAG, F-38000 Grenoble, France; Matthieu.Moy@imag.fr

CNRS, VERIMAG, F-38000 Grenoble, France

* Correspondence: Denis.Becker@st.com; Tel.: +33-456-520-362

t This paper is an extended version of our paper published in the IEEE International Symposium on Rapid
System Prototyping (RSP) as Becker, D.; Moy, M.; Cornet, J. “Challenges for the Parallelization of
Loosely-Timed SystemC Programs”. RSP, October 2015. It also contains material presented at DUHDe
2016 (Workshop on Design Automation for Understanding Hardware Designs, without proceedings) as
“SycView: Visualize and Profile SystemC Simulations”.

@D N =

Academic Editors: Frédéric Rousseau, Gabriela Nicolescu, Amer Baghdadi and Mostafa Bassiouni
Received: 31 March 2016; Accepted: 10 May 2016; Published: 17 May 2016

Abstract: Transaction level models of systems-on-chip in SystemC are commonly used in the
industry to provide an early simulation environment. The SystemC standard imposes coroutine
semantics for the scheduling of simulated processes, to ensure determinism and reproducibility of
simulations. However, because of this, sequential implementations have, for a long time, been the
only option available, and still now the reference implementation is sequential. With the increasing
size and complexity of models, and the multiplication of computation cores on recent machines,
the parallelization of SystemC simulations is a major research concern. There have been several
proposals for SystemC parallelization, but most of them are limited to cycle-accurate models. In this
paper we focus on loosely timed models, which are commonly used in the industry. We present
an industrial context and show that, unfortunately, most of the existing approaches for SystemC
parallelization can fundamentally not apply in this context. We support this claim with a set of
measurements performed on a platform used in production at STMicroelectronics. This paper
surveys existing techniques, presents a visualization and profiling tool and identifies unsolved
challenges in the parallelization of SystemC models at transaction level.

Keywords: SystemC; TLM; hardware modeling; parallelization; simulation; loose timing

1. Introduction

The design of SoC (Systems-on-Chip) includes both hardware and software development. The
embedded software is dependent on the hardware interfaces, but the hardware design is the most
critical step of the flow, because modifying it is very costly. For this reason, a model of the hardware
has to be developed. TLM (Transaction Level Modeling) models are highly abstract and enable both
the ability to check hardware functionality in terms of data and control exchanges and to debug the
embedded software before the detailed microarchitecture is available. Within TLM, multiple coding
styles exist, depending on the level of detail needed. If the purpose is to have the earliest and fastest
opportunity to run a transaction-accurate simulation of the hardware, for example in the case of a
non-critical SoC, then LT (Loosely Timed) style is a relevant choice. Indeed, a TLM/LT simulation
runs orders of magnitude faster than an RTL (Register Transfer Level) one.

Electronics 2016, 5, 22; d0i:10.3390/ electronics5020022 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
http://www.mdpi.com/journal/electronics

Electronics 2016, 5, 22 2 of 20

SystemC is a C++ hardware modeling library which enables TLM, and also an IEEE standard.
Since hardware systems are intrinsically parallel systems, the API offered by SystemC supports
parallel semantics. The hardware behavior is modeled by SystemC threads and methods. They are
executed by a scheduler, which guarantees that the order of their execution respects the constraints
specified in the model. According to the SystemC standard [1], a scheduler must behave as if it
was implementing coroutine semantics. This means that, for each execution order, there must exist
a sequential scheduling that reproduces the case. The SystemC simulation kernel given by the
Accellera Systems Initiative (ASI, formerly OSCI) is a sequential implementation. An advantage of
the sequential implementation is that it makes the determinism of executions easier to implement and
eases the reproducibility of errors. An obvious drawback is that it does not exploit the parallelism
of the host machine. With the increasing size of models, the simulation time is the major bottleneck
of complex hardware simulation. The parallelization of SystemC simulations is not straightforward,
and is a major research concern.

For more than a decade now, there have been several proposals for SystemC parallelization.
An approach chosen in [2—4] is to run multiple processes concurrently inside a delta cycle, with a
synchronization barrier at the end of each one. Parallel discrete event simulation (PDES) has been
exploited, first, with a conservative approach [5-8], where all the time constraints are strictly fulfilled.
Then with a more optimistic approach, by relaxing the synchronization with a time quantum [9,10].
Optimistic approaches may need a rollback mechanism in case the simulation went through an
invalid path. Another work [11] combined different methods; the parallelization inside delta cycles
with relaxed synchronizations. To conclude with this panorama, sc_during allows specifying that
some parts of the simulation can be run concurrently with the rest of the platform [12].

Each of these approaches have been proved experimentally to be efficient on some benchmarks,
but the representativeness of these benchmarks compared to industrial case studies is questionable.
Indeed, not much of the works above target LT simulations, while such models are commonly used
for fast and early simulation. One difficulty is that real case studies are often confidential, and hardly
available for the research community working on parallel simulation. Conversely, most research tools
are not publicly available, hence a fair comparison on case studies is not possible. Our claim is that
the challenges raised by the parallelization of LT SystemC models are fundamentally different from
the ones in cycle-accurate or other fine granularity models. As a consequence, many of the existing
approaches cannot work on LT models.

To support this claim, we need to provide measurements performed on a case study from
STMicroelectronics. Since SystemC is a C++ library, usual profilers for C++ like gprof or
valgrind + kcachegrind can be used. They will however miss important aspects of the execution of a
SystemC program, like: how much time is spent in the SystemC kernel as opposed to the user-written
parts, per-process statistics, simulated time based visualization. To the best of our knowledge, there
is no turnkey application available to get these information from a SystemC simulation. We have
developed SycView, a profiling and visualization tool for SystemC and we present the results on an
industrial LT platform from STMicroelectronics. By giving these measurements, we show that some
approaches cannot work on the model we want to parallelize, and thus that any implementation
using this technique will not be efficient.

We believe this paper provides a better understanding of the potential bottlenecks of various
parallelization approaches on such platforms. It should help both the design of efficient
parallelization solutions and the design of representative benchmarks. We also propose a
comprehensive survey of the existing solutions with a critical analysis. First, in Section 2 are given
some background information. The problem is then described in Section 3. In Section 4 is presented
SycView, a visualization and profiling tool we developed to get information about a simulation.
The results obtained by SycView on an industrial test case from STMicroelectronics are shown in
Section 5. Finally, in Section 6 we describe the panorama of existing work about the parallelization of
SystemC simulations.

Electronics 2016, 5, 22 3 0f 20

2. Background

2.1. Definitions

In this paper, the term wall-clock time refers to the time spent by the execution of the simulation
on the host machine, as opposed to the simulated time which refers to the virtual time spent in the
simulation (i.e., the supposed hardware timing). The locution SystemC process means indifferently
SC_THREAD or SC_METHOD (SC_CTHREAD are not in the scope of this paper). We call a transition
any portion of code in a SystemC process that is executing atomically from the point of view of the
SystemC kernel. For instance, the following code will produce three transitions:

void compute() { // declared as SC_THREAD

do_stuff (); // transition #1
wait (15, SC_NS);

do_more_stuff (); // transition #2
wait (event) ;

do_even_more_stuff (); // transition #3

2.2. SystemC Scheduling

As a reminder, we first present in Figure 1 an abstract of the SystemC scheduler behavior,
as stated in the SystemC standard [1].

