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Abstract: This work describes a miniaturized sensor network based on low-power, light-weight and
small footprint microelectromechanical (MEMS) sensor nodes capable to simultaneously measure
tri-axial accelerations and tri-axial angular velocities. A real-time data fusion algorithm based on
complementary filters is applied to extract tilt angles. The resulting device is designed to show
competitive performance over the whole frequency range of the inertial units. Besides the capability
to provide accurate measurements both in static and dynamic conditions, an optimization process has
been designed to efficiently make the fusion procedure running on-sensor. An experimental campaign
conducted on a pinned-pinned steel beam equipped with a network comprising several sensor nodes
was used to evaluate the reliability of the developed architecture. Performance metrics revealed
a satisfactory agreement to the physical model, thus making the network suitable for real-time tilt
monitoring scenarios.

Keywords: tilt sensor; sensor data fusion; complementary filters; overlap-add processing; spectral
analysis

1. Introduction

The deployment of vibration-based Structural Health Monitoring (SHM) systems involves
a plurality of requirements to be satisfied. Technology non-invasiveness, real-time analysis capability,
and compatibility with long-term installation can be listed among them [1–3]. The ability to
continuously provide up-to-date information about current structural health conditions requires
dedicated hardware and software resources. In time, these can be combined to obtain wide-area sensor
networks embedding local data processing functionality.

The goal of providing early anomaly detection and damage localization is pivotal in SHM [4–9].
Compactness and reduced power consumption make microelectromechanical (MEMS) sensors suitable
for structural monitoring; also, they can be directly deployed on-structure, all the while allowing for
low-cost frameworks and extending electronics life cycle. Accelerometers are particularly suited to
capture linear accelerations: despite this, damage metrics applied to data acquired in the proximity of
unfavorable locations fail in properly detecting anomalies, primarily due to a reduced Signal to Noise
Ratio (SNR) [10].

Recent trends in electronics highlighted the possibility to combine MEMS technology with
multi-degree-of-freedom measurement units. As such, monitoring schemes are moving towards

Electronics 2019, 8, 45; doi:10.3390/electronics8010045 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0003-3281-137X
https://orcid.org/0000-0002-2429-1469
https://orcid.org/0000-0001-7697-6729
http://dx.doi.org/10.3390/electronics8010045
http://www.mdpi.com/journal/electronics
http://www.mdpi.com/2079-9292/8/1/45?type=check_update&version=3


Electronics 2019, 8, 45 2 of 14

redundant but more accurate and reliable configurations, capable to gather both static and dynamic
features. Tailoring this necessity to civil and industrial applications, the concurrent usage of
accelerometers and gyroscopes provides a set of complementary quantities which can compensate
for each other. Experimental validations of this integrated strategy have been conducted for high-rise
buildings [11], showing that the joined exploitation of acceleration and tilt sensors yields a more
precise understanding of the structural deformation at higher frequencies. Similarly, coupled linear
and rotational measurements have shown to have superior performance in monitoring wind induced
vibrations in tall infrastructures [12–15]. Furthermore, diagnosis systems for bridge monitoring
purposes have been implemented through sensor networks comprising gyroscopes and PCB
accelerometers [10,16] showing superior performance in damage localization.

At the same time, current monitoring solutions embrace the idea to provide devices with
embedded data fusion algorithms, that is, each sensor node combines multiple sensor signals
to reduce the uncertainty of single-source sensing architectures. Among the possible techniques,
which may include Kalman [17–20] or particle filtering [21,22], Complementary Filters (CF) based
on the simultaneous adoption of low-pass and high-pass filtering demonstrated to be extremely
effective. In fact, being the CF overall transfer function constant over the whole spectrum [23–26],
their design combines well with wide-band sensing strategies. Similar studies are usually based on
processing procedures computed off the sensor node, however, to provide real-time embedded signal
processing capabilities, especially while chasing rapid phenomena, fully tunable filter chains which do
not strongly impinge on the computational effort should be considered.

