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Abstract: Development of neuromorphic systems based on new nanoelectronics materials and
devices is of immediate interest for solving the problems of cognitive technology and cybernetics.
Computational modeling of two- and three-oscillator schemes with thermally coupled VO,-switches
is used to demonstrate a novel method of pattern storage and recognition in an impulse oscillator
neural network (ONN), based on the high-order synchronization effect. The method allows storage
of many patterns, and their number depends on the number of synchronous states Ns. The modeling
demonstrates attainment of N of several orders both for a three-oscillator scheme Ng ~650 and for
a two-oscillator scheme Ns ~260. A number of regularities are obtained, in particular, an optimal
strength of oscillator coupling is revealed when N; has a maximum. Algorithms of vector storage,
network training, and test vector recognition are suggested, where the parameter of synchronization
effectiveness is used as a degree of match. It is shown that, to reduce the ambiguity of recognition,
the number coordinated in each vector should be at least one unit less than the number of oscillators.
The demonstrated results are of a general character, and they may be applied in ONNs with various
mechanisms and oscillator coupling topology.

Keywords: oscillatory neural networks; pattern recognition; higher order synchronization; thermal
coupling; vanadium dioxide

1. Introduction

Usage of artificial neural networks [1] for information processing allows mastering the
problems that arise when traditional computation schemes are applied in such areas as pattern
and speech recognition [2], and data computation and encoding [3]. Therefore, the important research
trends include studying the modes of oscillator neural network (ONN) operation and training,
implementation of associative memory modes based, for example, on weakly coupled phase oscillators
(Kuramoto model) [4] or impulse oscillators [5,6]. The effect of synchronization plays a crucial role in
ONN operation, and is often used as a marker of ONN action, for example, in pattern recognition event.

There is a class of ONNs based on relaxation oscillators that generate subsequent pulses (spikes).
These oscillators, in turn, are composed of electronic components with resistive switching effect, for
example, VO,-switches [7,8], 1T-TaS, charge density wave devices [9-11], thyristors [12], tunneling
diodes [13], resistive memory elements [14], spin-torque nano-oscillators [15]. Such ONNs appear to
be interesting because of hardware solution simplicity, as well as compactness and energy efficiency
of the developed micro- and nanoelectronic self-oscillators. VO,-based oscillators, as the elements of
ONN s, have been chosen because they ensure rapid electric switching (~10 ns) [16], manufacturability
with high degree of nanoscaling [17] and, above all, because of the pronounced effect of thermal

Electronics 2018, 7, 266; d0i:10.3390/ electronics7100266 www.mdpi.com/journal/electronics


http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-9341-1831
https://orcid.org/0000-0002-1771-6502
http://dx.doi.org/10.3390/electronics7100266
http://www.mdpi.com/journal/electronics
http://www.mdpi.com/2079-9292/7/10/266?type=check_update&version=2

Electronics 2018, 7, 266 20f17

coupling that simplifies ONN assembly and circuit engineering of galvanically isolated oscillators.
Consequently, VO,-oscillators started being used as the prototypes of neuro-oscillators for cognitive
technology [8,16,18].

In ONNSs, the system demonstrates frequency and phase synchronization [19-22] and,
also, synchronization of high order [17,23] at certain control parameters, such as parameters
of an oscillator scheme or coupling strengths between the oscillators. The method proposed,
here, of pattern storage and recognition, is based on the effect of high-order synchronization,
that has been experimentally demonstrated through thermally coupled VO,-oscillators [17]. In many
studies [22,24,25], patterns to be stored are expressed through a set of vectors. Vector coordinates
contain information about the pattern and unambiguously associate it with one of possible variants.
For instance, the vector of the object’s color in RGB coordinates (white color—RGB (255,255,255)) may
be used as a 3-dimension vector. There are some methods of vector storage based on oscillator elements’
synchronization in ONNSs, and one of them is presented in paper [20]. To store E vector, a phase-shift
keying method of a test vector T is specified by weight matrix setting; at the second stage, the weights
are sharply changed to the initial values (corresponding to the stored vectors), and the system arrives
at one of the stable combinations of phase shift E. However, this phase method has the following
drawbacks: N? couplings with tunable weights and a two-stage procedure of pattern recognition.