Eval@
P#Q

Figure 1. Behavior of a SystemC simulator. P is the set of runnable processes.

The scheduler starts with an initialization phase that we do not detail here. In the evaluation
phase, the runnable processes are started or resumed with no particular order. The immediate
notifications produced by these transitions are then triggered. If there are runnable processes after
the notifications, then the evaluation phase continues. Otherwise, the scheduler moves to the update
phase, followed by the delta notification phase. The immediate notification loop is implicit on the
figure, within the evaluation phase box. A delta cycle corresponds to the loop: evaluation, update and
delta notification. At the end of a delta cycle, if there are no runnable processes, the scheduler checks
timed events. If there are timed events, it picks the earliest one, sets the current simulation time to
its time, and notifies the time change. A timed cycle corresponds to the loop: evaluation, update, delta
notification and time notification. For concision we did not represent the other sets involved in the
scheduling algorithm.

Electronics 2016, 5, 22 4 0of 20

2.3. Time Modeling

In a TLM/LT model, the microarchitecture is not modeled, so the computation may be
performed differently from the actual hardware, even if functionally equivalent. As a consequence,
it makes no sense for a process to yield the control to another process in the middle of a
computation: the state that the other process could observe would not be relevant with respect to
the hardware [13,14]. Thus, a computation that takes time is usually modeled with a sequence like in
Figure 2.

compute () ; // behavior; instantaneous for SystemC
wait (time);

Figure 2. A typical compute/wait sequence.

A construction commonly used in TLM/LT models is temporal decoupling. It has been added
in the TLM-2 standard [15], but was in fact already used before in SystemC models. It consists in
defining a local time for each process, which can be increased during the execution, getting ahead
of the SystemC time. The increase is called a low cost timing annotation because it only operates on
a local variable and induces no SystemC kernel operation. To keep time consistency, a time purge
is defined. The purge of the local time happens notably when reaching synchronization points
(synchronization-on-demand in TLM-2). This avoids synchronizing every time, but instead do the purge
on essential events of the system. Then, using temporal decoupling, the sequence in Figure 2 becomes
the one in Figure 3.

compute () ; // behavior; instantaneous for SystemC; contains annotations
synchronize(); // System(C synchronization; "publishes" the current state

Figure 3. A compute/synchronize sequence.

Precise timing information is not available in early models. Because of this, to avoid
over-specification, time ranges are used in loosely timed models. The use of time ranges instead
of time values changes the fact that two values (the bounds of the range) instead of one must be
specified when annotating. For the synchronization, a value within the current time interval must
be chosen, since the SystemC kernel needs a time value. The choice of the value within the range is
implementation-defined. The current implementation in use at STMicroelectronics picks a random
value within the interval. We will see in Section 5.3 that even if time ranges could be better used, the
benefits in our test case are barely perceptible. This illustrates the claim we made in Section 1.

2.4. Communication Between SystemC Processes

In TLM the different processes are mostly communicating through TLM sockets. In practice,
TLM sockets forward function calls from the source to the target until the final target is reached,
where the function is defined. That means that a process emitting a transaction through a TLM socket
will be executing a piece of code in the target module, i.e., which can use variables shared with other
processes of the same module.

This is fundamentally different from sc_signal communication, which is the basic
communication medium in cycle-accurate models. Indeed signals contain an isolation mechanism
between their current value (i.e., the value returned by a read on the signal) and their future value (i.e.,
the value written to the signal). The future value is assigned to the current value during the update
phase, but there is no race condition between a write and one or several reads during the execution
phase (even if the execution semantics is relaxed to allow parallel execution during the execution

Electronics 2016, 5, 22 5 0f 20

phase). This isolation between readers and writers gives a convenient opportunity to have them
running in parallel at negligible extra cost.

3. Problem Statement

The parallelization of LT SystemC/TLM simulations implies to solve several challenges. We do
not present classic issues inherent to software parallelization, we focus instead on the ones induced
specifically by such models, in particular in an industrial context.

A SystemC parallelization solution must not introduce race conditions. As stated in Section 2.4,
in TLM models, communication is done by function calls, which involves shared resources. For
example, two initiators (e.g., CPUs) that concurrently access the same target (e.g.,, a RAM) will
concurrently call the same function of this target. That makes the target component itself a shared
resource, introducing a race condition if not protected.

In the industry, there is a need to support heterogeneous simulations. That means that some
parts of a model are designed with a different technology. For example, a vendor provided only the
RTL model of a hardware block, but the rest of the model is written in SystemC/TLM. In this case, the
RTL model can be simulated, or can be run in a FPGA device in co-simulation with the TLM model.
One part of the model can even be a real hardware component (e.g., a prototype). An industrially
compliant parallelization solution must be able to integrate this heterogeneity.

Another huge challenge for SystemC parallelization is the adaptability on existing platforms.
Indeed, as for every technology change, the migration has a cost. This cost must be put in perspective
with the time saved if the parallelization solution was in production: a solution that requires an
important effort may not be profitable even if it shows substantial performance benefits.

To conclude with this section, we note a very important point regarding the conception of a
parallelization technique: the knowledge of the profile of a simulation. Analogously, parallelizing
huge independent computations on matrices is not performed the same way as parallelizing a
shortest path algorithm. In our case, a simulation is mostly characterized by the model and not
by the simulation kernel. In other words, a major interest in our research is to have the ability to
characterize a simulation. One interesting measurement in that purpose is the number of runnable
SystemC processes at each simulation cycle. Other ones include the wall-clock time consumption
per transition, or per SystemC process. Both put in perspective, they give strong clues about the
applicability of a parallelization option in a given case.

4. Profiling Method

We have developed a visualization and profiling tool called SycView. The motivations behind it
are twofold:

o Finding a parallelization approach is through knowledge of the simulated models, as stated in
the previous section. Thus, we need to get SystemC-aware measurements about the profile of
a simulation.

e Inanindustrial context, it is frequent for complex models to be partially developed by external
teams. This results in a large quantity of source code on which it is hard to have a comprehensive
knowledge. We ease this aspect by taking a few steps back and giving an abstract view of
a simulation.

4.1. Related Tools

We have found that most of the literature about SystemC visualization focus on the model
description and architecture exploration. For example, the tools presented in [16-19] and more
recently [20] gives access to the visualization of the hierarchical architecture of a platform, as well
as the exploration of the components behavior. Such information is precious and these tools are
complementary with our tool especially when it comes to understanding a design. However, what

Electronics 2016, 5, 22 6 of 20

we found to be missing in these tools is a software point of view, in order to understand the model
not as the representation of an SoC, but as a piece of software. Besides, some of the above mentioned
tools need to instrument the model, which is generally not possible in the case of huge and complex
models.

4.2. Presentation

The principle of SycView is simple: it consists in trace recording during simulation (Section 4.2.1)
and then trace visualization (Section 4.2.2). In order to print traces, we instrumented the SystemC
kernel, based on the ASI implementation. For the visualization we developed a graphical user
interface written in Java, that takes the generated traces as input.

4.2.1. Trace Recording

The trace recording consists in printing data at interesting points. For instance, we print a trace
each time a transition yields to the kernel, containing:

The name of the SystemC process which triggered this transition.
The type and arguments of the wait performed.
The wall-clock time duration of the transition.

