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Abstract: Since the parasitic voltage ringing and switching power losses limit the operation of
active devices at elevated frequencies; therefore, a higher-order inductor-capacitor (LC) filter is
commonly used, which offers extended attenuation above the cutoff frequency and thus, improves
the total harmonic distortion (THD) of the amplifier. This paper applies the concept of integral
sliding-mode control to a fourth-order class-D amplifier. Two fixed-frequency double integral
sliding-mode (FFDISM) controllers are proposed, where one uses the inductor current while the other
involves the capacitor current feedback. Their equivalent control equations are derived, but from
the realization viewpoint, the controller using the capacitor current feedback is advantageous and,
therefore, is selected for final implementation. The performance of the proposed FFDISM controller
for fourth-order GaN class-D amplifier is confirmed using simulation and experimental results.

Keywords: fixed-frequency double integral sliding-mode (FFDISM); class-D amplifier; Q-factor;
GaN cascode

1. Introduction

For decades, silicon transistors have dominated the power amplifiers industry due to the low-cost
and well-established fabrication technology. Since the transistors in a linear power amplifier operate
in the active region where power dissipation is significant, thereby they experience poor efficiency.
In addition to advanced fabrication techniques like laterally diffused metal oxide semiconductor
(LDMOS) [1,2], different control strategies such as Doherty’s architecture and load-modulation were
adopted to improve the efficiency of a linear amplifier [3]. Due to a narrow margin for improvement
left in Si, the demand for high operating voltage, temperature and efficiency has enabled the trend
towards wide band-gap (WBG) materials. The attractive features such as a high electric breakdown
field, low thermal impedance, and saturated electron drift velocity, motivated their rapid substitution
for Si counterparts [4]. Particularly, GaN high electron mobility transistor (HEMT) has become a
potential candidate for large bandwidth and low-noise power amplifiers [5].

The earlier release of high-power GaN HEMT was a depletion-mode device also referred to as
normally-on FET [6]. Since it requires additional control and protection circuitry for a safe power-up
of power converters built with normally-on FETs, therefore, enhancement-mode FETs are preferred
over depletion-type devices. There were several attempts made to fabricate a normally-off GaN
HEMT, including a recessed gate structure [7], Si substrate with p-type GaN [8], and fluorine plasma
treatment [9]. However, due to a low threshold and gate breakdown voltages, the proposed HEMTs
are vulnerable to spurious turn-on and gate failure. Alternatively, to achieve a normally-off GaN
HEMT, a cascode configuration has been proposed by combining the GaN HEMT with a low-voltage Si
metal oxide semiconductor field effect transistor (MOSFET) [10]. Due to the low-cost leaded packages
and superior characteristics, GaN cascode is a dominating power device and is preferred over the
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enhancement-mode HEMTs [11]. They are commonly available in TO-220 package, which enables
easy assembling of the heat-sink and does not need special equipment for soldering to printed circuit
board (PCB).

The class-D amplifier motivated by its high-efficiency (ideally 100%) encodes the reference signal
into a pulse-width modulation output using a switching power circuit, with pulse-width proportional
to the amplitude of the reference signal [12]. Since the operation of active devices in either the cutoff
or saturation region significantly reduces the power dissipation, therefore, the heat sink requirement
relaxes. In the case of battery-powered devices, high efficiency means longer battery life. Thus, class-D
amplifier is the ideal choice for miniaturized high-power amplification as compared to the class-A,
class-B and class-AB. Today, in addition to the stereo system, class-D amplifiers are also used in
a high-precision control application, including the wafer positioning system, magnetic resonance
imaging (MRI), and power hardware-in-loop simulation (PHIL) [13,14].

An LC filter demodulates the output pulse-train by attenuating high-frequency content and
produces the amplified output with minimum distortion. More LC stages are commonly added at the
output of a class-D amplifier to meet the desired level of THD at a given switching frequency [15].
Low THD amplifier with high-power capability has applications in AC power sources and is used
for the emulation of certain characteristics of an electrical system. However, the higher-order class-D
amplifier causes an irregular-shaped frequency response due to multiple resonant frequencies in the
uncompensated architecture [16]. Furthermore, the peaking at resonant frequency increases with an
increase in load resistance and approaches zero-damping under the no-load condition. Therefore, it is
required to have well-damped characteristics of a higher-order class-D amplifier, almost independent
of load variations.