Consistently with the aforementioned scenarios, the presented work describes a monitoring
system based on small footprint, low-power and light-weight MEMS sensors which can be
interchangeably used as accelerometers, gyroscopes, or tilt nodes thanks to an embedded data fusion
algorithm. Specific attention was given to the software implementation of the CF technique, essential
to extract tilt information directly on the node by means of a low-complexity algorithmic scheme.
As a result, the sensor-near electronic design strategy could be adopted. The deriving versatility,
scalability and computational efficiency allow to optimally shape the network in relation to each
specific monitoring application.

The paper is organized as follows. Section 2 is firstly dedicated to the architectural description
of the monitoring system, in which the sensor nodes represent the hardware core blocks dedicated
to acquisition tasks. The sensor node schematic diagram and the relative prototype are detailed,
highlighting the properties of the digital gyroscope, whose exploitation represents the core of the
work. The data fusion algorithm is then introduced, including the calibration steps chosen to set
the parameters of the digital filters. Section 3 shows that an Overlap-Add (OLA) processing method
provides highly accurate measurements in static conditions. Moreover, in the same Section, a test-bench
is introduced to evaluate the validity of the proposed system for modal analysis purposes, comparing
the extracted frequencies of vibration to the theoretical predictions. Finally, conclusions will be drawn
in Section 4.

2. Materials and Methods

2.1. Sensor Node

The developed sensor node characteristics are: (a) 30 mm× 23 mm stamp-size, (b) 3.5 g
light-weight and (c) reduced power consumption, which allow to gradually distribute processing
power, hence striving to realize a decentralized monitoring platform. This device represents an
improved version of a previous and already validated circuitry customized to acquire acceleration data
only [27]. Devices are connected by a Sensor Area Network (SAN) bus exploiting data-over-power
(DoP) communication, whereas meaningful information is pre-processed by means of a lossless
encoding technique; finally, data is transmitted to a connected PC via a purposely designed companion
gateway device. When SAN is powered at 5.0 V, 44.8 mW are drained.
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From an architectural point of view, all the building blocks sketched in Figure 1a are controlled by
a Micro-Controller Unit (MCU) equipped with Digital Signal Processing (DSP) instructions, Floating
Point Unit (FPU) and limited FLASH memory. A serial RAM is integrated for temporary storage,
while network connectivity to the bus is accomplished through a low-power transceiver (XCVR). Serial
Peripheral Interface (SPI) and I2C serial protocol guarantee internal and external communication
between components and connected peripherals.

Angular velocities and acceleration signals are collected using an LSM6DSL iNEMO Inertial
Measurement Unit (IMU), an ST Microelectronics system-in-package [28] featuring a 3D digital
accelerometer and a 3D digital gyroscope, accessed by means of a dedicated SPI interface. It exhibits
full-scale acceleration ranges of ±2 g, ±4 g, ±8 g and ±16 g and angular rate ranges of ±125 dps,
±250 dps, ±500 dps, ±1000 dps and ±2000 dps. In shutdown mode, 3 µA are absorbed from
the 3.3 V power supply fixed by a Low-Drop-Out regulator (LDO). It consumes 0.65 mA in the
most-demanding configuration, thus enabling always-on low power measurements. Power-down,
low-power, normal-mode, and high-performance mode are the four different operating modes available
for the sensing elements, whose Output Data Rate spans from 12.5 Hz up to 6.664 kHz and is real-time
programmable by means of a digital low-pass filter.