A second known method of vector storage is a frequency-shift keying method of encoding,
based on synchronized frequency shift [22]. According to this method, vector E is stored through
oscillator frequency shifts against the central frequency of oscillator array F synchronization (on the
first harmonic) per the values corresponding to the vector coordinates E = (01, w2, --- , dwN)-
Recognition of test vector T occurs at the reverse shift of frequencies and, in the case when the vectors
coincide T ~ E, the synchronization, indicating the fact of pattern recognition, takes place. This method
allows usage of an oscillator star configuration and only N couplings, however, the disadvantage of
this method is that just one vector is stored.

The present work suggests a conceptually new method of vector (pattern) storage and recognition
when an array of coupled oscillators enables storage of a multitude of vectors. This result is achieved
due to the effect of high-order synchronization in our ONN, that has many oscillator synchronous
states and, also, because of specific algorithm of the network training and identification of the degree
of match for the tested objects.

2. Materials and Methods

2.1. General Principle

An oscillator neural network is a system of N coupled oscillators, which may be connected
via electric (by resistors and capacitors) [7,26], thermal [17], and optic [27] couplings, depending on
the physical mechanism of oscillator interaction. In the general case, there is a matrix of coupling
strengths A; ; (weights), where i, j are the numbers of interacting oscillators, and A; ; denotes the
value of the i-th oscillator effect on the j-th one. Oscillator networks may form various topologies:
fully connected—all-to-all; and not fully connected—bus, star, and ring. Figure 1a—c show examples
of two and three oscillators connections using topologies “star”, “all-to-all”, and an example of
N oscillator connections using a mixed topology (Figure 1d).

It is known [17,23] that oscillators in a network may undergo the effect of synchronization and,
besides synchronization on the first harmonic, synchronous modes of high order may be observed
if the signal spectra possess several harmonics. To evaluate synchronization, in this work, we use
a family of metrics that consists of two parameters (SHR is the value of high order synchronization and
1 is the effectiveness of synchronization). A detailed method of its determination is given in Section 2.3
and in [17].
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Figure 1. Examples of two (a) and three (b) oscillators connection into a neural network using topologies
“star” (b), “all-to-all” (c), and N-oscillators using mixed topology (d), where A; ; indicates the value of
the i-th oscillator effect on the j-th one.

In the general case, high-order synchronization is determined by the ratio SHR = ky:kp:k3:..:kn;,
where ky is a harmonic order of N-th oscillator at the common frequency of the network
synchronization Fs, (SHR—subharmonic ratio). As an example, Figure 2 shows spectra of three
electric oscillators that have synchronization of the order SHR = kj:ky:ks = 3:6:4. The following rule
should be noted: if all paired oscillators have different synchronization frequencies, there is always
a common synchronization frequency F; for the whole system (all pairs), and the network synchronous
state will also be determined by the ratio SHR = kj:ky:ks:..:ky at frequency F; (see Section 2.3).
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Figure 2. Example of oscillation spectra of three electric oscillators at synchronization order
subharmonic ratio (SHR) = ky :ky:k3 = 3:6:4, where Igyy is the current amplitude of a signal in an oscillator,
IO is first harmonic, k is the harmonic number at the synchronization frequency Fs.
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In addition to SHR, there is also a parameter of synchronization effectiveness 7, that shows
what share of oscillations of the whole time signal is synchronized. This parameter is expressed in
percentages (see Section 2.3). If, at any point, 7 is less than the threshold value #y,, then SHR is absent,
and the signal is considered conventionally non-synchronized.

Transition from one synchronous state into another is possible when the oscillator network control
parameters are varied. For example, in electric oscillators, the main parameters may be oscillator feed
currents I, their variation causes changes of the basic oscillation frequency F”. Nevertheless, in some
cases, transition between states may be achieved by variation of coupling forces or noise intensity.