The feedback compensation of a class-D amplifier with a single LC stage is extensively investigated
in the literature [17,18]. However, for the fourth-order system, the reported passive damping uses
a low-valued resistor in series with filter capacitors to flatten the frequency response, at the cost of
reduced efficiency [19]. Feedback controller supplemented with passive damping was adopted in
Reference [20], which results in relatively lower power losses. In addition to an RL-branch between
the capacitive filter of the first and inductive filter of the second LC stage, authors in Reference [21]
proposed a multi-loop controller. Employment of such networks degrades the efficiency, which is the
sole advantage of the class-D amplifier. Since passive damping negatively affects the efficiency of the
amplifier, the application of high-cost GaN cascode becomes vestigial.

A purely feedback-controlled fourth-order class-D amplifier presented in Reference [22], achieved
a peak efficiency of 87%. However, the controller was extremely complex as it requires feedback from
all four state-variables. Feedback compensation using an integral sliding-mode (ISM) controller of the
fourth-order class-D amplifier has been recently reported in Reference [23]. Nevertheless, it is inhibited
for use due to the variable switching frequency nature of hysteretic modulation (HM) [24,25]. Therefore,
a promising feedback controller with pulse-width modulation (PWM) is required, which ensures fixed
switching frequency, flatter frequency response, reduced tracking error and a high-efficiency.

Since the equivalent control of a fixed-frequency sliding-mode controller is extracted from the
sliding-surface by a differentiation operation [26]. Therefore, it is obvious to add a double integral
term in the sliding-surface essential for ensuring reduced steady-state error [27,28]. However, the
design of the sliding-surface becomes more challenging and would require tedious manipulations
while deriving the equivalent control [29,30]. Moreover, due to a number of feedback signals, the
resulting controller may not be practical. Thus, the FFDISM is proposed here, with two different
control structures based on sliding-surfaces: One uses the inductor current while the other utilizes the
capacitor current feedback to flatten the frequency response. The controller that offers high efficiency
and realization using reduced opamp count is implemented for experimental verification.

The rest of this paper is organized as follows: Section 2 presents the mathematical model of the
fourth-order class-D amplifier, which is an essential step for filter and controller design. Section 3
focuses on the derivation of the equivalent control for the two controllers where one uses the inductor
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current while the other involves the capacitor current feedback. In Section 4, the circuit realization
of the proposed controllers is discussed. Simulation and experimental results are given in Section 5,
followed by conclusion in Section 6.

2. Modeling of Fourth-Order Class-D Amplifier

The role of the second LC stage is to improve the THD by reducing the residuals of switching
harmonics [31]. It is important to investigate the effect of the additional LC stage on frequency response
using average modeling, in order to ease the controller design process. Modeling of the power stage
presented here neglects the non-idealities such as the forward voltage drop in the diode, conduction
resistance of MOSFET and dead-time delay. Figure 1a,b shows the equivalent circuits during the two
class-D operation modes determined by the control signals, i.e., uH and uL. These switching signals
can attain the binary values; 1 and 0 for the on and off state of MOSFET respectively. For uH = 1, the
low-side GaN cascode SL is in the off-state while the high-side SH is in the conduction state, and the
voltage vs clamps to VIN/2 as shown in Figure 1a. Similarly, for uH = 0, voltage vs clamps to−VIN/2 as
shown in Figure 1b. The dynamic equations of the converter for each switching state are expressed as{

LAd diLA
dt = d VIN

2 − vA when uH = 1

LAd diLA
dt = −d VIN

2 − vA when uH = 0
(1)

The subscript “A” and “B” depict parameters of the first and second LC stage. Thus, LA, iLA,
and vA are the inductance of the first LC stage, the current through LA, and the voltage across CA

respectively. VIN is the source, and vo is the output voltage. The average-model of the class-D amplifier,
by combining (1) using duty cycle dH = avg(uH) is expressed as

LA
diLA

dt = VIN
2 (2dH − 1)− vA

CA
dvA
dt = iLA − iLB

LB
diLB
dt = vA − vB

CB
dvB
dt = iLB − vB

R

(2)

where LB, iLB, and vB are the inductance of the second LC stage, the current through LB, and the voltage
across CB, respectively, and the load resistance is denoted by R. The dynamics of the class-D amplifier
may also be written in state-space form as

.
x = f (x, t) + g(x, u, t) (3)

where x is the state vector, and f and g are functions of the state vector explicitly given in (4).

x =
[

iLA vA iLB vB

]T

f (.) =


0 −1

LA
0 0

1
CA

0 −1
CA

0
0 1

LB
0 −1

LB

0 0 1
CB

1
RCB

, g(.) =
[

VIN
2L (2dH − 1) 0 0 0

]T (4)

The open-loop transfer function from vS to output voltage vo can be deduced from (4) as:

vo(s)
vS(s)

=
R

s4LALBCACBR + s3LALBCA + s2(LACA + LBCB + LACB)R + s(LA + LB) + R
(5)
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Figure 1. Equivalent circuits of fourth-order GaN class-D amplifier when (a) uH = 1 (b) uH = 0.

