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Abstract: In this paper, a diagnostic tool or procedure based on Bayesian compressive sensing
(BCS) is proposed for identification of failed element(s) which manifest in millimeter-wave planar
antenna arrays. With adequate a priori knowledge of the reference antenna array radiation pattern,
a diagnostic problem of faulty elements was formulated. Sparse recovery algorithms, including total
variation (TV), mixed `1/`2 norm, and minimization of the `1, are readily available in the literature,
and were used to diagnose the array under test (AUT) from measurement points, consequently
providing faster and better diagnostic schemes than the traditional mechanisms, such as the back
propagation algorithm, matrix method algorithm, etc. However, these approaches exhibit some
drawbacks in terms of effectiveness and reliability in noisy data, and a large number of measurement
data points. To overcome these problems, a methodology based on BCS was adapted in this paper.
From far-field radiation pattern samples, planar array diagnosis was formulated as a sparse signal
recovery problem where BCS was applied to recover the locations of the faults using relevance vector
machine (RVM). The resulted BCS approach was validated through simulations and experiments
to provide suitable guidelines for users, as well as insight into the features and potential of the
proposed procedure. A Ka-band (28.9 GHz) 10× 10 rectangular microstrip patch antenna array
that emulates failure with zero excitation was designed for far-field measurements in an anechoic
chamber. Both simulated and measured far-field samples were used to test the proposed approach.
The proposed technique is demonstrated to detect diagnostic problems with fewer measurements
provided the prior knowledge of the array radiation pattern is known, and the number of faults is
relatively smaller than the array size. The effectiveness and reliability of the technique is verified
experimentally and via simulation. In addition to a faster diagnosis and better reconstruction
accuracy, the BCS-based technique shows more robustness to additive noisy data compared to
other compressive sensing methods. The proposed procedure can be applied to next-generation
transceivers, aerospace systems, radar systems, and other communication systems.

Keywords: far-field; antenna array; diagnosis procedure; noisy data; BCS; millimeter-wave

1. Introduction

Antenna array is a key technology component in various communication systems such as radar,
radio-astronomy, remote sensing, satellite communications, and next-generation (fifth generation,
5G) wireless communications [1], where a very large number (in the hundreds) of radiating
elements are particularly used to meet the increasing demands of high radiation performance and
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reconfigurability [2]. Conversely, the higher the number of radiating elements in the beam-forming
configuration, the higher the probability of failed element(s) will be. This causes abrupt field variations
across the aperture of the array, and distortion in the radiation features (e.g., beamwidth, peak sidelobe,
and boresight). Therefore, the availability of reliable and effective diagnosis tools for large arrays
remains an asset, because manual dismantling and replacement operations consume excessive time
and cost, and are even unfeasible in satellite-borne installations. Currently, failure identification in
antenna arrays is a theoretical and practical important research domain. Detection of faulty elements in
antenna arrays is of great interest in both military and civilian markets. Upcoming technologies adopt
active or passive antenna arrays with a large number of elements [1–5]. For instance, millimeter-wave
transceivers implement multiple-input multiple-output (MIMO) features and beamforming for future
5G applications, as shown in Figure 1. The block diagram shows the location of the AWMF-0108 in a
5G MIMO system [6]. The integrated circuit (IC) contents in the circle are the gain and phase control
blocks with amplification and RX/TX switching. The first industrial and commercial millimeter-wave
quad-core IC transceiver for 5G applications is the AWMF-0108 [6]. Many compactable antennas
were designed for that purpose. Thus, some communication systems will evolve for 5G technology,
even before full deployment, which is not expected until 2020. The large number of elements in the
planar antenna required by the transceiver must function optimally. Failure in the element(s) causes
far-field degradation of antenna systems. The detection of failed elements from field measurements
taken from a suitable observation point is very important to re-calibrate the feeding network and
to reinstall the needed radiation characteristics by reconfiguring the excitations of the healthy
elements [1,3]. Testing of antennas is then a necessity when a certain number of elements exhibit fault.
Therefore, the fast diagnosis of complex antenna structures is always a fundamental need.