The integrated tri-axial gyroscope belongs to a category of devices producing a positive digital
output for counterclockwise rotation around a predefined axis. Its sensitivity of 4.375 mg/LSB (Least
Significant Bit) for the chosen output range of ±125 dps is subjected to minimal drifts over time,
also withstanding a thermal excursion between−40 ◦C and 85 ◦C. Furthermore, this inertial component
features an ultra-low noise density of about 4 mdps/

√
Hz in high-performance mode, exhibiting

a competitive resolution within its class. In order to reinforce the placement, facilitate the installation
step and protect circuitry against electromagnetic coupling or atmospheric-driven failures, common in
harsh environments, each node is lodged in a dedicated case weighing less than 6 g on the whole.MCU RAMCSSDOSDISCK MISOMOSIXCVR LDOVccTETXDERERX Vcc VccVcc100k150k150k100k 10nF 695µHSAN Network To/From IMUSCK 10 F

(a)

RAM

MCUXCVR

LDO

IMU

SAN 

(b)

Figure 1. Hardware instrumentation: (a) Schematic diagram of the sensor node and (b) its relative
prototype inside an ad-hoc case.

The resulting sensor node, depicted in Figure 1b, can be permanently installed on the structures
to be monitored as its physical and electrical properties do not interfere with their behavior.
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2.2. Sensor Data Fusion

Data-level fusion algorithms are encouraged by the widely shared opinion that reliability,
resolution, availability, and accuracy are primary issues in every SHM process [29,30]. Compensation
and auto-calibration obtained by a complementary and integrated approach strengthen the
inspection phase in seizing multiple aspects of the same phenomena [31]. In structural applications,
the synchronized measurement of angular and linear displacements enables to estimate inclination
with finer precision.

On one hand, accelerometers perform well at low frequencies: in fact, even if dynamic features
suffer from crosstalk, this undesired effect is filtered out by the acceleration transfer function. On the
other hand, gyroscopes work optimally in the superior spectral band; they, however, suffer from the
integration procedure mandatory to transform angular velocities into tilt values. Among the variety of
methods theorized for tilt estimation, the strategy here proposed and embedded in the sensor node
is based on high-pass filtered angular velocities and low-pass filtered accelerations. The sensor data
fusion mechanism, which is consistent with FIR Complementary Filters suggested in [25], is chosen to
minimize phase and magnitude distortion around the cutoff frequency.

2.3. Algorithm Definition

The time-dependent acceleration-based and angular-based tilt values, addressed in the following
as θa and θg, characterize the modal behavior of structures undergoing vibrations. For the sake of clarity,
in case of devices installed on the top surface of a structure, Figure 2 schematically depicts the problem
from a geometric point of view. In detail, the sensor node laying on the xy-plane is programmed to
estimate inclinations of the vertical plane, consequently, the tilt is intended as a positive value around
the z axis. y x z ayaxaz wz

wy
wxg xxz g z 

θy 
Figure 2. Geometric relation between tilt angles and acceleration referred to z-direction for a device
installed on the top of a structure.

The acceleration vector constitutes of three components ax, ay, az recorded along the three
directions, whereas angular rates wx, wy, wz correspond to rotational spins projected on the same axes.

Radial acceleration ar = az and tangential acceleration at =
√

a2
x + a2

y are fused together to extract the

tilt values θ̂a defined as

tan θ̂a =
at

ar
=

√
a2

x + a2
y + ξc + ξa

az + ξc + ξa
(1)

Crosstalk noise ξc and accelerometer intrinsic noise ξa usually affects the collected data,
their contribute becoming evident at higher frequencies. Such disturbances must be filtered out
by an appropriate low-pass transfer function, thus providing an accurate estimation only for
pseudo-static behavior.
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Angles described by rotation around predefined directions can be numerically computed by
integrating the absolute angular velocity components

ω̂g =
√

ω2
x + ω2

y + ω2
z + ξb + ξg (2)

in which drift errors caused by inherently biased and noisy measurements, respectively indicated as ξb
and ξg, typically impact on pseudo-static measurements. The robustness of integration with respect to
high-pass filtering leads to precise gyroscope-driven tilt estimations only in the dynamic regime.

