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Abstract: In the packages and printed circuit boards (PCBs) of high-speed and mixed-signal
electronics, parallel plate waveguides (PPWs) are frequently used as the power/ground plane
pair, resulting in a significant problem of electrical switching noise such as simultaneous switching
noise and ground bounce noise. This noise inevitably deteriorates system performance. In this
paper, we propose an electromagnetic bandgap (EBG) structure using an inductance-enhanced
patch (IEP) to suppress PPW modes in high-speed and compact packages and PCBs. The noise
suppression characteristics of the proposed IEP-EBG structure were thoroughly analyzed using
a dispersion diagram based on a full-wave simulation as well as an equivalent circuit model of a unit
cell structure with a Floquet boundary condition. The proposed IEP-EBG structure has the advantages
of substantial reductions in the low cut-off frequency of the first stopband as well as unit cell size
when compared to a conventional mushroom-type EBG structure without the inductance-enhanced
technique. The suppression of the PPW modes of the proposed IEP-EBG structure was verified using
measurements of scattering parameters. In the measurements, the low and high cut-off frequencies of
the first stopband of the IEP-EBG structure were found to be 1.55 GHz and 2.48 GHz, respectively,
while those of the conventional mushroom type EBG structure were 3.52 GHz and 5.3 GHz. For the
low cut-off frequency, a 56% reduction was achieved, resulting in substantial miniaturization suitable
for compact packages and PCBs.

Keywords: electromagnetic bandgap (EBG); inductance-enhanced; simultaneous switching noise;
printed circuit boards (PCBs)

1. Introduction

In current high-speed and mixed-signal electronics, the processor speed and communication data
rate have been extremely increased to achieve massive computing platforms with high bandwidth
data transfers. For instance, consumer electronics such as mobile phones and tablet PCs possess
a CPU with several giga-hertz (GHz) clock speeds and a serial communication device with multi-giga
byte per second (GBps) data rates. The significant increases in switching speeds and data rates also
induce a wideband switching noise called simultaneous switching noise (SSN) or ground bounce noise
(GBN). Commonly, SSN bandwidth is more than several GHz frequencies, thus causing a serious
electromagnetic interference (EMI) problem including the logic failure of digital devices and voltage
margin reduction in analog devices. Moreover, the SSN characteristics of wideband bandwidth and
high frequency harmonics allow it to be easily coupled to signal lines, which results in signal waveform
distortion, low bit error rate (BER), and low reliability.

Numerous studies have focused on suppressing the parallel plate waveguide (PPW) modes
in packages and PCBs because SSN is mainly generated when a switching device excites a PPW,
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which is commonly employed as a power/ground plane pair for the DC power supply in high-speed
packages and PCBs. To mitigate PPW modes, various techniques such as decoupling capacitors, slotted
planes, and electromagnetic bandgap (EBG) structures have been presented [1–9]. Among these,
EBG structures are prominent approaches for suppressing PPW modes over wideband frequency
ranges. EBG structures have the advantages of wideband suppression, a high level of suppression,
small effect on high-frequency parasitics, ease of fabrication, and cost effectiveness. Since the first
design, the mushroom-type EBG (MT-EBG), EBG structures have continuously evolved to improve
their bandgap characteristics. Early development studies [6–11] mainly focused on extending the
stopband bandwidth.

In [10], heterogeneous EBG cells were combined to superimpose different stopbands for
an effectively wideband stopband. However, this resulted in an inevitable substantial increase in
board size. In [11], multiple vias equally distributed on the patch were used. This improved the
stopband bandwidth, however, the low cut-off frequency was increased, which increased the EBG
unit cell (UC) size. Even though the EBG is desirable for widening the stopband bandwidth, reducing
the UC size is particularly important for the practical application of EBG structures. To address this,
the DGS technique was introduced in [12,13]. These techniques achieved both a wideband stopband
and reduction in UC size. However, the size reduction was not enough to permit the use of EBG
structures in high-speed packages and PCBs of certain applications. Moreover, the DGS may cause
a signal integrity problem.

In [14] and [15], high dielectric-constant materials and inter-level branches, respectively, were
employed to improve the stopband bandwidth by only decreasing the low cut-off frequency. However,
these methods increased manufacturing cost and led to complex design issues. Consequently, a new EBG
structure is needed which includes a small sized UC, low cost, good signal integrity, and simple analysis.