Figure 2 shows the frequency response of the fourth-order class-D amplifier in an open-loop
configuration. Using the filter values set (i) in Table 1 results in resonant frequencies at 14 kHz and
51 kHz, as shown in Figure 2a. The two frequencies are somewhat close to each other as the relations
between the inductances and capacitances of the two stages are LA = 2LB and CB = 2CA respectively.
The frequency response is repeated in Figure 2b using the filter values from the set (ii) in Table 1,
resulting in resonant frequencies at 14 kHz and 114 kHz. It indicates that the first resonant frequency is
independent of LB and merely depends on LA, CA, and CB. Moreover, the separation between the two
frequencies determines the damping of the second resonance. The second frequency can be displaced
adequately by using an appropriate integer multiplier n ≥ 2 such that LA = nLB [9]. It is also noted
that the resonant peaking increases with the load resistance and approaches zero-damping under a
no-load condition.
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Figure 2. Open-loop frequency response of GaN class-D amplifier with fourth-order filter using
(a) value set-i in Table 1 and (b) value set-ii in Table 1.

Table 1. Parameters of GaN class-D amplifier with fourth-order filter.

Parameter Symbol
Value Set

i ii

source voltage VIN 100 V 100 V
first stage filter LA, CA 36 µH, 1 µF 36 µH, 1µF

second stage filter LB, CB 18 µH, 2 µF 3 µH, 2 µF

To improve the frequency response of fourth-order GaN class-D amplifier, the FFDISM controller
is proposed. Two different sliding-surfaces are proposed; each includes an extra current term (either
inductor or capacitor current of the first LC stage) in addition to voltage error in the state variables.
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The coefficients of the sliding-surfaces are determined using the stability condition. The controller
using capacitor current is compared to the controller with an inductor current in terms of high-efficiency
and ease of implementation. The simulation and experimental results are presented to verify the
performance of the FFDISM controller using capacitor current feedback.

3. FFDISM Controller of Fourth-Order GaN Amplifier

The design starts by proposing a sliding-surface as a function of state-variables followed by the
derivation of the equivalent control, and finally choosing the coefficients of the sliding-surfaces using
stability condition [32,33]. Two different sliding-surfaces are proposed here; the first includes the
inductor current feedback while the later employs capacitor current feedback.

3.1. Inductor Current Feedback

The state-variables for FFDISM controller are denoted by δ1 and δ2 and expressed as{
δ1 =

∫
e dt− ρLAiLA

δ2 =
∫ {

(
∫

e dt )− ρLAiLA
}

dt
(6)

where e is the voltage error between reference signal vref and scaled down output voltage βvo, iLA

is inductor current feedback, ρ and β are scaling factors. Differentiating the set of equations in (6),
substituting from (4) gives: 

.
δ1 = (vref − βvo)− ρ

(
VIN

2 m− vA

)
.
δ2 =

∫ (
vre f − βvo

)
dt − ρLAiLA

(7)

where m = 2dH − 1 is the modulation signal.
The sliding-surface is proposed as the weighted sum of δ1 and δ2 and expressed as

S1 = γ1δ1 + γ2δ2 (8)

where the weights γ1 and γ2 are sliding coefficients. By differentiating the sliding-surface in (8), using
(4), and finally solving
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V
2
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v v dt L i

δ β ρ

δ β ρ
⌠

⌡

  = − − −   

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where m = 2dH-1 is the modulation signal. 
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1 1 1 2 2S γ δ γ δ= +  (8) 
where the weights γ1 and γ2 are sliding coefficients. By differentiating the sliding-surface in (8), using 
(4), and finally solving Ṡ1 = 0 for mequ gives the equivalent control [34] as 