The range of control parameters variation, where synchronization does not change its state,
is called a synchronization area. There is a whole family of synchronization areas that are called
Arnold’s tongues (for the case of two oscillators). A schematic example of synchronization areas for
a three-oscillator scheme is shown in Figure 3a. Here, the control parameters are oscillator feed currents.
Each area has its own value of SHR. Besides, each area has its own distribution of the synchronization
effectiveness value within #y, < # < 100%, with a peaked curve.

The number of possible variants of synchronous states (synchronization areas), where the system
may exist when the basic control parameters are varied, is denoted as Ns. The value of N depends on
many parameters: the oscillator number N, the range of control parameters and their number, network
topology, strength of coupling between oscillators, noise level in the system and on the threshold
value of synchronization effectiveness #,. We will cover the issue in detail later, nevertheless, we have
shown in [28], that for a two-oscillator network, Ns has a maximum at certain values of coupling
strengths between oscillators, and decreases when the system noise amplitude increases. When the
coupling strength grows considerably, the value Ns decreases because of the nearby synchronization
areas’ integration.
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Figure 3. Cont.
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Figure 3. (a) Schematic representation of the synchronization areas for a three-oscillator scheme;
(b) Examples of the vector and object’s RGB color association, that illustrate the algorithm of the
network training and recognition (c).

Vectors E;, Ey, ..., ENs, that connect the origin of coordinates with the points of synchronization
effectiveness maximum 7, can be associated with the synchronization areas. Thus, the system stores
N of vectors, and the dimensionality of the stored vectors M is determined by the number of chosen
control parameters. The coordinates determine the shift of oscillators” control parameters, for example,
currents E = (81p1(1), 812(2), ..., 8I,N(M)), against the origin of coordinates.

As we have mentioned in the introduction section, the patterns to be stored are usually expressed
through a set of vectors. Vector coordinates contain information about the pattern and unambiguously
associate it with one of possible variants. For example, Figure 3c shows storage of the object’s colors
in the RGB format (red, green, blue) through the coordinates of vectors E, whose values give the
information about the intensity of red and green colors E = (red, green), and parameter blue is fixed as
blue = 100. This example, in Figure 3¢, shows the intensities of RGB components on the axes that can
be linearly transformed into the values of the oscillator currents and vice versa.

We suggest the following methods of pattern storage and recognition in a neural network, based on
the high-order synchronization effect, and its general scheme is given in Figure 4.

Storage vectors

ONN Output parameters ONN (SHR, d)
Test vector associated with the storage vector E,
Z SHR=k,k,...:k
_— 1 . 2- cee N

T f ﬁ>®@€® 7 den(En) L,

T=(51,,(1), 81,,(2),..81 ,(M))
T=(3A, (1), A, (2) ...0A, (M))
T=(31,,, 8A, (2),.-31 (M)
Figure 4. Schematic representation of pattern recognition principle by using oscillator neural network

(ONN), where M is the dimensionality of the test vector T, N is the number of oscillators, N is the
maximal number of the stored vectors E.
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2.1.1. Vector Storage and ONN Training

The general algorithm for vector storage and ONN training includes the following steps:

1.  For storage, arbitrary vectors Ei, E;, ..., E;, .., Ens should be specified. If necessary,
control parameters should be transformed into the corresponding coordinate system (for example,
a color one, see Figure 3b,c). In general, vectors have dimensionality M and appear as a set of
a network parameters that affects the system SHR. For example, they can be either currents,
as shown in Figure 3 E = (81p1(1), 8I2(2), . . . , 8I,n(M)), or they can be coupling strengths between
some definite oscillators E = (84; (1), 84;;(2), ..., 84 j(M)), or mixed parameters E = (8I,1(1),
84 j(2), ..., 84 j(M)) (see Figure 4).

2. Then, the network should be trained by the adjustment of the ONN parameters that are not used
for the vectors’ determination (coupling strengths, currents of other oscillators in the network,
noise level, and synchronization effectiveness threshold #y,). The adjustment is performed
until the synchronization areas coincide with the vectors’ ends at the point of maximum
value of synchronization effectiveness # (similar network training was used in the work [15]).
The adjustment can be performed in two steps.

a. First, by using random search until the vectors enter the synchronization area.
b.  Then, one of gradient methods [29] may be applied to search the maximum 7. As a result,
each stored vector corresponds to its unique value of SHR and maximum of #(E).