Far-field measurements are a very powerful approach for antenna array testing. The measurement
data are sequentially presented for probable failure identification in the array under test (AUT).
The matrix method algorithm (MMA) and back propagation algorithm (BPA) are the most commonly
used mechanisms to detect the number and corresponding positions of defective elements using
a reference antenna (healthy) and the AUT (defective). BPA [7] was established using the Fourier
relationship between radiated far-field and the field situated on the array aperture, and it is applicable
to planar antenna arrays. A generalized form of BPA is MMA [8,9]. MMA uses linear algebra standard
tools to stabilize the inversion matrix, which relates the array aperture field to radiated far-field.
However, MMA and BPA demand a large number of measurements, thus causing long post-processing
of large arrays. One approach to mitigate the problem is the use of a priori knowledge of the array
without failure; consequently, only the defective array elements are identified. The modeled diagnostic
problem is solved by employing available customs whose computation time is a little longer than
standard methodologies. At this point, it is evident that the total time taken to get the antenna array
diagnosed greatly depends on measurement time, with post-processing times having a higher order
of magnitude. This is why sparse recovery-based methods require fewer measurement numbers and
provide faster antenna array diagnosis.

Recently, compressive sensing emerged rapidly as a potential technique for solving sparse
recovery problems [10–20]. Within this context, the appropriateness of compressive sensing in
addressing the array diagnosis problem was examined in References [3,12,14,16,18,21]. Evidently,
faulty element distribution in array configurations in practice were found to be highly sparse because it
accounts for small non-null entries in the excitation vector of the transmit/receive modules. Beginning
from that hypothesis, `1-norm minimization mechanism was applied successfully to detect failures
in planar arrays using a small number of near-field [9] or far-field [14] measurements. Conversely,
deterministic compressive sparse techniques require a “measurement matrix” to comply with the
restricted isometric property (RIP) condition, for which the estimation of large matrices remains an
open challenge [3,14,21]. An alternative is the probabilistic compressive sensing approach reported
in Reference [21] to diagnose linear arrays from far-field measurements. However, most of these
techniques were not tested experimentally.
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Figure 1. Ka-band active antenna array formation which integrates multiple-input multiple-output
(MIMO) and beamforming.

In this work, the problem of antenna element excitation level was not examined; however,
we estimated field distribution on the array aperture. This helps us identify the modifications
of aperture field distribution as a result of factors that cannot be quantified by simple failure of
elements, such as different reflections of the array and its feed. The problem faced in getting more
information about the AUT is the larger number of unknowns. However, in sparse recovery methods,
the required number of measurements increases slowly and logarithmically with the number of
unknowns [10–13]. Hence, the field reconstruction scheme benefits more in sparse recovery-based
mechanisms. Different sparse recovery algorithms used to conduct antenna array diagnosis were
unveiled [14] and compared to the traditional BPA and MMA. In particular, total variation (TV) norm,
mixed `1/`2 norm, and minimization of the `1 norm were used to proffer solutions to the resulting
inversion issues. From the field reconstructed on the antenna aperture, Fuchs et al. [20] acquired a
good antenna diagnosis. The approach was applied to far-field simulation data generated from a
100-element antenna array. The performance of the diagnosis was evaluated and compared to the two
standard techniques (BPA and MMA) under different conditions. The approaches were also applied
to far-field measurement data of an antenna array with failure to justify the practical applicability
of the proposed schemes. Although there were many more works on sparse recovery methods in
applied electromagnetics and microwaves involving the diagnosis processes of antenna arrays [13,14],
experimental data, which are fundamental for testing any procedure, were reported in few of them.