When the simulation ends, we store those information in text files. Then for example, we are
able to find which SystemC process (or group of processes) globally consumes most of the time.
Furthermore, we can use statistical metrics to get the average execution time of a process and compare
it with the number of executions to highlight how each process spends its time.

We also keep the number of runnable processes at the beginning of each simulation cycle.
More precisely, what we get is the maximal number of runnable processes at the beginning of each
immediate notification cycle within each delta cycle.

4.2.2. Visualization

We have implemented a graphical user interface providing six different views, which can be split
in two main categories.

The first category is plotting the scenario of an execution (order and duration of transitions) as
a function of either wall-clock time or simulated time. For example, Figure 4 shows the screenshot
of a wall-clock time plot (for confidentiality reasons, the actual process names cannot be disclosed
in this publication, hence process names are replaced with numbers in all figures). On this plot
we can see that there seems to be a chain triggering of the processes executing in one order on the
left part, and in the reverse order on the right part. The width of a rectangle is proportional to the
wall-clock time duration of the corresponding SystemC transition. This view, as illustrated by this
little example, can be used to identify patterns in the executions of transitions, and can highlight
which transitions are particularly time-consuming. Such information could hardly be identified by a
static code analysis, because of its complexity. On the other hand in Figure 5 we can see an example
of a simulated-time plot. The processes are also represented on the left part, and on the right part,
a vertical stroke is placed for each transition, in the simulated time it occurred. Note that what appears
to be black rectangles are strokes close together. The blue rectangles represents time ranges in which
the transition may have occurred, based on loosely timed information on the model. Note that time
ranges are not part of the SystemC kernel so we added that when we instrumented the kernel because
it was part of our industrial context.

Electronics 2016,

5, 22

Export
process_232
process_231
process_230
process_228
process_227
process_226
process_225
process_224
process_223
process_222
process_221
process_220
process_219
process 218
process 217
process 216
process 215
process 214
process 213
process_212

())) (7)

Simplot with Wall-clock Time

[[[<|[>]] I
U<l l==]l=] 2] 2] 1))

7 of 20

Figure 4. Wall-clock time axis.

Export
SystemnC kernel

process_250
process 249
process_248
process_247
process_246
process_245
process_244
process_243
process_242
process_241
process_240

process_5

P

Simplot with Simulated Time

i<)==<J{<] (2] [==] (=]

Figure 5. Simulated time axis.

The second category consists of giving statistical metrics about the platform execution.
We display the wall-clock time consumption per process (with statistical metrics), as in Figure 6.
We can see that the first process uses almost 13% of the time in 10111 transitions, while the third
process uses almost 8% of the time in only 14 transitions. That makes a huge difference in the mean
execution time, and we can deduce that optimizing the third process may be more efficient than the
first one. Moreover, we show the number of runnable SystemC processes at each delta cycle, shown
in Figure 7. This table can also be displayed for SC_THREADs or SC_METHOD:s only.

Consumptions =
Export

[Namne [Type |[Part | urnutated tim... |[Min |[1stQ | Med |3raQ | Max |# of exec [Mean 3
process_48 SC_THREAD 13.023 % 7328925 116 1152 1261 1830 29759 5411 1354.4492 i
process 20 SC_THREAD 10.055% 5658421 73348 76361 78584.5 80160 86624 72 78589.18

process 28 SC_THREAD .393 % 4723397 393035 400585 499733 511388 559642 10 472335.7
process_46 SC_THREAD 7.059 % 3972624 o1 133834.5 135020 232059 233649 25 158904.95
SystemC_Kernel |- 5614 % 3159238 i 4 6 g 1746 400275 7.8926687

process 6 SC_THREAD 2.673 % 1504074 13 88 104 117 87817 12149 123.80229

process 95 SC_THREAD 2.544 % 1431922 44 45 496 844 966 3200 447.47562

process 211 [SC_THREAD 2.231% 1255414 12 13 185.5 242 443 9582 131.01794

process 204 [SC_THREAD 2.171% 1221911 11 12 180 236 451 9582 127.5215

process 212 |SC_THREAD 2.157 % 1213507 14 15 184 237 361 9582 126.68618
process_5 SC_THREAD 1.938 % 1090776 Js 83 102 107 43089 9735 112.046844
AAAAAAA > SCThBEAD 1 ana oz ETAFET-L1S 13 ET) 104 EET) 2160 YY) 114 nnADE]

Figure 6. Wall-clock time usage of SystemC processes.

Electronics 2016, 5, 22 8 of 20

Runnable Processes by Cycle - (O
Export

|# runnable |Number of cycles |Part
0 1/0.001 %
1 23694|14.552 %
2 6078(3.743 %
3 127070[78.255 %
4 6521(0.382 %
5

5

7

S4/0.058 %
17/0.01 %

1)0.001 %
17 3205[1.974 %
21 14/0.008 %
25 1585/0.976 %

Figure 7. Number of runnable processes.

5. Results

In this section we present the results of SycView for the simulation of an industrial case study,
which is the model of a set-top box including video encoding/decoding. The software running on it
is a modified Linux kernel.

5.1. Overview

The platform has one CPU containing four general purpose cores. One important aspect about
this platform is that most of the computations are not performed in the software but by hardware
acceleration blocks.

This model is composed of ~ 900, 000 lines of code including ~ 750, 000 lines of C++ code (given
by cloc). It contains 850 modules hierarchically organized. Counting only the leaf modules leads to
the number of 750 modules. There are 1068 registered SC_THREAD and 163 SC_METHOD.

5.2. Number of Runnable Processes per Cycle

In this part we present the measurements of the number of runnable processes at each cycle,
performed by SycView (cf. Figure 7, however, for clarity we will show these results on charts).
Different test scenarios have been experimented. The first one is the boot and initialization of the
platform, which starts in the beginning of the simulation and ends when a command shell is available
(let us remind that a Linux kernel is running on the model). All the following scenarios start after
the boot and initialization. The two following cases display video broadcast tests for h264- and
mpeg2-encoded streams. They consist in providing an encoded video stream as platform input. The
video stream is decoded by hardware blocks and sent for display. The last case is a transcoding, which
redirects the decoded video stream to encoding hardware blocks in order to produce a h264-encoded
stream from a mpeg2-encoded stream.

In Figure 8 are shown the measurements. Figure 8a shows the number of runnable SC_THREAD
at each simulation cycle. Let us analyze, as an example, the case of mpeg?2 video display. For
53 percent of the cycles, there were no SC_THREAD:s to run (i.e., only SC_METHODs). For 32 percent
of the cycles, there were one runnable thread. For 12 percent there were two runnable threads and
finally for the remaining 3 percent there were three threads to run. The h264 case showed the same
trend. For the transcoding case, most of the cycles only had one thread to execute. On Figure 8b are
shown the measurements for all processes. The big picture here is that the huge majority of simulation
cycles only execute one to three transitions before moving to the next one.

Electronics 2016, 5, 22 9 of 20

A

|

mpeg2 — h264 [mnnnnamnynnnnnnmnnnnng|
|
.

h264

mpeg?2

boot+init

L >
0% 50 % 100 %
[CJ 0 Proc. 1 2 =3 M 4 and more |
(a) SC_THREAD only

A

mpeg2—>h264 IIIIIZ:Z:l::::IIZ:Z:l::::IIZ‘EZ:I:IIIIIZ:Z:I:IIIIIZ:Z.‘
h264 ;;;;;:;;;:%;_
mpeg? [e
boot+init I::\‘\”“‘I::1:::::::IT:I:Illiiiiiiiiiiiiiiiii:|;ﬁ;;;;;i

0% 501% 10(3 ;/0

[3 1 Proc. £ 2 3 M 4 and more |
(b) SC_THREAD and SC_METHOD

Figure 8. Partitioning of delta cycles, by number of runnable processes, in four different test cases.