( ) ( )IN 2 2
equ A LA A ref o ref o

1 12
V

m L i v v v v v dt
β γ β γ βββ β β

γ ρ γ ρ
⌠

⌡

      = − + + − + −     
      

 (9) 

where the equivalent control is bounded as |mequ| ≤ 1. By further manipulation, the equivalent control 
signal as a function of controller gains can be expressed as 

( ) ( )IN
equ 1 LA A 2 ref o 3 ref o2 m

V
m v i v v v v v dt

β
α β α β α β

⌠

⌡

  = = − + + − + − 
 

 (10) 

where 

2 2
1 A 2 3

1 1
, ,L

γ β γ ββα α α
γ ρ γ ρ

    
= = =    

    
 (11) 

The gains α1, α2, and α3 derived using the necessary existence and stability condition determines 
the controller performance. The selected range of gains using existence condition determines the 
region where state trajectory will always be directed to the sliding-surface. By satisfying the 
Lyapunov condition Ṡ1 × S1 < 0, gives the existence condition: 

1 = 0 for mequ gives the equivalent control [34] as

mequ

(
βVIN

2

)
= −

(
LA

γ2β

γ1

)
iLA + βvA +

(
β

ρ

)
(vref − βvo) +

(
γ2β

γ1ρ

)∫ (
vre f − βvo

)
dt (9)

where the equivalent control is bounded as |mequ| ≤ 1. By further manipulation, the equivalent
control signal as a function of controller gains can be expressed as

mequ

(
βVIN

2

)
= vm = −α1iLA + βvA + α2(vref − βvo) + α3

∫ (
vre f − βvo

)
dt (10)

where

α1 =

(
LA

γ2β

γ1

)
, α2 =

(
β

ρ

)
, α3 =

(
γ2β

γ1ρ

)
(11)

The gains α1, α2, and α3 derived using the necessary existence and stability condition determines
the controller performance. The selected range of gains using existence condition determines the
region where state trajectory will always be directed to the sliding-surface. By satisfying the Lyapunov
condition
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( ) ( )IN
equ 1 LA A 2 ref o 3 ref o2 m

V
m v i v v v v v dt

β
α β α β α β

⌠

⌡

  = = − + + − + − 
 

 (10) 

where 

2 2
1 A 2 3

1 1
, ,L

γ β γ ββα α α
γ ρ γ ρ

    
= = =    

    
 (11) 

The gains α1, α2, and α3 derived using the necessary existence and stability condition determines 
the controller performance. The selected range of gains using existence condition determines the 
region where state trajectory will always be directed to the sliding-surface. By satisfying the 
Lyapunov condition Ṡ1 × S1 < 0, gives the existence condition: 

1 × S1 < 0, gives the existence condition: β
(

VIN−2vA
2

)
> −α1iLA + α2(vref − βvo) + α3

∫ (
vre f − βvo

)
dt

β
(

VIN+2vA
2

)
> α1iLA − α2(vref − βvo)− α3

∫ (
vre f − βvo

)
dt

(12)
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The stability condition can be derived by substituting
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where m = 2dH-1 is the modulation signal. 
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(4), and finally solving Ṡ1 = 0 for mequ gives the equivalent control [34] as 
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where the equivalent control is bounded as |mequ| ≤ 1. By further manipulation, the equivalent control 
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V
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β
α β α β α β

⌠
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where 

2 2
1 A 2 3

1 1
, ,L

γ β γ ββα α α
γ ρ γ ρ
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The gains α1, α2, and α3 derived using the necessary existence and stability condition determines 
the controller performance. The selected range of gains using existence condition determines the 
region where state trajectory will always be directed to the sliding-surface. By satisfying the 
Lyapunov condition Ṡ1 × S1 < 0, gives the existence condition: 

1 = 0, which results in the following
characteristic equation

γ1
.
e1 + γ2

.
e2 = 0

⇒ γ1
.
δ1 + γ2δ1 = 0

(13)

where the straightforward criterion γ2/γ1 > 0 ensures the asymptotic stability. Therefore, the ratio of
sliding coefficients is chosen as γ2/γ1 = 1.5πf b where f b is the natural frequency of the closed-loop
system. Using LA = 33 µH, f b = 10 kHz and β = ρ in (11) gives the controller gains as:

α1 =

(
LA

γ2β

γ1

)
= 0.067, α2 =

(
β

ρ

)
= 1, α3 =

(
γ2β

γ1ρ

)
= 47124 (14)

3.2. Capacitor Current Feedback

The controller design procedure is repeated using a different sliding-surface which involves
capacitor current iCA. The state-variables for FFDISM controller are redefined as ∆1 and ∆2{