According to the aforementioned CF technique, by taking the Fourier Transform (FT) of
Equations (1) and (2), the estimated θ̂a( f ) and ωg( f ) enter the fundamental fusion step to obtain
a unique fused value θ̂( f ) defined as

θ̂( f ) = HL( f ) θ̂a( f )− j
HH( f )

2π f
ω̂g( f ) (3)

This is accomplished by applying in parallel two second order filters: HL( f )θ̂a( f ) is the low-pass
filtered version of data coming from accelerometer, whereas angular rate signals undergo an high-pass
filtering elaboration. The two quantities HL( f ) and HH( f ) designate the following low-pass and
high-pass filtering envelopes

HL( f ) =
1

1 +
(

f
fβ

)2n HH( f ) =
1

1 +
( fβ

f

)2n HL( f ) + HH( f ) = 1 (4)

where fβ indicates the cut-off frequency of the filters. Fused inclination values at every instant in
time are finally computed by applying the Inverse Fourier Transform (IFT) of the output provided by
expression (3).

2.4. Embedded Processing

The processing flow implemented on the sensor node is schematically depicted in Figure 3.
The sampling frequency Fs is chosen on the basis of the spectral content, following the Nyquist
theory. The number of samples Ntot is related to the maximum available storage capability of each
sensor. The CF data fusion was performed in the Fourier domain by adopting the Overlap-Add (OLA)
method [32].

Windowing
w(t)

Gyroscope
G(t)

Accelerometer
a(t)

Windowing
w(t)

G(t)

A(t)

G(t)w(t)

A(t)w(t)

Complementary
Filters and sum (t)

OLA Processing

θ

θ

θ

θ

θ

Figure 3. Schematic representation of signal processing method programmed onboard.
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According to the OLA paradigm, data must undergo a windowing phase. Window size in the
time-domain Ns is at least one order of magnitude smaller than the entire time-series Ntot. The window
adopted in this study is displayed in Figure 4a, and can be mathematically described as:

w(t) =


sin2

(
π
2

t
Tov

)
0 ≤ t < Tov

1 Tov ≤ t < Thop

cos2
(

π
2

t−Thop
Tov

)
Thop ≤ t < Tf rame

(5)

where Tf rame is Ns
Fs

, Tov is the time interval in which consecutive windows are overlapped, and Thop =

Tf rame − Tov is hop size. Windowed data are then Fourier transformed and filtered, so that the finally
derived tilt values can be concatenated.

0
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p
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me 2T ho
p
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(t
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(a)
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-40

-20

0

20

40

W
(f)

 [d
B]

Tov =0.1 Ttot
Tov =0.2 Ttot
Tov =0.3 Ttot
Tov =0.4 Ttot
Tov =0.5 Ttot

(b)

Figure 4. Window function implemented to diminish the computational burden of the data fusion
algorithm working on sensor: (a) Time-domain working principle of the OLA mechanism and
(b) window spectral properties for overlapping fraction spanning in the interval [0.1; 0.5].

The optimal selection of the cutoff frequency of the complementary filters is highly dependent on
the sensor technology, as well as on the specific application case. In the experiments related to static
tilt conditions, such parameter has been selected on the basis of a calibration step which led to the
minimization of the mean square error, as shown in Figure 5a.

(a) 0.5 1 1.5Time [s]253035 [°] f =153.5 Hzf =95 Hz
(b)

Figure 5. (a) Optimal cutoff frequency estimation and (b) effect of the cutoff frequency selection on
OLA sensor data fusion (actual tilt value: 30◦).
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For the global accuracy, the selection of the window length Ns is also very relevant, since this
parameter directly affects the quality of the filter approximation based on the discrete FT. This implies
that the ratio between the frequency resolution of the windowed and non-windowed processing
(∆ f t =

Fs
Ntot and ∆ f w = Fs

Ns
, respectively) should be lower bounded:

∆ f t

∆ f w
=

Ns

Ntot
≥ α → Ns ≥ α Ntot (6)

where α is a predefined accuracy threshold.
It is worth noting that, since the rising and falling edge respectively obey to a sin2(t) and a cos2(t)

trend, the mask of this window is shaped to satisfy the Constant-Overlap-Add (COLA) constraint
stated in Equation (7):