A notable point is that this measurement gives an upper bound of the degree of parallelization
achievable with parallelization inside cycles (detailed on Part 6.1). Due to shared resources, the real
degree of parallelization may be lower than this upper bound. Indeed a runnable process may share a
dependency with another one, making the concurrent run of those two processes not consistent with
coroutine semantics.

5.3. Influence of Randomized Waits on Number of Processes per Cycle

As we have seen in the previous section, the number of runnable processes at the beginning of
each delta cycle is too low to expect an interesting speed-up with parallelization inside delta cycles for
such platforms. The fact that the number of processes ran during each cycle is low can be explained
by at least two factors:

1. The platforms are described at a high abstraction level where both the time and space granularity
are coarse: instead of modeling the behavior of small pieces of circuit at each clock cycle as done
in RTL, we model the overall behavior of components avoiding the wait statement. The coarse
space granularity leads to fewer processes than RTL. Since we do not model hardware clocks in
LT, the chances of simultaneous execution of multiple processes is reduced.

2. Since our implementation of loose-timing uses randomized wait statements as presented in
Section 2.3, the probability of having two processes waking up at the same instant is reduced. For
example, even two processes executing the exact same code will not be temporally synchronized
if they used randomized timing.

Point 1 is intrinsic to the way we describe the platforms, but point 2 is a side effect of the
implementation of loose-timing. By changing the implementation, we can actually take advantage
of loose-timing: since the times are chosen arbitrarily in an interval, the implementation can pick the
one that will maximize parallelism instead of choosing one at random. This section describes such
implementation and the results on our case-study. We show that the benefit is actually very low,
which leads to the conclusion that point 1 is actually the main reason for the low number of processes
within each cycle.

Electronics 2016, 5, 22 10 of 20

In its current form, the optimization can be implemented neither in the loose-timing API (which
does not have visibility on the number of processes eligible at a certain date) nor in SystemC (which
is currently called through wait after the random duration is chosen). To exploit ranged timing
annotations, we have added this function to the SystemC kernel:

void wait(sc_time min, sc_time max);

This function has the following semantics: yield to the kernel, and wake up the current thread on a
time included in the given range. To illustrate how we choose the best value in order to maximize the
number of runnable processes in the next delta cycle, we present an example. Let us consider the
following code in two distinct SC_THREAD that we consider independent from each other:

void modl::compute () {
/).
wait(sc_time(1, SC_NS), sc_time(5, SC_NS));
/7 ...

¥

void mod2::compute() {
/).
wait(sc_time (3, SC_NS), sc_time(7, SC_NS));
/).

A graphical representation of executions of this model is shown on Figure 9. We can see the
processes (on the left side) and rectangles (on the middle part) which indicates the time interval
in which the execution of the corresponding process is valid. The times actually simulated by the
simulator are represented by dashes.

possible time simulated
execution times by the kernel
| |
mod1.compute (2 #
mod2.compute

(a) A random time

modl.compute 1

mod2.compute 1

(b) An optimal time

Figure 9. Execution diagrams of two processes using wait with a time range, for two different time
choice policies: a random value (a) and a value which maximizes the number of eligible processes (b)
in the next cycle.

With this representation, it clearly appears that depending on the times that are simulated, we
have a different number of runnable processes on a different number of cycles:

In the case of Figure 9a, there are two simulated times, each with one runnable process.
In the case of Figure 9b, there is only one simulated time, with two runnable processes. Thus this
case induces a higher degree of parallelization for an approach inside delta cycles.

To implement such a strategy, we had to bind STMicroelectronics’ annotate/synchronize API
(see Section 2) with this newly added wait. The computation of the simulated time is no longer
performed in the synchronize method, but is dedicated to the modified SystemC kernel. Finally, the last

Electronics 2016, 5, 22 11 of 20

part is to implement a policy to choose the next time to simulate, in the kernel. To choose the next
simulated time value, we choose the minimum value of all the upper bounds, for all the registered
time events. By choosing the minimum value of all the upper bounds, we guarantee that the next time
is not too late (i.e., that we do not skip any registered timed event). Moreover, it is the farthest valid
time, so it will trigger the biggest number of processes, for the next time cycle. Then each timed event
whose range includes this value is popped and triggered. Note that with this strategy, we are still
compatible with the old wait by defining a time range with both bounds equal to the same time value.

By implementing this policy, we maximize the number of runnable processes at the beginning of
each cycle for an execution. The final purpose is to determine if this maximized value is high enough
to justify the use of parallelization inside delta cycles techniques. We have run again the simulations of
our industrial platform for the same test cases to measure the same metrics with this improvement.
In Figure 10, we see that, in most cases, the number of processes is still very low, even if in we have
more occurrences of cycles with 3 and 4 or more runnable processes.

A

mpeg2 — h264

h264
mpeg?2
boot+init t::::::::::::::::::::::lt::::::::::::::::::::I;;;;;;]j
0% 50% 100 %

[CJ0Proc. £J1 32 w3 M 4 and more |

(a) SC_THREAD only

A

mpeg2 — h264

h264

mpeg?2

boot+init |33

L >
0% 50 % 100 %
[CJ 1Proc. E42 =3 M 4 and more |

(b) SC_THREAD and SC_METHOD

Figure 10. Partitioning of delta cycles, by number of runnable processes, for four different test cases,
with optimized time picking within time ranges.

Those results illustrate our point: parallelization inside delta cycles will not efficiently parallelize
the simulation of such models, even after performing a non-trivial optimization and even ignoring
race condition issues. Indeed, the maximum speed-up achievable is no more than 4 (which is actually
a very optimistic bound).

5.4. Wall-Clock Duration

In this section we show the wall-clock time consumption per SystemC process (cf. Figure 6).
As an overview result, Figure 11 presents the distribution of wall-clock time between three
different categories:

e processes from CPU core models (Cores)
e processes from hardware block models (IPs)
o SystemC kernel (Kernel)

Electronics 2016, 5, 22 12 of 20

mpeg2 — h264

h264

mpeg2 [

boot+init

[Cores 1 Kernel IPs_|

Figure 11. Partitioning of the wall-clock time elapsed, by category of processes, for four different
test cases.

For the boot and initialization case, 79 percent of the time was spent in core models, leaving
10 percent in hardware blocks and the remainder in the SystemC kernel. The explanation here is
rather straightforward: the system boot is performed by the CPU and is not hardware accelerated.
In the video stream decoding cases (both h264 and mpeg?), one third of the time (respectively 25
and 31 percent) was spent in cores and the rest was mostly spent in hardware blocks. Note that the
time spent by the SystemC kernel is above 6 percent. This illustrates that the decoding computations
are mostly done by hardware IPs. Finally, for the transcoding case, 10 percent of the time was spent
on the core, 25 percent on the SystemC kernel and 65 percent on hardware IPs. Again, we notice
that hardware blocks are performing most of the computations, even if in this case there seems to be
an overhead on the SystemC kernel, due to a high number of synchronizations in hardware blocks
specifically triggered during this test case.