In this paper, we propose a miniaturized EBG structure using an inductance-enhanced patch (IEP)
for the suppression of PPW modes in high-speed packages and PCBs. The proposed IEP technique
substantially reduces the EBG-UC size without increasing manufacturing cost, degrading signal
integrity characteristics, or increasing design complexity. A dispersion analysis based on Floquet’s
theorem was conducted to examine the IEP effects on a stopband. The performance of the proposed
IEP-EBG structure was verified through measurements.

2. Design of IEP-EBG Structure

The proposed EBG structure with an inductance-enhanced patch (IEP-EBG) consists of three
conducting layers, namely the layers for a power plane, an IEP, and a ground plane, as shown in
Figure 1. The power plane is connected to the IEP through a via. In previous EBG structures such as
the mushroom-type EBG structure, the via mainly provided inductive characteristics [16]. However,
the IEP in the proposed EBG structure further enhances the inductive characteristics.
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The IEP is an EBG patch including a U-shape slot. The U-shape slot surrounds the via and
generates a narrow bridge connecting the via and a position on the edge of the patch. In practice,
an inductive path on the patch is formed. The increase in patch inductance not only results in
downsizing of the EBG UC, but also reduces the low cut-off frequency (fL) of the stopband. This feature
will be thoroughly analyzed in Section 3.

The proposed IEP technique can be simply realized by etching the patch in a manufacturing
process, thus it does not require complicated or additional processes. Moreover, it has the advantages
of simple design, cost-effectiveness, and convenience for the analysis of the PPW mode suppression.

The proposed IEP-EBG structure periodically arranges UCs in packages and PCBs. Although
Figure 1 shows an IEP-EBG array with 3-by-2 (3 × 2) UCs, the array size is not limited and depends on
the board size. The geometric design of the IEP-EBG structure can be explained by determining the
physical parameters of the UC. The design parameters associated with the IEP are the ws, ds, gs, and θs

of the bridge width, the slot length, the slot width, and the slot rotation angle, respectively. The UC
and patch size are depicted as dc and dp, respectively. The distance between the power plane and an
IEP is hv, which is equivalent to the via length. hc is the distance between the power plane and the
ground plane. Conducting layers (e.g., the power plane) are separated by a dielectric material with
relative dielectric permittivity εr.

3. Floquet Analysis

In this section, we performed a dispersion analysis using Floquet’s theory. The dispersion result
efficiently showed the stopband characteristics of the IEP-EBG structure. Dispersion diagrams were
used to examine the inductance effects of the IEP on a stopband. In addition, using the dispersion
results, we demonstrated that the miniaturization of the IEP-EBG structure was superior to that of the
mushroom-type EBG structure (i.e., the previous EBG structure without an IEP).

3.1. Analysis of the IEP Effect on Stopband

To obtain a dispersion diagram and examine the IEP effects, an equivalent circuit model of the UC
of the proposed IEP-EBG structure was derived using transmission lines and a LC resonator, as shown
in Figure 2. In the equivalent circuit model, only one-dimensional (1-D) propagation of the SSN is
considered to simplify the dispersion analysis. However, it can be extended for a 2-D propagation
analysis. The difference in the cut-off frequencies of 1-D and 2-D propagation analysis can be further
investigated [17].
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enhanced patch (IEP-EBG) for Floquet analysis.

As described previously, the IEP technique significantly increases the inductance value of the EBG
structure. The inductor enhanced by the IEP technique is represented as Leff in the equivalent circuit
model. The transmission line depicts the power and ground planes in the UC, which are vertically
separated by the distance hc. Its characteristic impedance Zoc is mainly determined by the UC width
dc, dielectric thickness hc, and relative dielectric permittivity εr. The Zoc value can be calculated by the
closed-form equation in [12], or numerical field solvers such as HFSS, MWS, and Momentum when
physical dimensions are given. The patch and corresponding ground plane forms a capacitor with
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a capacitance value of Cp. The via and IEP induces an inductance Leff, which is the sum of the via
inductance and the patch inductance, which is significantly increased by the IEP. The LC resonator
formed by the capacitor and inductor are connected in shunt with transmission lines. The Cp is simply
extracted from a rectangular-shape parallel plate capacitor. The via inductance and patch inductance
enhanced by the IEP are difficult to extract separately using an analytical equation or numerical solvers.
In this paper, the sum of the via and IEP inductances were used as the Leff for the simplicity of analysis.

To obtain the dispersion characteristics, we applied Floquet’s theory to the IEP-EBG structure.
Floquet’s theory for periodical structures is based on a UC analysis. It assumes that UCs are arranged
periodically and infinitely. Floquet’s theory shows that the voltages and currents at all ports of a UC
can be defined, and their relationships are expressed as network parameters. In particular, the use of
ABCD parameters results in the simplification of the dispersion analysis for a two-port UC.