Nw−1

∑
k=0

w(t− k Thop) = 1, ∀t (7)

being Nw = Ttot
Thop

the total number of iterations. This necessary and sufficient condition allows to
correctly reconstruct signals split into successive windowed frames. The COLA constraint implies that
the spectral values of the window functions must be zero at all harmonics of the hop rate Fhop = 1

Thop
,

consequently, it must ensure that

W(k Fhop) = 0, ∀k = 1, . . . , Nw − 1 (8)

Taking the Fourier Transform of the window described in (5) and introducing the overlap fraction
o = Tov

Tf rame
, it follows that

W( f ) = −
(2 f o Tf rame)

2

1− (2 f o Tf rame)2 Thop cos(π f o Tf rame)sinc( f Thop)e
−π f Tf rame (9)

clearly showing zero values for f = k Fhop and then compliant to (8), independently either from the
duration of the window and the number of samples to be overlapped.

A narrow amplitude of the first lobe of the window spectrum, together with a highly attenuated
second lobe, would be desirable. However, the spectrum obtained by processing windows with
increasing values of Tov (see Figure 4b) clearly demonstrates that a wider first lobe corresponds to
a deeper attenuation of secondary lobes. As a result, the final choice must be properly balanced among
these two opposite behaviors, in order to reach the best performance.

Besides accuracy, also the computational cost to perform the OLA processing is strongly affected
by the selection of Tov and Ns. As well known, the FFT has O(Ns log2 Ns) complexity, implying
a logarithmic decrease when Ns is reduced. Therefore, the computational effort C paid to process
a generic sequence of Ntot elements divided into Nw frames results in

C = NwNs log2(Ns) (10)

Specifically, the contribution associated with the number of overlapped samples is upper
bounded to 2Ntot whenever the maximum allowable Tov is chosen. On the contrary, the logarithmic
relation connected to the dimension of the window leads to a consistent reduction of C as Ns

downsizes. Consequently, following what was anticipated in (6), there is a clear trade-off between the
computational cost and the filter approximation accuracy.

To fully exploit the versatility of the circuitry, all the parameters necessary to perform the
processing were stored in registers programmable at run-time: the gyroscope full-scale, the sampling
frequency, the total number of samples to be acquired, the overlap fraction, and the output data rate.
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3. System test and Discussion

To evaluate the reliability of the developed hardware and software architecture, after a validation
phase in which window parameters have been quantified, the accuracy of tilt estimation has been
examined experimentally in almost static conditions, and successively in dynamic regimes.

3.1. System Validation in Static Condition

A Newport IG Breadboard anti-vibration table shown in Figure 6 was used to filter out unwanted
surrounding vibrations, while a sensor was statically tilted to a fixed angle during an initial trial
necessary to extract the proper complementary filters cutoff frequency.

The sampling frequency was set to 1250 Hz. Since the maximum available temporary storage
capability is 30 kBytes and each sensor concurrently acquires two data bytes for each one of the
six inertial degrees of freedom, the available number of samples on each channel cannot exceed
2500. Obeying to internal DSP functionalities, which impose window length to be a power of two,
and assuming a resolution ratio α = 0.02, 64 samples shifted with an overlapping ratio equal to 0.25
were selected, ensuring an optimal trade-off among the spectral design of the corresponding window
frame and the computational complexity.

Experimental data were processed with fβ values varying from 80 Hz to 180 Hz with an increasing
step of 1.5 Hz. The optimal cutoff frequency was obtained by minimizing the square error

SE = (θTUV − θ̄S)
2 (11)

between the constant θTUV reference angle provided by a TUV GS level included in the same setup
and the mean value θ̄S extracted from collected samples. The global minimum displayed in Figure 5a
corresponding to a cutoff frequency of 153.5 Hz was finally set as the optimal cutoff frequency. Figure 5b
shows that the selection of the most appropriate cutoff frequency effectively captures the actual tilt
value, while a wrong selection may cause periodic artifacts, the periodicity of them being related to
the window dimension.