In References [15–20], differential scenarios with sparse recovery algorithms were employed to
perform antenna diagnosis and retrieve element excitations. Reference [21] proposed a joint scheme
for adaptive diagnosis of antenna arrays using communication signal fusion (radar-communication
scheme) and the echoes of probe signals received at the same antenna. This method equally solved
the antenna diagnosis problem at low signal-to-noise ratios (SNRs) to ensure optimal performance
of smart sensors in wireless sensor networks. Also, Reference [22] attempted array diagnosis in
millimeter waves using compressive sensing. This work considered both full and partial blockage,
which occurs from a plethora of particles (such as ice, water droplets, salt, and dirt) and the technique
jointly computed the locations of the blocked elements, and the induced phase-shifts and induced
attenuation provided the prior knowledge of the angles of departure/arrival. Reference [23] proposed a
deterministic sampling strategy for failure detection in uniform linear arrays via compressed sensing or
a sparse recovery approach. This is an extension of the Weyl formula which is basically used for prime
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numbers. The strategy obtained was good for nonprime number (i.e., valid for any number of array
elements). This sampling approach is good for sparse electromagnetic (EM) problems encompassing
Fourier matrices. Reference [24] gives a review of different capacities of sparse recovery by analyzing
how compressive sensing can be applied to antenna array synthesis, diagnosis, and processing.
Illustrations of a set of applicative examples were given, including direction-of-arrival estimation,
along with present challenges and current trends in compressive sensing applications to the solution
of innovative and traditional antenna array challenges. In general, compressive sensing generates
few unknown numbers; however, it needs a comprehensive array model with exact knowledge of the
radiating element patterns to produce useful results. The technique is sparse with respect to the whole
array structure, and requires a priori information to recast it as the function of minimization of `1 norm.
However, these techniques are applicable only if the relationships between the data and the unknowns
satisfy the restricted isometry property (RIP). To overcome this challenge, the Bayesian compressive
sensing (BCS) approach is adopted. This technique was explored in many electromagnetic problems,
such as antenna design and synthesis [25,26], microwave imaging [27–30], and direction-of-arrival
estimation [31–33]. It is employed in this paper to estimate the number, magnitude, and location of
failures in antenna arrays from far-field measurements. The BCS approach was attempted to diagnose
large linear arrays [11], and more recently, planar array configurations [34]; however, no experimental
validation was reported. Hence, there is a need for a more reliable procedure tested experimentally
and via simulation, because experiments are fundamental tests of any given procedure.

Specifically, this work is an extension of that described in References [15,16]. The BCS method is
applied to both the simulated and measured far-field data of a millimeter-wave 100-element microstrip
patch antenna array in which failures were added intentionally. A new regularization technique
was unveiled and applied to field distribution in order to enhance the efficiency and reliability of
antenna array diagnosis. The proposed BCS-based approach is a better choice due to its fast nature
and robustness under different noise conditions. The key contributions of this paper are summarized
as follows:

1. The BCS technique was applied to diagnose a millimeter-wave planar array, and the result was
compared with other approaches reported in the literature.

2. The procedure shows high effectiveness and reliability with fewer measurement points compared
to the other methods, and is highly robust to additive noisy data. This was validated
experimentally and via simulations.

However, some boundary conditions were observed. The BCS-based approach detects diagnostic
problems with few measurements, provided prior knowledge of the reference array radiation pattern,
and the number of faults is relatively smaller than the array size. The remainder of this paper is
arranged as follows: Section 2 contains the problem formulation of antenna array diagnosis. Section 3
presents compressed sparse recovery methods. Resolution via the BCS-based approach is given in
Section 4. The numerical simulations are presented in Section 5. Diagnoses from experimental data are
presented and discussed in Section 6. Finally, some conclusions are drawn in Section 7.

2. Antenna Array Diagnosis Problem Formulation

Consider an antenna array in space (Figure 2a). The antenna radiated far-field is usually quantified
by phase and amplitude. The AUT is depicted in Figure 2b. All the parameters associated with the
AUT are marked with superscript “u”. Specifically, Eu(x, y) is the tangential field situated on the
antenna aperture, i.e.,

Eu(x, y) = Eu
x (x, y)x̂ + Eu

y (x, y)ŷ, (1)

where Eu
x (x, y)x̂ and Eu

y (x, y)ŷ are the x and y planes of the aperture’s electric field,
respectively. Far-field Fu(r, θ,∅) is the measured field on part of the hemispherical surface
(0 ≤ θ ≤ π/2, 0 ≤ φ ≤ 2π) at radius r from the phase center of the AUT, and r > 2D2/λ, where D is
the diameter. Also, the amplitude and phase of a reference array (RA; array without failures) shown
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in Figure 2b are assumed to be available. Associated quantities are marked with superscript “o”.
Eo(x, y) is the field on the aperture Σ of the reference array (RA) and Fo(r, θ,∅) represents the far-field
radiation. For the differential antenna (DA) shown in Figure 2c, the tangential distribution E(x, y) on
the aperture Σ is equal to the difference between the field distributions of the reference array and the
antenna under test, and the corresponding far-field F(r, θ, φ) is expressed as the difference between the
fields of reference array (RA) and AUT as

E(x, y) = Eu(x, y)− Eo(x, y), (2)

F(r, θ, φ) = Fu(r, θ, φ)− Fo(r, θ, φ). (3)
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The differential antenna gives a resulting problem in which only the corresponding area to the
field modification radiates as a result of failure. By visually monitoring the field distribution on the
DA, the identification of faulty elements in the AUT can be observed.