∆1 =
∫

e dt− σLAiCA
∆2 =

∫ {
(
∫

e dt )− σLAiCA
}

dt
(15)

where e is the voltage error between reference signal vref and scaled down output voltage βvo, β and σ

are scaling factors. Differentiating Equation (15) and substituting (4) gives{ d∆1
dt = (vref − βvo)− σLA

d
dt (iLA − iLB)

d∆2
dt =

∫ (
vre f − βvo

)
dt− σLAiCA

(16)

The sliding-surface for the FFDISM controller is defined as

S2 = ς1∆1 + ς2∆2 (17)

where ς1 and ς2 are sliding coefficients. The equivalent control [34] is obtained by differentiating the
sliding-surface S2, using (4) and finally solving
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where m = 2dH-1 is the modulation signal. 
The sliding-surface is proposed as the weighted sum of δ1 and δ2 and expressed as 

1 1 1 2 2S γ δ γ δ= +  (8) 
where the weights γ1 and γ2 are sliding coefficients. By differentiating the sliding-surface in (8), using 
(4), and finally solving Ṡ1 = 0 for mequ gives the equivalent control [34] as 
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where the equivalent control is bounded as |mequ| ≤ 1. By further manipulation, the equivalent control 
signal as a function of controller gains can be expressed as 

( ) ( )IN
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V
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β
α β α β α β
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where 

2 2
1 A 2 3

1 1
, ,L

γ β γ ββα α α
γ ρ γ ρ
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The gains α1, α2, and α3 derived using the necessary existence and stability condition determines 
the controller performance. The selected range of gains using existence condition determines the 
region where state trajectory will always be directed to the sliding-surface. By satisfying the 
Lyapunov condition Ṡ1 × S1 < 0, gives the existence condition: 

2 = 0 for equivalent control mequ

mequ

(
βVIN

2

)
= −

(
LA

ς2β
ς1

)
iCA + βvo +

βLA
LB

(βvA − βvo) +
(

β
σ

)
(vref − βvo) +

(
ς2β
ς1σ

)∫ (
vre f − βvo

)
dt (18)

By further manipulation, the equivalent control signal as a function of controller gains can be
expressed as

mequ

(
βVIN

2

)
= vm = −λ 1iCA + βvo + λ 2(vref − βvo) + λ 4(βvA − βvo) + λ 3

∫ (
vre f − βvo

)
dt (19)

where

λ 1 =

(
LA

ς2β

ς1

)
, λ 2 =

(
β

σ

)
, λ 3 =

(
ς2β

ς1σ

)
, λ 4 =

(
βLA
LB

)
(20)

The controller gains λ1, λ2, λ3, and λ4 are derived using existence and stability conditions.
Satisfying the Lyapunov condition
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where 
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The gains α1, α2, and α3 derived using the necessary existence and stability condition determines 
the controller performance. The selected range of gains using existence condition determines the 
region where state trajectory will always be directed to the sliding-surface. By satisfying the 
Lyapunov condition Ṡ1 × S1 < 0, gives the existence condition: 

2 × S2 < 0, ensures the existence condition: β
(

VIN−2vo
2

)
> −λ 1iCA + λ 2(vref − βvo) + λ 4(βvA − βvo) + λ 3

∫ (
vre f − βvo

)
dt

β
(

VIN+2vo
2

)
> λ 1iLA − λ 2(vref − βvo)− λ 4(βvA − βvo)− λ 3

∫ (
vre f − βvo

)
dt

(21)

The stability condition can be derived using
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The gains α1, α2, and α3 derived using the necessary existence and stability condition determines 
the controller performance. The selected range of gains using existence condition determines the 
region where state trajectory will always be directed to the sliding-surface. By satisfying the 
Lyapunov condition Ṡ1 × S1 < 0, gives the existence condition: 

= 0, which gives the characteristic equation as
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ς1
d∆1
dt + ς2

d∆2
dt = 0

⇒ ς1
d∆1
dt + ς2∆1 = 0

(22)

The criterion ς2/ς1 > 0 ensures stability. Therefore, the ratio of sliding coefficients is chosen as ς2/ς1

= πf b where f b is the natural frequency of the closed-loop system. The controller parameters, using
f b = 10 kHz and β = σ in (20), are given as:

λ 1 =

(
LA

ς2β

ς1

)
= 0.045, λ 2 =

(
β

σ

)
= 1, λ 3 =

(
ς2β

ς1σ

)
= 31416, λ 4 =

(
βLA
LB

)
= 0.08 (23)

The two FFDISM configurations corresponding to sliding-surfaces S1 and S2 are implemented by
translating their respective equivalent control equations to analog systems. The FFDISM controller
implemented using (10) is shown in Figure 3a, where the difference between the scaled output voltage
βvo and reference signal vref, is applied to the proportional integral (PI-type) controller. In addition to vo,
it also requires feedback voltage vA and current iLA from the first LC stage. The closed-loop response is
determined by the gains α2 − α3 and plays the important role of the error signal e processing. Similarly,
Figure 3b shows the FFDISM controller involving the capacitor current iCA feedback implemented
using (19) where the gains λ1 − λ4 determine the response of the closed-loop system. It is observed that
the FFDISM controller for fourth-order class-D amplifier requires more feedback variables, i.e., beside
iLA and iCA the controller in Figure 3a,b respectively requires βvA and β(vA − vB). These additional
variables make the circuit implementation more challenging. Therefore, it is important to select the
controller that in addition to shaping the frequency response also offers ease of circuit implementation.
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Figure 3. FFDISM controller of fourth-order class-D amplifier using (a) iLA feedback (CNRL1) (b) iCA

feedback (CNRL2).

4. Realization of FFDISM Controller

High switching frequency necessitates the analog implementation of the controller using low-cost,
single-supply opamps. Figures 4 and 5 show the circuit realization of FFDISM controllers for
fourth-order GaN class-D amplifier, with additional iLA and iCA feedback respectively. For ease
of reference, the controller involving inductor current and capacitor current is pointed as CNRL1
and CNRL2 respectively. Single-supply opamps are used due to its rail-to-rail input and low power
consumption as compared to the dual-supply counterparts. The Vcc and Vb are opamps dc supply
and mid-point bias voltage respectively. Here, both FFDISM designs are evaluated to find the one that
offers ease of implementation, determined by the required number of opamps. The additional voltage
feedback signals, i.e., vA in CNRL1 and β(vA − vB) in CNRL2 unanimously increases the opamp count.
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However, dc-biasing of iLA is required, which increases the opamp count in CNRL1 as compared
to CNRL2.
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Furthermore, the capacitor current iCA in CNRL2 is bidirectional and therefore, can be sensed
using a low-cost current transformer as there is no saturation problem. A sense resistor RSC across the
secondary of the current transformer converts the current signal into the voltage signal and adequately
scales, i.e., λ1 = 0.01RSC. This RSC carries low-current and thus, does not affect the efficiency. On the
other hand, the sense resistor for the inductor current iLA feedback in CNRL1 can cause a significant
reduction in overall efficiency. It is concluded that CNRL2 offers improvement in efficiency and
requires fewer numbers of opamps as compared to CNRL1. Therefore, FFDISM controller using the
capacitor current iCA is finally implemented for experimental testing.

In Figure 5, the voltage at node A is the scaled and biased output voltage, with the scaling factor
determined by the ratio β = R2/R1 = R4/R3 = 4 kΩ/100 kΩ. Meanwhile, Cmp2 inverts and adds bias
Vb to vref as the waveform shows at node B, with the resistors R5 = R6 = R7 = 200 kΩ. The opamp
Cmp3 serves as a proportional integral (PI-type) controller, where capacitor CF and resistors RF, RG,
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and RH together determine the proportional and integral gains as λ2 = RF RG and λ3 = 1/CFRG. Since
modulating signal is referenced to Vb = +2.5 V, the carrier signal is also biased to the same dc-level,
where its peak, denoted as hat{Vc} is given by βVIN/2 = 2 V.

A prototype of the fourth-order GaN class-D amplifier has been built using the GaN cascode
transistor, with the top and bottom sides shown in Figure 6a,b respectively. GaN cascode is realized
by combining a low-voltage Si MOSFET with a high-voltage GaN HEMT to exhibit low-conduction
and switching power losses. The TPH3006PD (Transphorm Inc., San Jose, CA, USA) available in
TO-220 package is used to realize the power circuit. A conventional totem-pole gate driver with a
low-valued gate resistance of 3 Ω is used to enable fast switching. The parasitic inductances of the
package are high, which is responsible for drain voltage overshoot followed during turn-off transient.
Therefore, an resistor-capacitor (RC) snubber across the low-side GaN cascode is used to suppress
undesired oscillations. Three 150 µF electrolytic capacitors are connected in parallel to achieve high
bus capacitance and reduce the effect of interconnection inductances.
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Figure 6. Prototype of GaN class-D amplifier (a) top-side (b) bottom side.