For the IEP-EBG structure, the ABCD parameter of the UC is expressed as a product of the ABCD
parameters of the transmission lines and the LC resonator circuit as follows:(

Aeq Beq

Ceq Deq

)
=

(
AT BT
CT DT

)(
AR BR
CR DR

)(
AT BT
CT DT

)
(1)

where (
AT BT
CT DT

)
=

(
cos(βcdc/2) jZocsin(βcdc/2)

j(Zoc)
−1sin(βcdc/2) cos(βcdc/2)

)
(2)

(
AR BR
CR DR

)
=

(
1 0

YR 1

)
(3)

YR = (jωCP)/
(

1−ω2Le f f CP

)
. (4)

Evaluating the Aeq from the equations above, the dispersion equation is derived in terms of the
characteristics of the transmission lines and the resonator circuit. The effective propagation constant
βeff is given by

βe f f =
1
dc

cos−1{cos(βcdc)− k·sin(βcdc)}, (5)

where
k = (ωCPZoc)/

(
2− 2ω2Le f f CP

)
. (6)

Using Equation (5), we obtained the example of the dispersion diagram of the IEP-EBG structure in
Figure 3. The design parameters and corresponding values of the example of the IEP-EBG structure are
shown in Table 1. The values were reasonably determined considering the conventional manufacturing
processes used for high-speed packages and PCBs.
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Table 1. Design parameters and corresponding values for the dispersion analysis.

Parameters dc Zoc Cp εr Leff

Values 5.2 mm 9.2 Ω 10.3 pF 4.4 0.9 nH

In the dispersion diagram shown in Figure 3, the passbands and stopbands are shown alternately.
In the first stopband, the slow-wave effect is observed and the stopband starts from the low cut-off
frequency fL. It is anticipated that the PPW modes are efficiently suppressed in the stopband.
As a consequence, the SSN is significantly mitigated over the frequency range from fL to a high
cut-off frequency (fH). In this example of the dispersion results, the stopband is obtained in the
frequency range from 1.6 GHz to 2.86 GHz.

To thoroughly examine the IEP effects, a closed-form solution of fL was derived by realizing that
a real part of βeff·dc was equal to π (i.e., Re{βeff·dc} = π). In addition, we assumed that the value of βeff·dc

was too small for the small angle approximation of trigonometric functions in Equation (5) because it
was far from the Brillouin zone boundary at the low cut-off frequency. Then, a closed-form expression
for fL can be extracted as

fL =
(

ZocCPdc/
(
4vp
)
+ Le f f Cp

)(− 1
2 ) (7)

where
vp = c/(εe f f )

1
2 (8)

vp is the phase velocity. c is the speed of light and εeff is the effective relative permittivity of the
dielectric material.

Using Equation (7), the IEP effects on fL were characterized by sweeping the Leff values from 0.6 nH
to 1.4 nH as shown in Figure 4. The Leff values used herein were chosen considering a conventional
design of high-speed packages and PCBs. The fL analysis with Equation (7) was not limited to these
values. As can be seen in Figure 4, it was found that the fL value decreased as the Leff value increased.
Applying the IEP technique to the EBG structure increased the effective inductance of the EBG UC.
As a result, the fL was shifted down in the low frequency range.
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Figure 4. Analysis of the IEP effects on the low cut-off frequency fL with various Leff values.

The advantage of fL reduction with the IEP technique is the efficient miniaturization of the UC.
When we have a design objective for the fL in high-speed packages and PCBs, the value of the

fL can be controlled by changing the dc, Leff, Zoc, and Cp values. To shift the fL down into the low
frequency range and satisfy the design target, first, dc can be increased, thus enlarging the UC size.
Alternatively, increasing Zoc enables a low fL value. For a large Zoc, the thickness of the packages
and PCBs needs to be significantly increased, which is prohibited in most applications of high-speed
packages and PCBs. Additionally, increasing Cp reduces the fL value. However, increasing Cp can be
accomplished by using a high dielectric constant material, which is a costly and unreliable method.
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Instead of these former methods, we increased Leff using the IEP techniques without increasing
the UC size, PCB thickness, or cost.