2.1. Number of Far-Field Measurement Points Required

BPA and MMA approaches require a large number of measurement points. In the differential
antenna, we assumed the field was localized, i.e., the unknown we wanted to retrieve was very sparse,
as shown in Figure 2c. In practice, there are a fewer number of failures than the overall elements
N. Sparse recovery algorithms estimate x from a number of measurement points smaller than the
number of measurements required by the standard mechanisms. Hence, it is possible to theoretically
get a reduction in the number of measurement points. Fuch et al. [20] demonstrated this using total
variation (TV), mixed `1/`2 norm, and minimization of `1. However, better methods/algorithms that
require fewer numbers of far-field measurement points for faster array diagnosis are still in demand.

2.2. Signal-to-Noise Ratios (SNRs)

Total variation (TV), mixed `1/`2 norm, and minimization of `1 techniques are the leading
compressive techniques, and they exhibit low efficiency and reliability in antenna diagnosis for low
SNRs. This drawback fosters the need for a more robust diagnosis procedure in the presence of
noisy data.

3. Compressed Sparse Recovery Methods

The essence of matrix inversion regularization is to initiate a priori facts within the inversion.
An adequate approach is needed to get this regularization by approximately reducing the selected
norm q of x solution. Then, the optimization to be solved is

min
x
‖X‖q subject to ‖y−AX‖2 ≤ γ, (4)

where ‖ ∗ ‖q represents lq norm, and γ is a function of noise and factors influencing the data. There are
various routines available to effectively solve the convex optimization problem of Equation (4) such
as References [25–27]. The three norms lq, selected based on a priori knowledge of the differential
antenna set-up with the diagnosis problem, can now be described for regularization of the inversion.
We applied them to conduct diagnosis of both the simulated and measured radiating antennas.

3.1. Total Variation (TV) Norm

Based on a priori knowledge that solution X has small discontinuities as a result of failures
present, in addition to the failures, we expect field X to be leveled and almost zero. Hence TV norm is
a smooth function to regularize X [27]. Thus, minimizing TV norm is minimizing its gradient, which is
the effect of smoothing. Consider a two-dimensional complex dataset X ∈ CM×N ; TV norm gives

‖X‖TV = ∑
m,n
|Xm+1,n −Xm,n|+ |Xm,n+1 −Xm,n| (5)

‖vec(∇xX)‖1 + ‖vec
(
X∇y

)
‖1.

Vec(X) generates vector N × M which holds the columns of X stacked beneath each other.
Gradient matrices ∇x and ∇y are of M × M and N × N size, respectively, which are expressed as

∇x =

 −1 1 0
. . . . . .

0 −1 1

, and
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∇y =


−1 0

1
. . .
. . . −1

0 1

.

Then, the optimization problem in Equation (4) transforms to

min
X
‖X‖TV subjects to ‖y−Avec(X)‖2 ≤ ε. (6)

3.2. The `1 Norm

Since there is a sparse solution X; then, a space of search could be drastically reduced by the
introduction of a priori knowledge in inversion. Specifically, the `1-norm (‖X‖1 = ∑k|xk|) is the
leading convex surrogate of an acceptable estimate sparsity of the vector (quasi-norm `0 that calculates
nonzero occurrences of a given vector). As a result, `1 norm is an efficient approach to enhance sparse
solutions [2,5,10,19]. The regularization problem is then

min
X
‖X‖1 subject to ‖y−AX‖2 ≤ ε. (7)

Minimizing `1-norm imposes the pointwise sparsity of solution per sample xk of the field on the
aperture of the DA.