3. If the training does not provide a positive result, one more oscillator should be included into the
system and coupled with all oscillators already present, thus increasing the number of varied
parameters and the number of possible synchronous states Ns. Then, the training should be
repeated (see step 2).

2.1.2. Vectors Recognition

The algorithm of test vector T recognition includes the following steps:

1.  Set the test vector T to the system input through applying shifts to the control parameters
(see Figure 4). The vector’s coordinates may be either shifts of currents, or coupling strengths or
their combination, as it has been indicated above.

2. If one of the conditionsismet (T =~ E; or T~ E; or... or T = Eyg), i.e., coordinates values of T are
equal to one of the stored patterns, a transition to the synchronous state will occur and, actually,
the act of the corresponding pattern recognition will take place. Which patterns have been
exactly recognized can be determined by the value of SHR. The existence of the synchronization
areas ensures the vector recognition even at its coordinates’ insignificant displacement from the
stored pattern.

3. The degree of match dp, between the objects may be such magnitude as the difference between the
synchronization effectiveness of the stored and the test vectors dm, = #(E) — #(T). If the magnitude
of 77(E) is not known, then to compare the degree of match, the formula dp, = 100% — #(T) can be
used. The less d, is, the closer vector T is to vector E.

This method is a more complicated version of the method described in [22], where the analogy
to the frequency-shift keying method of coding is used and, instead of setting the vector through
frequencies E = (dwq, dwy, . .. , dwy), in our method, the vector is set through the control parameters
Eq = (8Ip1, 82, - - ., 8IpN), that has the same meaning. The principle difference is that here, a high-order
synchronization effect is used, thus allowing storage of a multitude of patterns in the ONN.

Besides, as described in the results section, it is more practical to use vector dimensions
E’ = (8I4, 8y, ... , 8In_1) with one less than the number of oscillators (N — 1).
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2.2. Model Object

As a model object, we have chosen a neural network composed of three thermally coupled
VOs,-oscillators, where each oscillator has the scheme of a relaxation oscillator. Our choice is
conditioned by the fact that we have done some research in thermal coupling [17,30] and its modeling,
however, the coupling may be an electric one (capacitive or resistive [7]). It is known that an electric
switching effect is observed in VO, film-based structures, that is conditioned by a phase metal-insulator
transition (MIT) at the moment when the temperature reaches Ty ~340 K, because of Joule heating by
the passing current Isy [16]. This gives high-impedance (OFF) and low-impedance (ON) branches on
I-V characteristics with threshold voltages (OFF—ON) Uy, ~5 V and holding voltages (ON— OFF) U},
~1.5V (see Figure 5a). Both branches of I-V characteristics are reasonably well approximated by fs
curve, consisting of two linearized regions with dynamic resistance Ro¢ ~9.1 kQ) and Ron ~615 Q:

RL, State = OFF
ff

o , 1
wlzisz),State = ON @

Liw = fsw(u) ~ {

where Uy, ~0.82 V is bias voltage of a low-impedance region, and State is a switch state.

8.0x10° T T T T T T

7.0x10°4 .
O Experiment

60x10° e Model I =AU)
5.0x10°1
4.0x10°4
3 3.0x10°
2.0x10°
1.0x10%,
6.0x10%
4.0x10"4
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Oscillator 1

Figure 5. Experimental and model I-V characteristics of VO,-switch (a); a model scheme of a neural
network based on three oscillators circuits with VO,-switches interacting via thermal coupling (b).
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One of three topologies presented in Figure 1 may be realized, depending on coupling strength
magnitudes A. At non-zero A # 0, the topology is “all-to-all” (Figure 1c); at Ay 3 = Az » =0, the topology
is “star” (Figure 1b); and at Ay3 = Az = A3 = Az = 0, the scheme turns into a two-oscillator one
(Figure 1a). The control parameters here are source currents Iy, I, I3, and their variation leads to
alteration of the fundamental oscillation frequency F° of oscillators.