In the following, first and second order statistics have been used to establish the accuracy of the
measured inclinations in stationary conditions, with a sensor node fixed at three different inclinations:
30◦, 45◦, 60◦. Table 1 points out the distribution of mean value and standard deviation for each
configuration: relative error Er lower than 0.7% and σ always less than two-tenths of a degree prove
that results are highly precise.

It is worth pointing out how variance slightly arises for increasing inclination values, showing an
almost linear trend. This evidence paves the way to an auto-calibration procedure transferable onto
the node itself: once a finer-scale training would be executed, biased measurements could be internally
corrected after inferring the proper compensation curve.

Table 1. Statistics obtained from measurements in different pseudo-static configurations: mean value,
relative error and standard deviation.

Reference Tilt Measured Tilt Er σ
[◦] [◦] [%] [◦]

30 30.1832 0.611 0.1399
45 45.0024 0.005 0.1523
60 60.3116 0.519 0.1985
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Anti-vibration
table

TUV level

Figure 6. Experimental setup in pseudo-static conditions: anti-vibration table equipped with TUV level.

3.2. Vibration Analysis

The study of the dynamic properties of the system in the frequency domain is typically carried
out estimating the most energetic natural frequencies, firstly for the extraction of the instantaneous
rate of vibration and subsequently to assess the integrity.

As displayed in Figure 7, a network comprising seven sensor nodes and one interface connected
in a daisy-chain fashion was mounted on a pinned-pinned L = 2140 mm steel beam with cross-section
base b = 60 mm and height h = 10 mm, thus corresponding to a moment of inertia I = bh3/12.
The material density is ρ = 7880 kg/m3 and the Young’s modulus E = 195 GPa can be used to predict
the first natural frequencies through the closed formula

fn =
(πn)2

2πL

√
EI
ρbh

(12)

Sensors were placed at a step of 220 mm starting from the first node, whose distance from the
fixed left edge of the beam is 135 mm.

S1 S2 S4S3 S5 S6 S7
220 mm 220 mm 220 mm 220 mm 220 mm 220 mm 85 mm135 mm

330 mm330 mm

Figure 7. Experimental setup in vibrating condition.

An explicit relationship exists between acceleration and inclination observed with respect to
a common direction. Resorting to trigonometric relationships for the scheme introduced in Figure 2,
the time-spatial dependent angle θ, described by rotations of the sensor, can be geometrically
interpreted as the derivative of vertical position displacements along the longitudinal direction.
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Mathematically speaking, the governing equation of a thin rod undergoing transverse motion is
defined as [33]

z(x, t) =
∞

∑
n=1

(An cos(ωnt) + Bn sin(ωnt)) sin(βnx) (13)

where appearing quantities An, Bn are constants deriving from boundary conditions and ωn = 2π fn

correspond to the nth-cyclic pulsation. Algebraic manipulation of (13) yields to the more compact form

z(x, t) =
∞

∑
n=1

Rn sin(ωnt + αn) sin(βnx), Rn =
√

A2
n + B2

n; αn = arctan
An

Bn
(14)

on which a derivative operation can be performed providing the final result stated in (15).

θ(x, t) =
∂z(x, t)

∂x
=

∞

∑
n=1

βnRn sin(ωnt + αn) cos(βnx) (15)

Comparing (13) to (15), it can be inferred that the spectral content of z(x, t) and θ(x, t) is localized
at the same angular frequencies ωn. As a consequence, frequency analysis accomplished on tilt
angles or acceleration signals allow identifying the same modes of vibration, predictable through
Equation (12). For this reason, in this experiment, we have evaluated how similar is the frequency
spectrum computed on the acceleration data with respect to the one computed on the result of the CF
data fusion procedure.