3.3. Mixed `1/`2 Norm

The radiating aperture’s position and dimensions can also be taken. The solution X is grouped into
G groups Xg, which corresponds to the individual radiating element’s aperture g. For a faulty element,
all regions of discretization xg

k in the aperture will be faulty (nonzero). Let vector X of dimension
M × N be divided into G non-overlapping groups depicted Xg of size Ng, such as ∑G

g=1 Ng = MN.
Hence, the mixed `1/`2 norm is given as

‖X‖1,2 =
G

∑
g=1
‖Xg‖2 =

G

∑
g=1

√∣∣∣xg
1

∣∣∣2 + . . . +
∣∣∣xg

Ng

∣∣∣2. (8)

The mixed `1/`2 norm has similar behavior to `1 norm on vector ‖X1‖2, . . . , ‖Xg‖2, . . . , ‖XG‖2;
it, therefore, induces group sparsity at the radiating aperture level. The regularized inversion problem
is then expressed as

min
X
‖X‖1,2 subject to ‖y−AX‖2 ≤ ε. (9)

4. Resolution via Bayesian Compressive Sensing

For a planar antenna configuration of N elements positioned at coordinates (xnyn),
n = 1, . . . , N, with error-free excitations αn, n = 1, . . . , N, beaming a familiar field
E(u, v), (where u = sinθcosϕ and v = sinθsinϕ), referencing a noisy case with element failure,
the estimated far-field radiation pattern of (AUT) is expressed as

Ẽ(ul , vl) =
N

∑
n=1

βnej 2π
λ (xnul+ynvl) + vl , (10)

where (ul , vl) for l = 1, . . . , L is the angular location of the l-th angular sample, and vl is the noise effect
considered as Gaussian-distributed with zero mean and variance σ2. βn, n = 1, . . . , N, is the failed
excitations vector, expressed as
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βn =

{
hαn with probability Φ
αn otherwise

, n = 1, . . . , N. (11)

h ∈ (0, 1) is the failure factor, while Φ is the rate of failure, and αn is the weighting coefficient.
From knowledge of the difference in field pattern, W(ul , vl) = E(ul , vl) − Ẽ(ul , vl), l = 1, . . . , L,
array failures can be estimated by determining the minimum `0 − norm vector

Υ = {Υn = αn − βn ; n = 1, . . . , N}, (12)

which satisfies
W −ΨΥ = v. (13)

The aim is to determine the entries of the “failure” vector
W = {W(ul , vl); l = 1, . . . , L}, v = {vl ; l = 1, . . . , L} from the prior knowledge of the difference
between the field samples in Equation (10) on the AUT and those of the golden antenna with coefficients
αn n = 1, . . . , N. Against the deterministic approaches aimed at retrieving the vector γ with minimum
`0 − norm satisfying the condition of Equation (13), Ψ is the L × N radiation measurement matrix
expressed as

Ψ =

 e[j2π(x1u1+y1v1)] . . . e[j2π(xN u1+yN v1)]

...
. . .

...
e[j2π(x1uL+y1vL)] . . . e[j2π(xN uL+yN vL)]

. (14)

Hence, the BCS technique (summarized in Figure 2) can be employed to determine the sparsest
solution Υ̂ to the problem

Υ̂ = arg
{

max
Υ

[P(Υ|W)]

}
, (15)

which gives

Υ̂ =
1

σNP

[
ΨT Ψ
σNP

+ diag
(

f
NP

)]
, (16)

where T is the transpose operator, and σNP and f
NP

are the figures that are used to maximize the
likelihood function

L
(

σ, f
)
= −1

2

[
Nlog2π + log

∣∣∣C∣∣∣+ WT C−1 W
]
. (17)

Equation (11) is computed using RVM [29], with C = σ + ΨF−1 ΨT , where F = diag( f ).
The implementation of the BCS technique (as shown in Figure 3) is summarized in Algorithm 1.

Algorithm 1. Proposed diagnostic procedure

a. Step 1—Array parameter selection and definition of problem: For each element (n = 1, . . . N), accumulate the
array field at N measurement points (reference antenna) and randomly sample the AUT field.