Variations of each oscillator are described by the equation of Kirchhoff’s law:

au; (¢
C dlt( ) = Ip(i) - Isw(i)(t)/ 2

where U;(t) is the output voltage taken from the capacitor (C = 100 nF), Lsy;)(t) = fsw(Ui(t) — Uin) is the
current passing through a switch, determined by I-V characteristics (1), I,(;) is the i-th oscillator supply
current, respectively, Ui, is the amplitude of switch internal noise, and i is the oscillator’s number.
Thermal interaction between the i-th VO,-oscillator and the neighbor ones ((i+)—clockwise and
(i—)—counterclockwise of the scheme in Figure 5b) is realized according to the rule

Uiy = B(is),is .if State(;,y = ON
Uth(i) = uth(i) - A(i_),i, if State(i_') = ON . )
Un(iy — B(i=),i — D(iy),i - if State;_y = State; ) = ON

If the states of oscillators State(;,) and State(;_y are on the OFF branch of I-V characteristics, then the
threshold voltage of the i-th VO,-oscillator does not change: Uy, = Ug,. Rule (3) is the same for all
oscillators (with regard to cyclic permutation).

Oscillograms of oscillations with ~250,000 points and time interval 5t = 10 pus were simulated
using Equations (1)—(3). After that, the oscillograms were automatically processed, the synchronization
order was determined, and cross-sections of oscillator synchronization areas were built.

The switch parameters did not change in numerical simulation of the results, but current intensities
Ip, coupling strength A, and noise amplitude Uj, varied.

2.3. Method of Calculating a Family of Metrics

To define the synchronization order, we used the family of metrics described above, that consists
of two parameters SHR and 7.

The problem of finding the high-order synchronization value determined by the ratio of integers
SHR = ky:ky:ks:..:kn (see Section 2.1) may be solved in several ways. For example, by direct analysis of
all oscillation spectra, or by searching the synchronization order of each pair of oscillators based on the
method which we suggested in [17].

It should be noted that, at synchronous state, the frequency sets of fundamental (first)
harmonics of oscillators (F1°, F,%, F50, ..., FN?) must be commensurable. This is evident because
at the synchronous state, there is a common synchronization frequency Fs, and the equality
(Fs =F1%ky = F,%ky = ... = FNU-ky) is fulfilled. If we divide F;° into all frequencies in the set (F1°,
on, F3O, ey PNO), then we will get (1, F10/F20/ Flo/F30, ey Flo/FNO) = (1, kz/kl, k3/k1, ceey kN/kl)r
that is, a new set of rational numbers determining pair synchronization of all oscillators in regard to
the first oscillator (see [17]).

Thus, the method of specifying all values of k and the synchronization order of the system
consisting of N-oscillators comes down to determining the set of pair synchronization fractional values
(in regard to the first oscillator) for N-pairs (m/dy, my/dy, ... , mn—1/dNn-1), and to its reduction to

a common denominator:
my mp m3  MN_q ky k3 kg kN)
™mm M (2B N 4

<d1 dy" d3 le) (kl ki"ki Kk @)
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For example, a set of pair synchronization for oscillator pairs (Ne1-Ne2) and (Nel-Ne3) in Figure 2
looks like (2/1, 4/3), after reduction to a common denominator (4), we get (2/1,4/3) — (6/3,4/3),
and SHR = ky:ky:ks = 3:6:4.

It should also be noted that the algorithm of pair synchronization definition is based on the search
of current oscillation peaks, Isy, synchronous in time [17].

The effectiveness of pair synchronization # is determined as the percentage of the durability
of all Ngyr synchronous periods Ts with the definite SHR, to the whole durability of the processed

oscillogram Ty
_ Nspr-Ts
Tan

If there are several synchronization types with different SHR, then the resulting # is associated
with the maximum which, in turn, is compared with the threshold value #y, (in our case 90%).
Oscillations are considered synchronized when # exceeds the threshold # > #y,. If the system consists
of more than two oscillators, then the total effectiveness # is calculated as the mean value of all
oscillator pairs. It should be noted that the proposed methods of SHR and # identification may be used
in oscillator systems with noise. It has been noted that the noise increase leads mainly to the decrease
of 77, while SHR does not normally change.