5. Results and Discussion

In this section, the performance of the proposed FFDISM controller is evaluated using simulation
and experimental results. First, the frequency response and step response of the closed-loop system
based on control diagram reduction are presented. This fundamental technique is useful to investigate
the effect of the inner-loop on the compensation of resonance. Furthermore, computer–based circuit
simulator i.e., Plexim Plecs is used to analyze the transient behavior of class-D amplifier using different
resistive loads. Finally, experimental results are presented for validation of FFDISM controller.

5.1. Simulation Results

Figure 7a shows the multi-loop control diagram of the class-D amplifier, while the equivalent
reduced form is shown in Figure 7b with the open-loop transfer functions Ho and Go given in (24) and
(25) respectively:

Ho =
vo(s)
vA(s)

=
R

s2LBCBR + sLB + R
(24)

vA(s)
vS(s)

=
vA(s)
vo(s)

× vo(s)
vS(s)

=
s2LBCBR + sLB + R

s4LALBCACBR + s3LALBCA + s2(LACA + LBCB + LACB) + s(LA + LB) + R
(25)

where the parameters of the amplifier are given in Table 1 (value set i), selected using second-order
Butterworth approximation. The feedback gains employed are λ4 = 0.08 and β = 0.04. Figure 8a shows
the frequency response of the closed-loop class-D amplifier using frequency sweep ranging from 10 Hz
to 300 kHz. The frequency response of the FFDISM-controlled amplifier is presented to investigate
the significance of the inner-loop for different values of the capacitor current gain λ1. It is observed
that the controller effectively mitigates the resonant peaks and promises a flatter frequency response,
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almost independent of the load. Further, the proposed control strategy is verified by analyzing the
step response in Figure 8b. The voltage overshoot and oscillations decrease with an increase in the
capacitor current gain λ1.
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Figure 8. Effect of capacitor current iC feedback on damping of fourth-order class-D amplifier (a) closed-
loop frequency response for different λ1 and (b) step response for different λ1.

The transient response of fourth-order GaN class-D amplifier is analyzed using a circuit simulator,
which offers a chance to evaluate the correctness of the proposed design. A close match to the
experimental results can be obtained by adding the nonidealities to the simulation. Therefore, parasitic
resistances of 500 mΩ and 200 mΩ are added to the filter inductors and capacitors, respectively.
A sampling time of 1ns is used to capture the simulation results with adequate accuracy at a switching
frequency of 100 kHz. Furthermore, a dead-time of 50 ns is introduced before every switching
transition. Other factors such as delay in gate driver stage, jitters in PWM, finite rise and fall time of
the gate signal are ignored; otherwise, the model takes a long time for solving.

The reference signal is a square wave of 1 kHz frequency, 50% duty cycle and 2 V peak-to-peak
amplitude. Such a reference acts as a series of periodic step changes where the slew rate of the rising
edge indicates the amplifier’s bandwidth. Simulations are performed using the resistive load of 7 Ω
and 14 Ω to observe the change in the voltage overshoot and the settling time with the load. Figure 9a
indicates that the response of the open-loop GaN class-D amplifier is strongly dependent on the load,
and the observed voltage overshoot and settling time are 9.34 V and 0.15 ms, respectively, for R = 7 Ω.
By increasing the load resistance to 14 Ω, voltage overshoot and settling time rises to 13.25 V and
0.21 ms respectively. The FFDISM controller using inductor current is also simulated, and results are
shown in Figure 9b. The improvement in response is observed using the controller gains derived
in (11). Finally, the simulation results for GaN class-D amplifier with FFDISM using the capacitor
current obtained under different loads are presented in Figure 9c. The proposed FFDISM controller
reduces the voltage overshoot and steady-state error to 0.41 V and 0.3 V, respectively, thereby proving
its superiority.
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Figure 9. Simulation-based transient response of (a) open-loop GaN class-D amplifier; (b) FFDISM
controller using inductor current; (c) FFDISM controller using capacitor current.

5.2. Experimental Results

For experimental validation, a prototype of fourth-order class-D amplifier was implemented
on PCB using GaN, available in TO-220 package. Single-supply opamps were used to translate the
equivalent control equation in (19) into the analog controller.