To get into more details, we present in Table 1 the results for the four most time consuming
SystemC processes in the test case h264. More than 35 percent of the total time was spent on those
processes. However, if we look at the number of transitions, we see that the first process (part of the
IPs category) consumed 12.9 percent of the total time in 10,111 transitions while on the other hand,
the second and third processes (also IPs) performed considerably less transitions (less than 100) but
still consumed around 8 percent of the time each. This means that transitions of the second and
third processes are performing long computations, while transitions of the first process are short in
comparison. This is confirmed by the minimum, maximum and median execution times for those
processes’ transitions. The fourth one is the time spent in the SystemC kernel.

Table 1. Measurements of wall-clock time consumption for the four most consuming processes. Min,
median and max corresponds to the execution time of transitions. For confidentiality reasons, we did
not show the SystemC names of those processes, but only their category (hardware, core or kernel).

Category Type Part Nb. Transitions Min (us) Median (us) Max (us)
Hardware block SC_THREAD 12.9% 10,111 >0 1,123 18,372
Hardware block SC_THREAD 8.6% 93 73,652 77,535 84,082
Hardware block SC_THREAD 8.0% 14 395,202 486,617 495,737
SystemC kernel - 5.9% 635,129 >0 >0 983

Finally, we present the time consumption per type of process (thread, method or kernel) in
Figure 12. Rather predictably, a huge proportion of the time, namely 91.3 percent, was spent in
SC_THREADs. However, this result may be put in perspective with the previous ones, especially
with the number of runnable processes. We have seen in Figure 8a that there were a considerable
number of cycles with no SC_THREAD to run. Still, most of the time is spent in their transitions.

Electronics 2016, 5, 22 13 of 20

SC_THREADs

2.8%
SC_METHODs

SystemC kernel

Figure 12. Distribution of the wall-clock time between SystemC threads, methods and kernel.

5.5. Summary
In summary, the characteristics of our case study are:

Most of the wall-clock time is spent on hardware block models, not on CPU models (Figure 11).

Most of the wall-clock time is spent on SC_THREADS (Figure 12).

Most of the simulation cycles have less than four runnable SystemC processes (Figure 8) and even

if we exploit time ranges to maximize this value (Figure 9), the results remains similar (Figure 10).
e In the cycles where there are several runnable processes to run, most of the time there is zero

or one SC_THREAD, the remaining being SC_METHODs (Figures 8 and 10). The wall-clock
time consumed by these SC_METHOD:s is very low compared to the time consumed by the
SC_THREAD (Figure 12).

Obviously, the above characteristics may vary depending on the test scenario. However, they
have been observed for the most common uses of a set-top box model, i.e., video display tests.

6. Existing Parallelization Approaches

This section reviews existing approaches for SystemC program parallelization. For each of them,
we discuss the applicability on our case study, keeping in mind the results of measurements obtained
in the previous section.

6.1. Parallelization Inside Cycles

A conservative PDES simulator with lookahead has been implemented in [21]. The solution
works on top of the SystemC kernel, which remains unchanged. To apply this solution, the model
must be written in compliance with some provided templates. It explicitly targets RTL-like platforms,
because the solution is based on low-level SystemC features like sc_signal, which tends to be unused
in TLM models. This proposal comes with a lot of future work propositions, and is not industrially
applicable as-is. Some of the proposed ideas are addressed by more recent papers.

The works presented in [2,3,5,22] use the fact that within a delta cycle, the execution order
of the processes is undefined. The approach goes one step further: since the correction of the
SystemC program should not depend on the execution order, it should, in most cases, not be broken
by a parallel execution within a cycle. A synchronization barrier is placed at the end of each delta
cycle. The processes are partitioned into groups that will be executed by an instance of the SystemC
simulator on a specific core. In [5] all the processes of a module have the same affinity. In [2] the
authors have experimented different strategies to balance the load on the available cores. Finally,
in [22] a technique is proposed to solve the problem of race conditions introduced by TLM interface
method calls by adding a split point in transactions and moving the caller thread into the target group.

Electronics 2016, 5, 22 14 of 20

In [23] an analysis of the execution semantics of both SystemC and SpecC is presented.
The authors have implemented an extension to the SpecC simulation kernel to support multi-core
simulation. However, the semantics of SystemC and SpecC are different, notably in their definition of
signals. In SpecC, signals are defined as monitors: each of their accessors/mutators are in mutual
exclusion. Moreover, as stated in Section 2.4, there is a real difference between cycle-accurate
modeling using sc_signal and TLM modeling using sockets. In the first case, the built-in isolation
offers a good opportunity for parallelization. In the second case, the race condition problem induced
by function calls must be solved differently.

A high degree of parallelization can be achieved by exploiting GPUs. This has been studied
by [4,24,25]. In [4,25] the authors have chosen to use CUDA (Compute Unified Device Architecture).
The proposed tool in [4] is a source-to-source translator which produces a CUDA-style code from
a RTL-synthesizable SystemC model. High speed-ups are achieved, nonetheless we can notice that
all the test cases are pipelined platforms at RTL level. In [24] the authors compared a CUDA and an
OpenCL implementation. The work presented in [25] consists of exploiting both GPU and multi-CPU
architectures. It supports mixed-abstraction simulations. The parallelization is performed within
delta cycles, with support for immediately notified processes. They have benched their solution on a
set-top box model, which was implemented in order to be used as a bench. This induces that some
optimization have been made, that may hide the real amount of refactoring needed to efficiently
parallelize an existing industrial platform.

In [26] is presented the RAVES hardware platform. Each evaluation phase is parallelized
(i.e., even after immediate notifications). Though, the new aspect here is that the authors have
implemented a hardware architecture which implements their parallel SystemC kernel, and the actual
embedded software running on it is the platform model. The results are promising, but their test cases
are cycle-accurate models of many-core platforms.

Finally, a parallel implementation of SystemCASS, a cycle accurate version of SystemC,
is presented in [27]. The authors have implemented a SystemCASS simulator that executes all the
transitions (Mealy or Moore) of the same cycle in parallel.

As a conclusion of this subsection, we can notice that due to the chosen approach, most of the
SystemC simulator instances are in the same delta cycle, or at least the same time cycle. Thus, it
clearly appears that a necessary condition to have a significant speed-up is to have a sufficient number
of concurrently runnable processes in the most wall-clock time consuming cycles. We showed in
Section 5 that this is not the case in our example platform. Due to the TLM/LT modeling style and
the architecture of the platform (complex computation performed by hardware acceleration blocks)
we can reasonably assume that the situation will be the same for other similar models.

6.2. Dependency Analysis

The SystemC standard states that within a delta cycle, the execution order of the processes is
undefined. That does not mean that they can be run concurrently as-is, because the next sentence
explains that in order to do so, one must analyze the dependencies between processes to prevent
race conditions. Indeed, one must consider the case of shared memory and/or resources. To solve
this problem, most of the work presented in the previous section have chosen either to make strong
hypothesis about the model or to ask the model developer to protect critical sections manually.
On existing platforms, it happens that most of the time the manual refactoring is excluded, and
the hypothesis are not fulfilled. To automate the prevention of race condition, static or dynamic
dependency analysis can be performed on the model.