Appropriate the noise variance and threshold for the maximization of L
(

σ, f
)

.

b. Step 2—Radiation pattern measurement matrix Ψ definition. Input the parameters of Ψ.
c. Step 3—Posterior mode estimation. Maximize Equation (10) iteratively to estimate σ and f using the RVM

procedure [29].
d. Step 4—Source difference reconstruction. Determine W(ul, vl) for l = 1, . . . , L.
e. Step 5—Failed field excitation reconstruction. Determine the vector of failed excitations

βn (n = 1, . . . , N) using Equation (11).
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5. Simulations and Analysis

Assessing the performance of the BCS algorithm, we consider an RA with N = 316 with Taylor
taper and peak sidelobe level of −25 dB. Assuming a complete failure (h = 0), the given percentage of
failed elements is Φ = 4%. To determine the detection error numerically, the index of detection can be
expressed as

ζ = 100× ∑N
n=1
∣∣Υn − Υ̂n

∣∣2
∑N

n=1|Υn|2
, (18)

where Υn and Υ̂n, n = 1, . . . , N, are the real and predicted failure entries of vector Υ. The uniformly
sampled (k = 316 samples) far-field radiation pattern is within (u, v) space, with the signal-to-noise ratio
SNR = 30 dB. The configuration of the AUT is presented in Figure 4, while the excitation coefficients
βn of the failed array are equally shown. Figure 5 shows Υ̂n of the failure vector estimated via the
proposed technique. As expected, there is good correlation between the location and the number of
the real and predicted failed elements. Accuracy of the estimation was ascertained by a very small
index of detection figure of ζ = 3.83 × 10−3.
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To analyze the impact on performance metrics of the technique of the noise on far-field patterns,
we ranged the SNR between 0 dB and 100 dB. Figure 6 shows the obtained result. The estimation error
ζ is high for low SNRs irrespective of failed element percentage. Also, for higher SNR, the robustness
of the approach increases, which shows that the best performances are attained at Φ = 3%. The impact
of the percentage of failed elements on the performance of the method proposed was also assessed by
varying the percentage of the failed elements from Φ = 2% to Φ = 20% (see Figure 7). Expectedly,
the performance metrics of the approach reduced for a higher percentage of failed elements, even for
very low noise levels. Conversely, the approach achieved a degree acceptable accuracy until about
10% of damaged elements at any SNR. This result validates the efficiency of the BCS technique in the
diagnosis of sparse failures in arrays.
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Example Using Full-Wave Simulation Set-Up

A 10 × 10 microstrip patch antenna array with an aperture size of 31 × 31 mm2 operating at
28.9 GHz was designed, as shown in Figure 8. We designed and computed the radiation pattern and
S-parameter (Figure 9) of the antenna using full-wave three-dimensional (3D) EM software Ansys
HFSS v. 17. The elements were uniformly spaced along the x and y directions. Each element had an
excitation port. Practically, measurements are made impure by noise; hence, a Gaussian noise n was
added to the data on both radiation patterns as yq

n = yq + nq, with q = {r, d}. The noise level was
determined by signal-to-noise ratio (SNR) defined from the maximum received field magnitude fitting
the dynamic measurement range. The noise was estimated as

nq =
N (0, 1) + jN (0, 1)√

2
max|yq| × 10−SNRdB/20, (19)
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where N (0, 1) is a Gaussian random vector of mean 0 and standard deviation 1.
The faulty elements cause low gain, high sidelobe level, wider beamwidth, lower front-to-back

ratio, and a boresight pointing error. The effects are shown in Figure 9b. A Rogers 5880 dielectric
substrate with 20 mm thickness and 3.48 dielectric constant was used for the antenna design because it
has low signal loss, low dielectric loss, low outgassing (which is good for space applications), and cheap
circuit fabrication. The total number of elements in the array was 100. The length and width of a single
patch were estimated to be 7.4 mm and 9.5 mm, respectively. Elements were uniformly spaced by 8.947
mm and 6.847 mm along x and y, respectively.

All elements were fed with the same excitation value which equal to one to emulate the array
without failure (reference array). Then K failures (in this case, the estimated percentage of failure rate)
were also initiated intentionally by making the excitation equal to zero in order to model the AUT
effectively. At first, we considered the reference array, i.e., the array without failures. The excitation
coefficients are depicted in Figure 10, and the reconstructed excitation coefficients are presented in
Figure 11. Also, for quantitative knowledge of the error estimated, the computed excitation error in dB
is shown in Figure 12. The result indicates an exact reconstruction in the case of the reference array,
and shows a low probability of a false alarm.
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Also, considering an AUT with K = 5 element failures (Φ = 5%) (elements with zero excitation)
because failed elements are usually of small number in practice, the resulted excitation coefficients
are presented in Figure 13, and the estimated excitations by 30 random noisy measurement points are
presented in Figure 14, while the dB excitation error is depicted in Figure 15. The result is an indication
of good estimation of RA excitations and the locations of the faulty elements.
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6. Antenna Array Diagnosis from Measured Data