-100% 5)

3. Results

The results of synchronization areas modeling for a two-oscillator scheme (see Figure 1a) are given
in Figure 6a. Control parameters are oscillator feed currents Iy, I,, and noise and coupling strength
values are Uj, =40 mV and A = 0.2 V. It can be seen that there is a whole family of synchronization
areas that are called Arnold tongues [23]. The number of possible variants of synchronous states,
N, in which the system may exist while the control parameters are varied, is Ng = 9. The dimension
of the stored vectors in this case is 2, and the coordinates determine current shifts Ey = (811, 81p2),
with respect to the origin of coordinates.

The problem here is that the synchronization areas are long-ranged (of Arnold’s tongues shape)
therefore, there is a wide range of stored pattern coordinates which bring the system into a certain
synchronous state. The solution lies in narrowing the dispersion of stored pattern coordinates by using
vectors E'| = (814, 8, ... , dIn_1) of a dimension one less than the number of oscillators (N — 1), in this
case, E'; = (8]1). In practice, this means that we fix the current for one oscillator, and vary the currents for
the others (see Figure 6a, dashed line I;; = const). Thus, we eliminate the ambiguity of synchronization
definition by one of the vector coordinates, and the areas of possible synchronization are narrowed.
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Figure 6. Example of synchronization areas for a two-oscillator scheme (a). The arrows show sampled
vectors E and E’, in regard to the origin of coordinates. Distribution of # for a two-oscillator scheme (b).
Cross-section 1 at I = 900 pA (c).

Figure 6b shows the distribution of synchronization effectiveness inside the Arnold’s tongues.
It can be seen that 7 falls down to the edges of synchronization areas, whereas maximum of
1 has a progressive form in the area of control parameters, and is placed in the line in the center.
When a cross-section is made (shown in Figure 6¢), we can observe local maximums of # inside the
synchronization areas and this is another argument to use the gradient search method in the algorithm
of the network training. According to the above proposed method of recognition, the magnitude
dm =1 (E") — #(T) may serve as the parameter of the degree of match between the test and stored vectors.

Figure 7 shows cross-sections of synchronization areas for a system consisting of three oscillators
(“star”, see Figure 1b) at fixed current on the first oscillator I;; = 950 puA, and parameters U, = 40 mV
and A = 0.2V, that are similar to a two-oscillator scheme.
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Figure 7. (a) Synchronization areas with SHR for a three-oscillator scheme “star” at Ip1 =950 pA;
(b) Distribution of synchronization effectiveness 1 with the set vectors E” at I ;; = 950 pA; (c) Distribution
of synchronization effectiveness 7 with the set vectors E’ at I;; = 850 pA, on an enlarged scale with
vector T (d); Levels of coupling A = 0.2 V and noise Uj, =40 mV.

It can be seen that the synchronization areas are separate isolated regions that are suitable for
setting vectors E’ of dimension 2. In this case, with all other things being equal, N5 depends on the
topology, and is Ns = 16 for a “star” connection and N = 14 for an “all-to-all” connection. The area
shape also depends on the topology.

When comparing the values for two- and three-oscillator schemes with the same parameters,
including the topology, we may propose a general rule stating that with the increase of the number of
interacting oscillators, N, increases. Yet, this is evident as the number of freedom degree increases at
determining the synchronization value SHR = ky:ky:k3:..:kNj. Nevertheless, as we show below, at certain
parameters, there are some exceptions from the general rule.

Distribution of synchronization effectiveness is shown in Figure 7b. Here, we can see that a local
maximum 7 is present in each area, and it can be used for vector storage and recognition, according to
the method described in Section 2.1.

Below, we will give an example of a vector storage and recognition (that determine colors RGB)
by using the algorithm described in Section 2.1 for the scheme “star”.