In [28] is presented a parallel SystemC simulator with static analysis of dependencies. A static
analysis tool first scans the model in order to produce a dependency scheme. Then this dependency
scheme is provided as input to the modified SystemC simulator, which uses it to schedule in parallel
different processes. The main idea is that a runnable process can be run if it is independent with
each running process. As presented in Section 3, the case where multiple components perform a

Electronics 2016, 5, 22 15 of 20

transaction to the same target is equivalent to a shared resource access. However, the static analysis
presented here does not include transaction address resolving.

Following [23], in [29] the authors present a simulator which performs static analysis to
prevent data, timing or event conflicts. The technique is similar to branch prediction in hardware.
The parallelization is performed within delta cycles.

The solution presented in [30] uses both static and dynamic analysis to propose an adaptive
algorithm and tool flow for SystemC/RTL parallelization. Their current solution is based on RTL
features, e.g., sc_signal, but they used a sufficient level of abstraction in their algorithm to keep hope
for future TLM support (planned as a future work by the authors).

Most of these approaches parallelize inside cycles, so we still have the same issue with efficiency
as in the previous subsection. Moreover, performing static analysis on industrial size models as-is
can be excluded because of the code complexity.

6.3. Distributed Time/Relaxing Synchronizations

In [6] a programming paradigm for many-cores and many-clusters modeling in SystemC is
presented. The work is based on the PDES principle and proposes a conservative synchronization
with a lookahead time. Multiple instances of a SystemC simulator are run. To avoid deadlocks,
the sending of null messages (which only contains a timestamp) is introduced. The handling of
interrupts is proposed by the addition of a timestamp to it, with a polling in the beginning of each
CPU loop. This removes the asynchronous characteristic of interruptions, but guarantees that they
will be noticed in a meaningful time. Their test bench consists in comparing a CABA (Cycle Accurate
Bit Accurate) simulation to a TLM one, in order to balance the time saving with the loss of precision.
The conclusion of their work is that for a very acceptable loss of precision, they can simulate models
at TLM speed, so approximately 50 times faster than for CABA simulations. However, we can
identify two major drawbacks in their bench. The first one is that the software task is very basic:
wait for an interrupt and then display a message on the terminal, in a loop. The second one is that
the best speedup is reached for the platform with the biggest number of simulated cores (i.e., 39).
On our industrial platform, the number of simulated cores is low (no more than 7) and the software is
more complex. The next work completes this one by proposing an implementation of this simulator:
TLM-DT (Distributed Time).

TLM-DT is presented in [7,31]. It is compliant with the TLM2 standard, but it needs to shift from
a global time to a distributed time, which induces to modify all the timing information in the model.
This solution reaches good performances on many-core SoC and NoC (Network-on-Chip) platforms,
composed of many instances of similar if not identical components. This regularity in the architecture
induces a different profile from platforms with several different hardware acceleration blocks.

To apply this solution, one must first adapt the platform code to fit TLM-DT API. We can also
point out that it targets many-core SoC or NoC models. This provides the hypothesis that most of
the simulation time is spent on the numerous similar CPU/core models. In our case study though,
we have seen that most of the time is spent on hardware modules.

Based on TLM-DT, the authors of [8,32] have developed their own parallel implementation of
a SystemC/TLM simulator. It is based on a PDES algorithm and designed for clustered platforms.
Both implicit and explicit synchronizations have been implemented to bound temporal errors. Their
analysis is common to SystemC and SpecC languages. They particularly focus on protecting the
shared parts of the simulation, i.e., the simulation kernel and the communications, and have included
locks in their scheduling algorithm. They present promising results on hardware-parallelized
versions of video decoding and image encoding models.

An optimistic approach of PDES has been studied in [9]. The optimistic characteristic does not
come from a rollback mechanism (contrary to what optimistic means in other research papers) but
from a weak synchronization mechanism. The platform is divided into groups of modules, which
are simulated by a specific instance of a SystemC simulator. Synchronizations are performed when

Electronics 2016, 5, 22 16 of 20

a time quantum has been overlapped. It is also possible to define transaction-specific time behavior.
This approach makes strong hypothesis about shared variables: it considers that shared variables
(except the ones from the SystemC kernel) has been either well protected or purposely not protected.

In [10,33] a parallel SystemC simulator implementation called SCope is proposed. The idea is
to run different processor models on separate simulator instances. Each instance has direct access to
some objects of the simulation (i.e., modules, ports, threads, etc). Simulator instances are allowed to
run at different simulation times: a lookahead time is defined. Their results showed a good speed-up
on a four-cores host, for the model of a specific hardware structure called EURETILE which is similar
to a network-on-chip.

In [34], CoMix, a concurrent model interface for distributed simulation, is presented. The
principle is similar but is not limited to the processor models. The platform is cut into parts that
do not have to fit the SystemC hierarchy, however this implies a structural refactoring on the model.
Then every partition is bound to a connector in charge of delivering communication at the right time.
The different parts are allowed to run at different simulation times, provided they are in the same
time quantum. Nonetheless, a strong hypothesis made in this work is that models are composed
of many processors, tens or hundreds of them. That means that the modeled systems are more
software-oriented than hardware-accelerated, both having very different execution profiles.

More recently, SCale has been proposed in [35]. It is a parallel simulation kernel designed
to speed up the simulations of many-core architectures. Basically, it consists in having a parallel
evaluation phase. The different SystemC processes are manually attributed to worker threads. The
authors have taken care of the reproducibility by adding a replay mechanism based on the saving of
the scheduling on a file. We can notice that because of our results (Figure 8) parallelizing only the
evaluation phase will not be efficient. Still, temporal decoupling could be used to increase the cycle
parallelism. However, in our case the experiments (Figure 10) revealed that exploiting simply time
decoupling will not significantly increase the degree of cycle parallelism.

Finally, in [36] ,SystemC-Link, a simulation framework for SystemC simulators, is presented. It
is an overlay above SystemC kernels, which allows the use of different versions of a SystemC kernel
in one simulation. An existing model must be partitioned into segments, each one run on a different
simulator. Then, the framework’s task is to link the simulators and keep them synchronized. Again,
the efficacy depends on temporal decoupling. This makes the approach best fit for cycle-accurate
models, with precise timing, where relaxing temporal constraints removes more constraints than in
LT models.

6.4. Tasks with Duration

In [37] the authors present jTLM. This is a Java experimentation framework for TLM simulation.
The interest is that it can exploit multi-core architectures, by introducing a different timing approach:
tasks with duration, as alternative to instantaneous computations followed by a time elapse. This
notion has been extended in a SystemC framework called sc_during [12]. The idea is to change
sequences like:

void thread() { // declared as SC_THREAD
compute () ;
wait (time);

into:

void thread() { // declared as SC_THREAD
during (time, compute);

}

Electronics 2016, 5, 22 17 of 20

Now, a duration is associated with a task. Semantically, this means that the during task can be
executed in parallel with the rest of the simulation. Indeed, if a during task is run at time T, for a
duration D, it means that the task computation can be executed at time T, at time T + D or at any time
between T and T + D. This implies that there is no dependency between the task and the rest of the
platform within the interval [T; T + D] and so that it is safe to run the task in parallel.

In the case of sc_during the amount of refactoring needed is debatable. This solution needs some
refactoring in the code of the platform to actually parallelize it, but it has the advantage to let legacy
SystemC code running as-is, sequentially. That makes this solution relevant for platforms where
wall-clock time consuming parts can be clearly identified, and are present in sufficient number to
justify the parallelization. This solution explicitly targets LT models; the notion of tasks with duration
is not meaningful for clock sensitive processes.