For measurement of the frequency response, sinusoidal reference signals (vref) of different
frequencies ranging from 10 Hz to 50 kHz were applied using a signal generator, and the corresponding
outputs were listed. The voltage gain (Av) was computed for open and closed-loop configurations, as
the ratio of the reference vref to output voltage vo. Figure 10a shows the voltage gain plotted against the
frequency of the reference signal when there is a 10 Ω resistive load. It is noted in open-loop (shown in
blue), that the voltage gain at the 33 kHz resonant frequency is 29.3 which is successfully compensated
by FFDISM controller as depicted in red.
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Figure 10. (a) Frequency response of the open-loop GaN class-D amplifier and with FFDISMC (b)
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Figure 10b shows the THD+N of GaN amplifier against the modulation index, defined as the
ratio of the carrier to reference voltage and can range from 0 to 1. The output voltage vo was recorded
using the data-acquisition card at 5 MSa/s sampling frequency, and the fast Fourier transform (FFT)
was used to extract THD+N. It was observed that FFDISM controlled fourth-order class-D amplifier
achieved improved THD+N as compared to open-loop architecture.

Figure 11a shows the experimental transient response of open-loop GaN class-D amplifier to
a reference square wave of 1 kHz frequency. It is found that with a load resistance of 10 Ω, the
resonant frequencies result in voltage overshoot of 5.2 V. Similarly, the transient response with FFDISM
controller to 1 kHz reference square wave is shown in Figure 11b, with a recorded overshoot of 1.3 V.
Thus it is validated, that the proposed controller improves the transient response of the fourth-order
class-D amplifier.
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Figure 11. Experimental results transient response of: (a) open-loop GaN class-D amplifier; (b) GaN
class-D amplifier with FFDISMC.

Furthermore, the scalogram analysis was performed, which illustrated a combined time and
frequency-domain response of the amplifier. The wavelet transform was applied to represent the
output voltage vo as a weighted sum of the limited duration wavelet functions. Figure 12a shows
the scalogram of the transient response in Figure 11a. A horizontal line in the figure represents a
particular harmonic in the output waveform with its frequency on the y-axis and magnitude given
on the color-bar. Since the square wave is a weighted sum of odd harmonics, the parallel lines below
16 kHz can synthesize it with adequate accuracy. Similarly, the line at 100 kHz is due to residual
switching noise. There is a noticeable activity in the time interval 2–4 ms and 7–9 ms due to voltage
ringing, corresponding to the resonant frequencies at 12.7 kHz and 33 kHz. Figure 12b shows the
scalogram of the transient response in Figure 11b. The shrunken oval-shaped region and the reduction
in magnitude noted on the color-bar verify the effectiveness of the FFDISM controller.

Finally, sinusoidal and triangular signals were generated using the FFDISM controlled GaN
class-D amplifier. Figure 13a shows the 1 kHz sinusoidal output voltage vo and the corresponding
current io of the fourth-order amplifier. Similarly, for a 1 kHz triangular reference, output voltage vo

and current io are shown in Figure 13b. Thus, the effectiveness of the FFDISM controller, proposed for
fourth-order class-D amplifier has been validated. Figure 14 illustrates the efficiency of GaN class-D
amplifier at different operating powers. It is observed that at 150 W power, the amplifier achieves 93%
efficiency. Moreover, the efficiency and bandwidth of the proposed class-D amplifier are compared in
Table 2, against the hysteretic modulation-based implementation. It indicates that the class-D amplifier
with PWM not only gets rid of the variable switching frequency but also improves the efficiency by
reducing switching losses.
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6. Conclusions

The FFDISM controller has been successfully applied to the GaN-based fourth-order class-D
amplifier. The fourth-order filter has been used to improve the THD of class-D amplifiers, operating
at a relatively lower switching frequency. Two different FFDISM structures were proposed using the
inductor and capacitor current. The advantages offered by the FFDISM controller using the capacitor
current over the counterpart using inductor current feedback are listed as: The bidirectional nature
of the capacitor current demands a low-cost current-transformer for feedback; the current sense
circuit does not affect the overall efficiency; and reduced opamp are required for circuit realization.
A prototype of the amplifier was implemented on a PCB. The experimental results revealed that the
proposed FFDISM controller effectively flattens the frequency response of the fourth-order amplifier,
and results in THD and voltage overshoot of 0.6% and 1 V respectively.
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