3.1. Vector Storage and ONN Training

Step 1: Suppose that we have to store three vectors that correspond to three colors RGB at
the constant level of the component blue = 200, with coordinates E’; = (28, 149), E’; = (28, 28),
and E’3 = (150, 31). It should be noted that the number of coordinates in each vector is one unit less than
the number of oscillators, and is equal two. As it has been explained above, this is necessary to narrow
the area of possible synchronization and to reduce the recognition ambiguity. Liner transformation
of coordinates, from the current parameters into color parameters, should be thought over initially.
In our case, we used the following formulas: red < (Ip2 [LA] — 550 [HA])/2 and green < (I3 [MA] —
550 [nA])/2. After the working area has been transformed, we set three vectors, as shown in Figure 7b.

Step 2: Then, we start the system training by adjusting parameters of the ONN (I;,; and coupling
strength A;;) in such a way that the synchronization areas are obtained on the vectors at the point
of maximum 7. A fine adjustment for the maximum # can be done by using the gradient search.
As a result, we have found that at Aj; = A =0.2V, and I; = 850 pA, the system complies with the
assigned task.
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Step 3: As we have achieved a positive result after the network training, the vector recording may
be considered completed at this step.

3.2. Vectors Recognition

When test vector T ~ E’; is supplied, the neural network is transformed into a synchronous state
with the synchronization order 1:2:1. At T ~ E’p, we get SHR = 1:2:2. At T ~ E’3, we get SHR = 1:1:2.
In each case, the degree of match dp, = #(E’) — #(T) is calculated, that determines the degree of match of
vector T with the stored vectors. For example, at T = (31,145), the system transfers to SHR = 1:2:1 and
the vector is recognized as the vector E’; = (28,149), with the degree of match dy, = #(E’1) — #(T) =2%
(see Figure 7d).

Step 1: Set the test vector T = (31,145).

Step 2: Determine that the system transfers to SHR = 1:2:1, and the vector is recognized as the
vector E’; = (28,149).

Step 3: Determine the degree of match dp, = 17(E"1) — #(T) = 2%.

Thus, we have performed storage and recognition of three various patterns with RGB
color, although the capacity of this system is considerably higher and enables storing up to
16 patterns simultaneously.

Figure 8 shows the dependence of the number of synchronous states Ng on A at three different
configurations of a neural network at the constant noise level Uj, = 20 mV. The existence of the main
maximum Nj is evident at some optimal value Agpt, in this case, this value is roughly the same as
Aopt ~0.1 V for all configurations, and does not depend on the oscillator number. The existence
of the curve maximum N;s(A) reduplicates our results obtained in [28] for a two-oscillator scheme.
Inalterability of Agpt for a different number of oscillators N, with all other parameters being equal,
might be explained by the fact that, with the increase of the number of freedom degrees for
synchronization order, SHR = ky:kp:k3:..:ky;, the value of N has the tendency to grow.

50
—*— three oscillators (star)

2. —a— three oscillators (all-to-all)
\ . —e— two oscillators

0 o \[)o / LonA
10 4 k D/o\o/ \moo \ &%{_ *,*-*\\
“ Sk o
2 —ﬁ—ﬁ—o—o—owbﬁ—ﬁuﬁuﬁ—*—/
4\"""*‘— aaa A\'ﬁ_fi’f\&—t—a
-
0.0 0.2 0.4 0.6 0.8 1.0 1.2 14 1.6 1.8
AV

Figure 8. Dependence N on coupling strength value between oscillators A at various configurations of
oscillator neural network and constant noise level U;,, = 20 mV. The insertions show the evolution of
synchronization areas and demonstrate the effect of their merging with A growth.

We should also note the general tendency for N to decrease when the coupling strength A grows
above Aopt and, at its large values, the system tends to the lowest possible Ns = 1 with synchronization
value 1:1:1. This is related to the fact that, with the increase of A, the surface of certain synchronization
areas increase. Neighboring areas merge; in this case, the synchronization order of the resulting area



Electronics 2018, 7, 266 14 of 17

predominantly consists of lower harmonic numbers. As the dimension of the control parameters
is limited, such growth of synchronization area surfaces irrevocably results in a decrease of their
number and value of Ns. The insertions in Figure 8 show the evolution of synchronization areas and
demonstrate the effect of their merging with A growth.