To further examine the IEP effects on the stopband, the high cut-off frequency fH was obtained by
applying the condition of βeff = 0 to Equation (5) as follows:

tan
(

βe f f dc/2
)
≈ Zoc

(
4π fH Le f f

)
(9)

In Equation (9), it was approximated by assuming that the resonance frequency defined by the
product Leff·CP was widely separated from the fH. To analyze the IEP effect on the fH, a graphical
analysis was adopted by plotting the left- and right-hand sides of Equation (9) as shown in Figure 5.
The tangent function of the left-hand side is shown as a blue curve. Five fractional functions of the
right-hand side with respect to the various Leff values are represented. The Leff values of 0.6 nH, 0.8 nH,
1.0 nH, 1.2 nH, and 1.4 nH were used. The point where the tangent function curve and the fractional
function curve intersect indicates the approximate value of the fH.
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As shown in Figure 5, the fH decreased as the Leff increased. Consequently, it is shown that the
IEP technique reduced the fL and fH, thus shifting down the stopband in the low frequency range,
which resulted in downsizing the UC in the IEP-EBG structure.

3.2. Demonstration of fL Reduction and Miniaturization

In this section, the fL reduction and miniaturization of the IEP-EBG structure were demonstrated
by applying Floquet theory to the example designs. The stopband characteristics of the example designs
of the proposed IEP-EBG structures were compared to those of the conventional mushroom-type
EBG (MT-EBG) structure. Their dispersion diagrams were derived using Floquet theory based on
a full-wave simulation. The ABCD parameters of the proposed IEP-EBG and conventional MT-EBG
structures were extracted using finite element method (FEM) simulations performed by HFSS. In this
analysis, the FEM simulation technique was employed for a practical design approach based on the
geometric design.

The fL reduction was examined for the proposed IEP-EBG and previous MT-EBG structures
having the same UC size. The design parameters and corresponding dimensions are summarized
in Table 2. The dimensions were selected considering a conventional design guide for high-speed
packages and PCBs. The copper and FR-4 were adopted as the metal in the conduction layers and
the dielectric material for the example design. The copper thickness and relative permittivity of the
dielectric material were assumed to be 18 µm and 4.4, respectively. The dispersion characteristics
were extracted as shown in Figure 6. The fL value of the previous MT-EBG structure was 4.1 GHz,
while that of the proposed IEP-EBG structure was 1.6 GHz. With the same UC size, the proposed
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IEP-EBG structure significantly reduced the fL value, up to 61%, when compared to the conventional
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To demonstrate the miniaturization, we compared the dispersion characteristics of the proposed
IEP-EBG and previous MT-EBG structures, which had the same fL values of 1.6 GHz, as shown in
Figure 7. The dimensions of the IEP-EBG structure were the same as the example structure shown in
the fL reduction analysis. The MT-EBG structure was enlarged from 5.2 mm to 11.7 mm to have the
same fL as the IEP-EBG structure.

Electronics 2018, 7, x FOR PEER REVIEW  7 of 11 

 

 

Figure 6. Dispersion analysis of the fL reduction of the IEP-EBG structure. 

To demonstrate the miniaturization, we compared the dispersion characteristics of the proposed 

IEP-EBG and previous MT-EBG structures, which had the same fL values of 1.6 GHz, as shown in 

Figure 7. The dimensions of the IEP-EBG structure were the same as the example structure shown in 

the fL reduction analysis. The MT-EBG structure was enlarged from 5.2 mm to 11.7 mm to have the 

same fL as the IEP-EBG structure.  

 

Figure 7. Miniaturization analysis of the UC of the IEP-EBG structure using a dispersion diagram. 

As shown in Figure 7, the IEP structure achieved a significant reduction in UC size when 

compared to the MT-EBG structure, while the stopband of the IEP-EBG structure was not 

significantly reduced. An 80% size reduction was accomplished using the IEP technique without 

stopband deterioration, additional materials, or cost increase. In the analysis, the distinguished 

Figure 7. Miniaturization analysis of the UC of the IEP-EBG structure using a dispersion diagram.

As shown in Figure 7, the IEP structure achieved a significant reduction in UC size when compared
to the MT-EBG structure, while the stopband of the IEP-EBG structure was not significantly reduced.
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An 80% size reduction was accomplished using the IEP technique without stopband deterioration,
additional materials, or cost increase. In the analysis, the distinguished characteristics of the fL
reduction and miniaturization of the IEP-EBG structure were proven for the specific design. However,
it should be noted that the design is not limited to just this specific case.