To conclude with sc_during, we add that it is possible to synchronize a during task with the
SystemC kernel. For example, the duration of the task can be extended, or a SystemC primitive can
be called. However, in the latter case, there is a major overhead because the two threads (the one
executing the kernel, and the one executing the task) must synchronize with each other. So even if
this is possible, too frequent synchronizations will induce a dramatic slowness in the simulation.

6.5. TLM without SystemC

The authors of [38,39] present a parallel TLM simulation kernel not based on a SystemC layer.
This removes the plurality of modeling levels enabled by SystemC, but allows fine optimization.
The authors have implemented a dynamic load balancing strategy to compute the number of
simulator instances to run, and the amount of tasks to give to each one.

7. Conclusions

Research on the parallelization of SystemC simulations has already produced different tools, and
many of them allow important performance and scalability improvements. However, in this paper
we showed that the case of LT SystemC/TLM models with few cores and hardware IPs raises a lot
of different challenges not addressed in previous work. LT models are the only option for very fast
simulation at an early stage of the design flow: they provide very good sequential performance by
abstracting details that would slow down the simulation, require lightweight modeling effort and do
not require information about detailed microarchitecture that are not yet available at this stage.

We showed that LT models exhibit characteristics that prevent most parallelization approaches
from working. Approaches that run processes in parallel within delta cycles cannot get a speed-up
greater than the number of processes runnable in this cycle, which hardly reaches four in our case.
Besides, many approaches consider that the SystemC processes must not share variables, which is
not true for TLM/LT because of the communication through function calls. As a consequence, most
existing approaches are fundamentally limited when it comes to LT models. Some approaches tackle
the problems specific to LT models. For example, sc_during [12] was designed to allow parallelization
across delta cycles and to require a minimal refactoring effort. Still, the trade-off between the amount
of refactoring and the speedup is difficult to find. Our preliminary experiments with sc_during on the
case study did not show significant speedup. The approaches in [22,34] are designed to parallelize LT
models as well. However, some aspects about the semantics (e.g., adding a split point in transactions)
or the efficiency (e.g., finding the best partitioning of a model for distributed simulation) are still
to clarify.

We believe that this paper provides a better understanding of the problem. By providing
some measurements on an industrial platform, we even quantified the issue. We hope that
these experiments will help new approaches to emerge and to be experimented on representative
benchmarks. In future works sc_during can be tested on such industrial platforms to evaluate
the benefits and balance it with the amount of refactoring. Moreover, temporal decoupling can be
exploited better to reduce the synchronization needs between components.

Electronics 2016, 5, 22 18 of 20

Acknowledgments: Work done during a CIFRE PhD between STMicroelectronics and Verimag, funded by
STMicroelectronics, grant-aided by the ANRT. Special thanks to STMicroelectronics for providing us with the
case study.

Author Contributions: Denis Becker performed the experiments, analyzed the data and wrote the paper;
Matthieu Moy analyzed the data and contributed to write the paper; Jérome Cornet helped for the access to
the case study from STMicroelectronics, and contributed to analyze the data and to write the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.

10.

11.

12.

13.

14.

15.

16.

IEEE Standard for SystemC Language Reference Manual. https://standards.ieee.org/findstds/standard /
1666-2011.html (accessed on 16 May 2016).

Ezudheen, P.; Chandran, P.; Chandra, J.; Simon, B.; Ravi, D. Parallelizing SystemC Kernel for Fast Hardware
Simulation on SMP Machines. In Proceedings of the PADS ACM/IEEE/SCS 23rd Workshop on Principles
of Advanced and Distributed Simulation, Lake Placid, NY, USA, 22-25 June 2009; pp. 80-87.

Schumacher, C.; Leupers, R.; Petras, D.; Hoffmann, A. parSC: Synchronous Parallel SystemC Simulation
on Multi-core Host Architectures. In Proceedings of the IEEE/ACM/IFIP International Conference
on Hardware/Software Codesign and System Synthesis, Scottsdale, AZ, USA, 24-29 October 2010;
pp. 241-246.

Nanjundappa, M.; Patel, H.; Jose, B.; Shukla, S. SCGPSim: A Fast SystemC Simulator on GPUs.
In Proceedings of the Asia and South Pacific Design Automation Conference (ASP-DAC), Taipei, Taiwan,
18-21 January 2010; pp. 149-154.

Chopard, B.; Combes, P.; Zory,]. A Conservative Approach to SystemC Parallelization. In Proceedings of
the Computational Science, ICCS, Reading, UK, 28-31 May 2006; Volume 3994; pp. 653-660.

Viaud, E.; Pécheux, F,; Greiner, A. An Efficient TLM/T Modeling and Simulation Environment Based on
Conservative Parallel Discrete Event Principles. In Proceedings of the Design, Automation and Test in
Europe (DATE), Munich, Germany, 6-10 March 2006; Volume 1, pp. 1-6.

Vieira De Mello, A.; Maia Pessoa, I.; Greiner, A.; Pécheux, F. Parallel Simulation of SystemC TLM 2.0
Compliant MPSoC on SMP Workstations. In Proceedings of the Design, Automation and Test in Europe
(DATE), Dresden, Germany, 8-12 March 2010; pp. 606—609.

Domer, R.; Chen, W.; Han, X. Parallel Discrete Event Simulation of Transaction Level Models.
In Proceedings of the Asia and South Pacific Design Automation Conference (ASP-DAC), Sydney,
Australia, 30 January-2 February 2012; pp. 227-231.

Jones, S. Optimistic Parallelisation of SystemC. Master’s Thesis, Université Joseph Fourier, Grenoble,
France, 2011.

Weinstock,].H.; Schumacher, C.; Leupers, R.; Ascheid, G.; Tosoratto, L. Time-Decoupled Parallel SystemC
Simulation. In Proceedings of the Design, Automation and Test in Europe (DATE), Dresden, Germany,
24-28 March 2014; pp. 191:1-191:4.

Combes, P.; Caron, E.; Desprez, F; Chopard, B.; Zory,]. Relaxing Synchronization in a Parallel SystemC
Kernel. In Proceedings of the IEEE International Symposium on Parallel and Distributed Processing with
Applications (ISPA), Sydney, Australia, 10-12 December 2008.

Moy, M. Parallel Programming with SystemC for Loosely Timed Models: A Non-Intrusive Approach.
In Proceedings of the Design, Automation and Test in Europe (DATE), Grenoble, France, 18-22 March 2013.
Cornet, J. Séparation des Aspects Fonctionnels et non-Fonctionnels dans les Modeles Transactionnels des
Systemes sur Puce. Ph.D. Thesis, INPG Grenoble, France, 2008.

Moy, M. High-Level Models for Embedded Systems. Professorial Thesis (Habilitation a Diriger des
Recherches), Université de Grenoble, Verimag, France, 2014.

OSCI TLM-2.0 Language Reference Manual. http://www.accellera.org/images/downloads/standards/
systemc/TLM_2_0_LRM.pdf (accessed on 16 May 2016).

Grofe, D.; Drechsler, R.; Linhard, L.; Angst, G. Efficient Automatic Visualization of SystemC Designs.
In Proceedings of the Forum on Specification Design Languages (FDL), Frankfurt, Germany, 2003;
pp- 646-658.