Besides, we should note the existence of local maximums at A > Agpt. In turn, this is related
to the fact that, in the presence of noise in the neural network, the increase of A may result in
the development of new synchronization areas at the control parameters values that previously
corresponded to the non-synchronous state of the system. Therefore, in a general case, the curve Ng(A)
may have a complicated shape with several maximums, as we can see in Figure 8.

In addition, the initial sharp growth of all three curves at the plot should be noted when A increases
from 0 to Aopt. The latter is due to synchronization effect degradation at A—0.

When comparing the curves, it may be noted that the increase of the oscillator number in the
network leads to the increase of the maximum value of N in the system; this does not contradict the
rule suggested above. For example, Ns max = 17 is for two oscillators, for three-oscillator schemes,
and Ns_max = 28 and Ns_max = 45 are for the “all-to-all” and “star” schemes, respectively. At the
same time, at certain values of coupling strength (for example, at A = 1.1 V), the value of N for
a two-oscillator scheme may be even higher. Also, the regularity that the “star” topology has higher
N than the topology of “all-to-all” is observed. All of these things mean that the increase of the
coupling number may contribute to the effect of system desynchronization and decrease of N, as it
seems that oscillators prevent each other from synchronization.

Figure 9 shows the curve of N; vs noise level in the system Uj, at the same coupling strength
A =0.2V, for three configurations of an oscillator neural network. The general trend for the decrease
of N at the noise amplitude increase is due to the decrease of the surface of synchronous areas which
eventually disappear (see the insertions in Figure 9).

500 —x*— three oscillators (star)
—a— three oscillators (all-to-all)

—o— two oscillators

400

300

200 +

100 4

0.1

Figure 9. Dependence N on noise level Uy, at various configurations of an oscillator neural network
at the same coupling strength A = 0.2 V.

It should also be noted that the general rule is observed: stating that the value of N for a
three-oscillator configuration “star” is higher than that for a two-oscillator one. The shapes of curves
Ns(Uin) are similar, which indicated that the physics of noise effect on the network is similar, and does
not depend on the number of oscillators.

Comparing the above curves Ng(A) and Ng(Ujy ), it may be seen that the number of synchronization
areas Ns_max in our models may reach Ns_max ~450, at an optimal coupling strength value A = Apt,
and at lowered noise Uj, = 10 WV, it increases to Ng_max ~ 650.
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4. Conclusions

A new method of pattern storage and recognition in an impulse oscillator neural network based
on resistive switches and the high-order synchronization effect is presented, using computational
modeling of two- and three-oscillator schemes with thermally coupled VO,-switches.

Our method allows storage of a multitude of patterns N, where each state of the system is
characterized by synchronization order SHR = ky:ky:k3:..:ky.

A general rule is suggested, stating that Ns increases with the increase of the number of
interacting oscillators. The modeling demonstrates achievement of N of several orders: N ~650 for
a three-oscillator scheme and Ng ~260 for a two-oscillator scheme.

Several regularities of functional characteristics of such ONNSs have been obtained; in particular,
the existence of an optimal coupling strength between oscillators has been revealed, when the number
of synchronous states is maximal. A general tendency for N decrease with the increase of coupling
strength and switches’ inner noise amplitude, is also shown.

The algorithm of vector storage, network training, and test vector recognition has been proposed,
where the parameter of synchronization effectiveness is used as the degree of match. It has been shown
that it is more expedient to use the number of coordinates in each vector at least one unit less than the
number of oscillators (N — 1), because it is necessary to narrow the area of possible synchronization
and to lower the recognition ambiguity.

By contrast, for example, to the FSK method [22], such an approach to the problem of pattern
storage and recognition allows one to significantly increase the information capacity, N, of a neural
network using the minimum number of neural oscillators. In addition, the proposed concept of pulse
synchronization definition, through calculation of a family of metrics, opens a natural way for gradient
method application to an oscillator network training (optimization).

Although the research has been performed on a certain model object (VO, thermally coupled
relaxation oscillators), the demonstrated method of pattern storage and recognition is sufficiently
general, and the fundamental character of the obtained regularities may be the subject of further
research of ONNSs, of various mechanisms and oscillator-coupling topology.
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