6.1. Measurement Set-Up

The proposed diagnostic technique was subjected to an experimental test, as presented in
Figure 16. Although, this was a controlled environment (anechoic chamber), a more practical condition
(uncontrolled environment) was also possible using the same set-up in Figure 16, without the chamber.
The AUT was a 10 × 10 microstrip patch antenna array (see Figure 17a), reradiating a signal tilted in
the two planes. Figure 17b,c show the measured radiation patterns for an ideal antenna and defected
antenna, respectively. It can be see that the failure causes higher sidelobe level, reduced gain, lower
front-to-back ratio (FBR), wider beamwidth, and a boresight pointing error.
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The antenna was particularly designed and fabricated for this purpose, and each element had its
feeding port which was excited using a power divider. Five radiating elements in the array were not
excited (zero excitation) to successfully emulate the failure of elements. The AUT set-up is depicted in
Figure 18. About 1000 co-polar and cross-polar measurements were taken on the far-field half-sphere
at 28.9 GHz in an anechoic chamber (see Figure 18).

Radiation pattern measurements obtained from the array with five faulty elements were fed into
the proposed algorithm for post-processing. The reconstructed excitation error which identified the
specific faulty elements is depicted in Figure 19, and the corresponding dB equivalence is shown
in Figure 20. Moreover, the performance metrics of the BCS-based approach were experimentally
tested, and are shown in Figure 21. Figure 21a shows the obtained reconstruction error versus
the measurement number at different degrees of failure. The error decreased as the number of
measurement points increased irrespective of failure percentage. The reconstruction error profile
increased with increased failure rate. In Figure 21b, it is demonstrated how the reconstruction error
profile changes with SNR for different failure rates. The reconstruction error degraded exponentially
with increased SNR independent of failure rate. The reconstruction error increased with increased
failure rate. Figure 21c depicts reconstruction error versus different levels of failure for various SNRs.
It can be observed that the error increased with increased failure rate. Also, the reconstruction error
decreased as SNR increased.
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The imperfection of the curves (compared to the simulation) could be attributed to measurement
errors, and errors due to experimental set-ups which provide different conditions from those in the
simulations. The experiment was conducted in an anechoic chamber, which is a controlled environment.
Hence, the results presented here may show a little variation if the experiment is conducted in a
more practical environment (i.e., uncontrolled environment). Moreover, the BCS-based procedure
presented here can be trusted to effectively and reliably address sparse recovery problems, particularly
the detection of faulty radiators in planar arrays for next-generation 5G wireless communications.
Once the suitable data are collected, and used to diagnose the array, then the array feeding network
can be recalibrated to restore the needed radiation features via excitation reconfiguration of the healthy
antenna elements. However, prior knowledge of the golden array must be provided, and the failure
rate is relatively smaller than the array size. Therefore, from the simulation results verified by the
experiment, the BCS-based approach is adequate and reliable for noisy data. This technique overcomes
the shortcomings of BPA, MMA, etc., demanding off-line phase training to form accurate mapping
between the response of the AUT and the failure location. Hence, the proposed procedure will be
highly useful for millimeter-wave planar array optimal performance.Electronics 2018, 7, x FOR PEER REVIEW  19 of 24 
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6.2. Antenna Array Diagnosis from Simulated and Measured Far-Field Radiation Patterns

There are differences between the simulated and measured antenna patterns due to measurements
errors, uncontrollable array fabrication errors, and experimental set-ups that give different conditions
from the simulations. For example, in our design, a finite flange was employed to feed the ground
plane. Hence, the induced current on flange rescattered and redistributed somehow against the very
large ground plane which was used for the simulations. Antenna array diagnosis procedures based
on simulated radiation pattern (such as References [3,16–18,27,35]) may not be reliable and accurate,
except when tested with the corresponding measured data. Although, in this work, simulation
and measurement data exhibit little difference in field intensity of the identified faulty elements
(in Figures 14 and 19, respectively) caused by the electromechanical coupling effect. In general,
the proposed BCS-based approach shows good reliability and accuracy against both simulated and
measured far-field radiation patterns.