Electronics 2016, 5, 22 19 of 20

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Berner, D.; Talpin, J.P.; Patel, H.D.; Mathaikutty, D.; Shukla, S.K. SystemCXML: An Extensible SystemC
Front end Using XML. In Proceedings of the Forum on Specification Design Languages (FDL), Lausanne,
Switzerland, 2005; pp. 405-409.

Albrecht, C.; Eibl, C.J.; Hagenau, R. A Loosely-Coupled Graphical User Interface for Run-Time Control of
SystemC Simulation Models. IJSSST 2006, 7, 1-11.

Genz, C.; Drechsler, R.; Angst, G.; Linhard, L. Visualization of SystemC Designs. In Proceedings of the
IEEE International Symposium on Circuits and Systems (ISCAS), New Orleans, LA, USA, 27-30 May 2007;
pp- 413-416.

Drechsler, R.; Stoppe, J.U. Hardware/Software Co-Visualization on the Electronic System Level using
SystemC. In Proceedings of the International Conference on VLSI Design, Kolkata, India, 4-8 January 2016.
Trams, M. Conservative Distributed Discrete Event Simulation with SystemC using Explicit Lookahead.
Digital Force White Paper. http:/ /digital-force.net/publications (accessed on 16 May 2016).

Schumacher, C.; Weinstock, J.H.; Leupers, R.; Ascheid, G.; Tosoratto, L.; Lonardo, A.; Petras, D.; Andreas,
H. legaSCi: Legacy SystemC Model Integration into Parallel SystemC Simulators. In Proceedings
of the Workshop on Virtual Prototyping of Parallel and Embedded Systems, in Proceedings of Parallel
and Distributed Processing Symposium Workshops PhD Forum (IPDPSW), Cambridge, MA, USA,
20-24 May 2013; pp. 2188-2193.

Domer, R.; Chen, W.; Han, X.; Gerstlauer, A. Multi-Core Parallel Simulation of System-Level Description
Languages. In Proceedings of the Asia and South Pacific Design Automation Conference (ASP-DAC),
Yokohama, Japan, 25-28 January 2011.

Bombieri, N.; Vinco, S.; Bertacco, V.; Chatterjee, D. SystemC Simulation on GP-GPUs: CUDA vs. OpenCL.
In Proceedings of the International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), Tampere, Finland, 2012.

Sinha, R.; Prakash, A.; Patel, H. Parallel Simulation of Mixed-Abstraction SystemC Models on GPUs and
Multicore CPUs. In Proceedings of the Asia and South Pacific Design Automation Conference (ASP-DAC),
Sydney, Australia, 30 January—2 February 2012; pp. 455-460.

Ventroux, N.; Peeters, J.; Sassolas, T.; Hoe, J. Highly-Parallel Special-Purpose Multicore Architecture for
SystemC/TLM Simulations. In Proceedings of the International Conference on Embedded Computer
Systems: Architectures, Modeling, and Simulation (SAMOS), Agios Konstantinos, Greece, 14-17 July 2014;
pp- 250-257.

Ainey, L.; Efrati, A.; Weiss, S. Parallel Cycle-Accurate SystemC Kernel. In Proceedings of the IEEE 28th
Convention of Electrical Electronics Engineers in Israel (IEEEI), Eilat, Israel, 3-5 December 2014; pp. 1-5.
Bouzouzou, Y. Accélération des Simulations de Systémes sur Puce au Niveau Transactionnel. Master’s
Thesis (Diplome de Recherche Technologique), Université Joseph Fourier, Grenoble, France, 2007.

Chen, W.; Domer, R. Optimized Out-of-order Parallel Discrete Event Simulation Using Predictions.
In Proceedings of the Design, Automation and Test in Europe (DATE), Grenoble, France, 18-22 March 2013;
pp- 3-8.

Reder, S.; Roth, C.; Bucher, H.; Sander, O.; Becker,]. Adaptive Algorithm and Tool Flow for Accelerating
SystemC on Many-Core Architectures. Microprocess. Microsyst. 2015, 39, 1063-1075.

Maia Pessoa, 1.; Vieira De Mello, A.; Pécheux, F.; Greiner, A. Parallel TLM Simulation of MPSoC on SMP
Workstations: Influence of Communication Locality. In Proceedings of the International Conference on
Microelectronics (ICM), Cairo, Egypt, 19-22 December 2010, pp. 359-362.

Peeters, J.; Ventroux, N.; Sassolas, T.; Lacassagne, L. A SystemC TLM Framework for Distributed
Simulation of Complex Systems with Unpredictable Communication. In Proceedings of the Conference on
Design and Architectures for Signal and Image Processing (DASIP), Tampere, Finland, 2-4 November 2011;
pp- 1-8.

Weinstock, J.; Leupers, R.; Ascheid, G. Parallel SystemC Simulation for ESL Design Using Flexible
Time Decoupling. In Proceedings of the International Conference on Embedded Computer Systems:
Architectures, Modeling, and Simulation (SAMOS), Samos, Greece, 19-23 July 2015; pp. 378-383.

Sauer, C.; Bluethgen, H.M.; Loeb, H.P. Distributed Loosely-Synchronized SystemC/TLM Simulations of
Many-Processor Platforms. In Proceedings of the Forum on Specification and Design Languages (FDL),
Munich, Germany, 14-16 October 2014; Volume 978-2-9530504-9-3; pp. 1-8.

Electronics 2016, 5, 22 20 of 20

35.

36.

37.

38.

39.

Ventroux, N.; Sassolas, T. A New Paralle]l SystemC Kernel Leveraging Manycore Architectures.
In Proceedings of the Design, Automation and Test in Europe (DATE), Dresden, Germany, 2016.
Weinstock, J.H.; Leupers, R.; Ascheid, G.; Petras, D.; Hoffmann, A. SystemC-Link: Parallel SystemC
Simulation using Time-Decoupled Segments. In Proceedings of the Design, Automation and Test in Europe
(DATE), Dresden, Germany, 2016.

Funchal, G.; Moy, M. jTLM: An Experimentation Framework for the Simulation of Transaction-Level
Models of Systems-on-Chip. In Proceedings of the Design, Automation and Test in Europe (DATE),
Grenoble, France, 14-18 March 2011.

Khaligh, R.; Radetzki, M. Modeling Constructs and Kernel for Parallel Simulation of Accuracy Adaptive
TLMs. In Proceedings of the Design, Automation and Test in Europe (DATE), Dresden, Germany,
8-12 March 2010; pp. 1183-1188.

Khaligh, R.; Radetzki, M. A Dynamic Load Balancing Method for Parallel Simulation of Accuracy Adaptive
TLMs. In Proceedings of the Forum on Specification Design Languages (FDL), Southampton, UK,
14-16 September 2010; pp. 1-6.

@ (© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC-BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Background
	Definitions
	SystemC Scheduling
	Time Modeling
	Communication Between SystemC Processes

	Problem Statement
	Profiling Method
	Related Tools
	Presentation
	Trace Recording
	Visualization

	Results
	Overview
	Number of Runnable Processes per Cycle
	Influence of Randomized Waits on Number of Processes per Cycle
	Wall-Clock Duration
	Summary

	Existing Parallelization Approaches
	Parallelization Inside Cycles
	Dependency Analysis
	Distributed Time/Relaxing Synchronizations
	Tasks with Duration
	TLM without SystemC

	Conclusions