It is important to highlight that, besides data and power communication, the bus connecting the
sensor nodes also natively allows for time base synchronization in the acquisition. As a consequence,
an output-only estimation of vibrating components can be put in place. Gathering data at a sampling
frequency Fs = 1250 Hz ensures a Nyquists’ bandwidth compliant with the theoretical estimation up
to a satisfying accuracy. The beam was excited at the two-thirds of the span by means of an impact
hammer, thus allowing it to oscillate in a condition of free vibrations. Since the dynamic operating
conditions substantially differ from static measurements, a new calibration phase is necessary to
be executed.

The most appropriate cutoff frequency was selected according to the spectral range of interest.
More explicitly, supposing that the energy of a structure is mainly distributed among the lower
spectral components, the analysis here conducted included the characterization of the first and second
harmonic, corresponding to f1 = 6.195 Hz and f2 = 24.778 Hz for the setup under test. Thereafter,
a value of fβ = 27 Hz was adopted to properly balance accelerometers and gyroscopes performance.
Window size equal to 128 samples was chosen in order to provide high-resolution data, and an overlap
factor o = 0.4 enabled to smooth the envelope of the window transition bands.

The joint hardware-software optimization of the circuitry allowed us to compute Power Spectral
Densities (PSD) of tilt signals, processed exploiting FFT and Welch estimation method. In order to
assess the reliability of the proposed multi-type sensor framework, results obtained for windowed and
non-windowed processing were compared to the performance obtained applying the aforementioned
techniques to the same radial acceleration dataset used for tilt angles estimation.

Improvements in the quality of the vibration analysis can be inferred from Figure 8. Basing on
data extracted from a single sensor node installed on the top surface of the beam, the introduction
of the right cutoff frequency intensely attenuates spurious peaks. Furthermore, the spectral trend
estimated through the windowing strategy is almost perfectly superimposed to the one extracted
processing the whole dataset at one time and it is also coherent to numerical predictions.
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Figure 8. Comparison of spectra resulting from the windowed and non-windowed approach with
respect to the spectral content of radial acceleration.

An important observation comes from the analysis of Figure 9: a deep correlation is present
between the experimental and theoretical modes of vibration, being the relative error always below
1% under all the investigated methods. Moreover, the FFT estimator not only accomplishes the
highest level of accuracy but also implies a lower computational cost if executed by local on-sensor
processing units.

Another significant evidence comes from the analysis of Figure 10, were the seven spectra obtained
from the sensors placed in the positions described by Figure 7 are superimposed; not only the peaks
corresponding to the different vibrating harmonics are distinctly resolved over the whole band and are
characterized by a satisfactory peak-to-noise ratio of about 15 dB, but also a high degree of coherence
between them is evident.

Finally, it can be observed that the obtained spectra allow detecting both the pinned-pinned
frequencies (triangular marked peaks) and the free-free flexural behavior of the beam (red circles),
which may arise because the hinging supports do not perfectly anchor the structure. As a result,
improved real-time algorithms embedded into electronic equipment permit to capture detailed
snapshots of the rotational properties characterizing vibrating structures.
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Figure 9. Spectral analysis on tilt values extracted by sensor node S2: comparison of the error
distribution in vibrating modes extraction from acceleration and tilt signals via FFT and Welch strategy.
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Figure 10. Comparison of spectral density characteristics of tilt signals estimated via FFT elaboration
by nodes located at different positions.

4. Conclusions

This work describes a tilt sensor node, along with all the implemented procedures adopted to
acquire and process high-quality signals in real-time. Inclination values are extracted with a simple
but robust sensor data fusion algorithm supported by an optimized onboard signal processing scheme,
accomplishing high accuracy both in pseudo-static and dynamic conditions. Reduced computational
complexity, combined with scalability, versatility, and non-invasiveness, perfectly cope with long-term
monitoring instances. The suitability of the designed framework to vibration-based SHM instances
makes it possible to integrate such a network for modal analysis purposes, comprehending the
development of new modal shapes reconstruction strategies which represent a big concern in modal
analysis scenarios.
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