6.3. Number of Measurement Points versus Noisy Measured Data

Measurement points affect field reconstruction fidelity and, hence, the scheme of diagnosis.
The proposed BCS-based procedure performed well despite significantly reduced measurement data
due to added sparse information. According to the study and experiments performed by Fuch et al. [14],
total variation (TV), mixed `1/`2 norm, and minimization of `1 techniques require 64 measurement
points for accurate reconstruction and diagnostics, compared to the BCS technique that requires 30 or
less measurement points. The proposed method significantly reduces the number of measurements
needed for diagnosis as compared to those three approaches. Since the speed of diagnosis is inversely
related to the required number of measurement points, the BCS approach enables a faster diagnosis of
antenna arrays.

Also, according to the diagnostic procedures proposed by Fuch et al. [14], total variation (TV),
mixed `1/`2 norm, and minimization of `1 techniques can only accommodate measured data with
the lowest SNR of 40 dB. A lower SNR results in bad diagnostics for the three procedures. However,
there are practical measurements that exhibit SNRs lower than 40 dB which require diagnosis. To this
advantage, the proposed BCS approach was theoretically and practically used to diagnose antenna
arrays from measurement data with 20 dB SNR. It can equally adapt to measured data with lower
SNR. The comparison is summarized in Table 1. The BCS approach requires a few seconds more
computational time; however, this is very small with respect to the measurement time cost. Therefore,
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the proposed method shows its robustness to noisy measured data, and a reliable diagnosis was
obtained for low SNRs.
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Table 1. Comparison between Bayesian compressive sensing (BCS)-based approach and previous
compressive sensing techniques. SNR—signal-to-noise ratio.

Approach This Work
(BCS-Based)

Minimization of `1
[14,36]

Total Variation (TV)
[14,37]

Mixed `1/`2 Norm
[14,38]

Required signal characteristics Amplitude Amplitude or Phase Amplitude or Phase Amplitude or Phase
Minimum SNR (dB) 20 40 40 40

Nature More complex Simpler Simple Complex
Required measurement points 30 64 64 64

Post-processing time (s) 7.6 0.4 2.0 4.9

7. Conclusions

A faster and robust antenna array diagnosis procedure from far-field radiation pattern
measurement points using Bayesian compressive sensing (BCS) approach was proposed in this paper.
Previous compressive sensing procedures exhibit shortcomings based on reliability with noisy data,
and require a large number of far-field measurement points. The proposed method solves these
problems by formulating planar array diagnosis within the concept of the BCS framework, resolved
using fast relevance machine (RVM). We are not the first to apply the BCS approach to antenna
array diagnosis. It was applied only to linear configurations in References [15,16] without practical
measurements, which are fundamental for testing any procedure. To the best knowledge of the
authors, this is the first attempt to apply the BCS approach to planar antenna array diagnosis from
far-field measurement points, validated with experimental measurements. Diagnoses from simulated
and measured far-field points from a designed microstrip patch antenna array show the method’s
robustness to additive data noise, as well as its reconstruction accuracy and faster diagnosis speed,
which is desired in practical applications. Hence, the proposed method is a better practical choice
whenever an efficient, faster, and more reliable antenna array diagnosis (testing) is needed.

Also, it is important to comment on the choice of sampling strategy. We considered a random
selection of measurement points from a uniform lattice. The choice of the sampling technique is not
critical because it affects all the techniques in the same manner at the far-field. However, it was pointed
out, from a non-uniform near-field lattice, that proper non-uniform random sampling (NURS) using
a priori information on the problem provides meaningful reduction in the cardinality of the set of
measured data compared to uniform random sampling and random sampling from a λ/2 equispaced
dataset [39]. Moreover, the BCS-based technique was compared to other methods using the data
reported in the literature. In the future, we will compare different techniques using experimental data
from controlled and uncontrolled environments, and the same parameters in order to quantify the
error affecting the result of different techniques. For example, we will determine what happens if we
use 30 measurements instead of 64 measurements in the experimental data using `1 minimization,
i.e., the same number of data used by the BCS, as well as the error compared to BCS. A complete
comparison among the techniques using real data is still absent in the present literature.
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