To further investigate the effects of design parameters such as the slot length ds and the slot
rotation angle θs, the stopband characteristics were obtained using Floquet analysis for various values
of design parameters. Figure 8 depicts the effects of slot length on the fL and fH with respect to
various slot length values, varying from 0.2 mm to 1.8 mm. As shown in Figure 8, the fL and fH were
approximately inversely proportional to the slot length ds. This can be explained by the ds increase,
resulting in the large effective inductance Leff of the UC and lowering of the stopband.
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The dispersion characteristics were compared for three cases of the slot rotation angle 0, π/4,
and π/2 radians in Figure 9. The Floquet analysis was performed for those cases. As seen in the results,
fL and fH were not significantly different for the various slot rotation angles. Even though only a few
cases were examined, it can be reasonably concluded that the Leff was not significantly affected by
the slot rotation angle. Moreover, the stopband of the IEP-EBG structure was mainly influenced by
the slot length. The design of the proposed IEP-EBG structure was simply achieved by adjusting the
slot length.
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4. Experimental Results

To experimentally verify the IEP-EBG structure, test vehicles (TVs) were fabricated using
a commercial PCB manufacturing process with a plated through hole (PTH) via. Copper and FR-4
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were used as the conductor and dielectric material in the PCB process. The copper thickness was 18 µm.
The relative dielectric permittivity and loss tangent were 4.4 and 0.02, respectively. The PTH via radius
was 0.4 mm. Three TVs were fabricated, namely the proposed IEP-EBG structure, the conventional
MT-EBG structure, and a PPW as a reference. The physical dimensions of the UCs of the IEP- and
MT-EBG structures were the same as the example structure in Table 2. The TVs for the IEP- and
MT-EBG structures contained a 7-by-7 array of UCs.

Table 2. Design parameters and corresponding values of the dispersion analysis.

Parameters dc dp ws ds gs θs hv hc

Values 5.2 mm 5 mm 0.1 mm 1.8 mm 0.1 mm 0 rad 0.2 mm 0.3 mm

To measure the S21 parameter, a vector network analyzer (model: Anritsu MS46122A) was used,
as shown in Figure 10. A microprobe (GGB 40A-GSG-500-DP) with 500-µm pitch was used to minimize
parasitic components induced by the additional structure used for the measurement. The probe pads
were located at (6 mm, 18.5 mm) and (32 mm, 18.5 mm) with the origin located at the lower left corner
of the TVs. The overall board size of the three TVs was 37 mm × 37 mm.
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Figure 10. Measurement setup of S-parameters for the verification of the IEP-EBG structure.

The measured S21 parameters of the proposed IEP-EBG structure, the previous MT-EBG structure,
and the PPW are compared in Figure 11. As seen in the results, numerous resonance peaks induced by
PPW modes can be observed in the TV of the PPW, represented as a black curve. In contrast, the IEP-
and MT-EBG structures formed the stopband, suppressing the PPW modes. The stopband of the
MT-EBG structure with a −30 dB suppression level was formed in the frequency range of 3.52 GHz
to 7.14 GHz, while that of the IEP-EBG structure was observed in the frequency range 1.55 GHz to
2.48 GHz. The center frequencies fC of the MT- and IEP-EBG structures were approximately 5.3 GHz
and 2.0 GHz, respectively.

With the same UC size, the IEP-EBG structure achieved a substantial reduction in fC when
compared to the MT-EBG structure by effectively shifting down the stopband in the low frequency
range. The distinguishing feature of the IEP-EBG structure was the 62% reduction in the fL without the
use of additional materials or layers. The performance of the MT- and IEP-EBG structures could be
compared using the FSV technique [18–20].

Thus, it resulted in a cost-effective solution. As previously analyzed, the UC of the MT-EBG
structure would have to be enlarged up to 11.7 mm to achieve the same stopband as the IEP-EBG
structure. Consequently, it was experimentally verified that the IEP-EBG structure achieved superior
fL reduction, which resulted in the significant miniaturization of the EBG structure.
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5. Conclusions

An inductance-enhanced patch (IEP) technique was presented that efficiently miniaturized the
EBG structure while suppressing the PPW modes in high-speed packages and PCBs. The IEP effects
on the stopband of the EBG structure were thoroughly examined using a dispersion diagram obtained
from Floquet theory. The effective inductance of the IEP-EBG structure significantly increased, so that
the stopband including the low cut-off frequency was substantially shifted down into the low frequency
range without increasing the UC size of the EBG structure. It was experimentally verified that the
IEP-EBG structure achieved a 62% reduction in the center frequency of the stopband when compared
to a conventional MT-EBG structure. Moreover, the miniaturized IEP-EBG structure contained no
reference discontinuity, so it had good signal integrity characteristics. The IEP-EBG structure is
suitable for applications such as mobile devices which require a small form factor with good noise
suppression characteristics
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