
electronics

Article

LAP-SLAM: A Line-Assisted Point-Based
Monocular VSLAM

Fukai Zhang 1, Ting Rui 2,*, Chengsong Yang 2 and Jianjun Shi 2

1 School of Graduate, PLA Army Engineering University, Nanjing 210000, China; keven_stack@163.com
2 School of Field Engineering, PLA Army Engineering University, Nanjing 210000, China;

ycsdongshang@163.com (C.Y.); jj_shi@yeah.net (J.S.)
* Correspondence: ruitinguu@163.com

Received: 12 February 2019; Accepted: 17 February 2019; Published: 20 February 2019
����������
�������

Abstract: While the performance of the state-of-the-art point-based VSLAM (vision simultaneous
localization and mapping) systems in well textured sequences is impressive, their performance in
poorly textured situations is not satisfactory enough. A sensible alternative or addition is to consider
lines. In this paper, we propose a novel line-assisted point-based VSLAM algorithm (LAP-SLAM).
Our algorithm uses lines without descriptor matching, and the lines are used to assist the computation
conducted by points. To the best of our knowledge, this paper proposes a new way to include line
information in VSLAM. The basic idea is to use the collinear relationship of points to optimize the
current point-based VSLAM algorithm. In LAP-SLAM, we propose a practical algorithm to match
lines and compute the collinear relationship of points, a line-assisted bundle adjustment approach and
a modified perspective-n-point (PnP) approach. We built our system based on the architecture and
pipeline of ORB-SLAM. We evaluate the proposed method on a diverse range of indoor sequences in
the TUM dataset and compare with point-based and point-line-based methods. The results show that
the accuracy of our algorithm is close to point-line-based VSLAM systems with a much faster speed.

Keywords: monocular VSLAM; line-assisted; collinear relationship; bundle adjustment

1. Introduction

The past decade has witnessed a prosperous development in autonomous cars and unmanned
vehicles. The simultaneous localization and mapping (SLAM) algorithms, which can estimate
trajectories while reconstructing the unknown environment simultaneously, have proven effective
and are the core technology of autonomous vehicles. Among the different sensor modalities of
SLAM, visual SLAM (VSLAM) provides a solution with great potential because of its convenience and
relatively low requirements for sensors.

There are mainly two kinds of mainstream techniques of VSLAM. Direct VSLAM approaches [1,2]
directly use pixel intensities to match pixels across images and compute camera poses. These techniques
can produce a dense [1] or semi-dense [2] reconstruction of the scene. While a dense reconstruction
method reconstructs surfaces, a semi-dense method recovers the outer edges or surfaces with textures.
However, the tracking is generally sensitive to illumination and does not have the function of loop
closure. The feature-based VSLAM approaches [3,4] have relied on features. These techniques
extract features from images, and then match the feature points from different images of different
views. Compared with the direct method, the main strength of feature-based VSLAM is its accuracy
and robustness.

The state-of-the-art visual odometry (VO) and visual SLAM (VSLAM) algorithms typically use
point features, including the detection and matching of point features between frames. Then, they
estimate the camera pose and location through least-squares minimization of the reprojection errors

Electronics 2019, 8, 243; doi:10.3390/electronics8020243 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0001-6408-9962
http://dx.doi.org/10.3390/electronics8020243
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/8/2/243?type=check_update&version=2

Electronics 2019, 8, 243 2 of 17

between the observed and projected points. The point features are simple to describe and manage, so
they are widely studied and used in VSLAM. The state of the art VSLAM systems based on features,
such as ORB-SLAM [3], can operate in indoors and outdoors environments in real-time, and be able to
close loops and relocalize.

While the performance of state-of-the-art point-based VSLAM systems in well textured sequences
is impressive, their performance in poorly textured situations, such as man-made scenarios, is
not satisfactory enough. A sensible alternative or addition is considering lines because edges are
also important features and are fairly abundant in images, especially in man-made environments.
Man-made environments are characterized by regular structures that are rich in edges and linear
shapes. Compared with points, the detection of lines is less sensitive to the noise associated with video
capturing, and under a wide range of viewing angles, lines can be trivially stable [4].

Line features cannot be easily added to VSLAM, although there has been significant progress in
line detection [5] and matching [6]. Line features are still difficult to represent [7]. Since lines occupy
a much larger area than points and the line descriptors are much more complex, the computational
burden of matching lines is much higher. Thus, the proposed solutions [8–10] are not much,
barely reaching real-time specifications. Besides, regarding the expansion along its direction, line
correspondences are generally weak to constrain. As a result, there can be a shift of the lines along
their direction. The endpoints of line segments are hard to identify since it is common that only part of
the lines can be observed because of occlusions or misdetections.

In this paper, we propose a novel line-assisted point-based VSLAM algorithm (LAP-SLAM) that is
point-based with the assistance of lines, as shown in Figure 1. Unlike other common point-line-based
VSLAM, which normally detect and match both lines and points in parallel, our algorithm matches
lines without a descriptor, and uses the lines to assist the computation conducted by points. The
accuracy of our system may not be as good as the common point-line-assisted VSLAM, but it can still
improve the performance of point-based VSLAM, and the computation burden increased is much
lower. In this way, the edge information of the scene can be used with a very low cost of computation
resource. To the best of our knowledge, this paper explores a new way to make use of line information
in VSLAM.

Electronics 2019, 8, x FOR PEER REVIEW 2 of 17

between the observed and projected points. The point features are simple to describe and manage, so
they are widely studied and used in VSLAM. The state of the art VSLAM systems based on features,
such as ORB-SLAM [3], can operate in indoors and outdoors environments in real-time, and be able
to close loops and relocalize.

While the performance of state-of-the-art point-based VSLAM systems in well textured
sequences is impressive, their performance in poorly textured situations, such as man-made
scenarios, is not satisfactory enough. A sensible alternative or addition is considering lines because
edges are also important features and are fairly abundant in images, especially in man-made
environments. Man-made environments are characterized by regular structures that are rich in edges
and linear shapes. Compared with points, the detection of lines is less sensitive to the noise associated
with video capturing, and under a wide range of viewing angles, lines can be trivially stable [4].

Line features cannot be easily added to VSLAM, although there has been significant progress in
line detection [5] and matching [6]. Line features are still difficult to represent [7]. Since lines occupy
a much larger area than points and the line descriptors are much more complex, the computational
burden of matching lines is much higher. Thus, the proposed solutions [8,9,10] are not much, barely
reaching real-time specifications. Besides, regarding the expansion along its direction, line
correspondences are generally weak to constrain. As a result, there can be a shift of the lines along
their direction. The endpoints of line segments are hard to identify since it is common that only part
of the lines can be observed because of occlusions or misdetections.

In this paper, we propose a novel line-assisted point-based VSLAM algorithm (LAP-SLAM) that
is point-based with the assistance of lines, as shown in Figure 1. Unlike other common point-line-
based VSLAM, which normally detect and match both lines and points in parallel, our algorithm
matches lines without a descriptor, and uses the lines to assist the computation conducted by points.
The accuracy of our system may not be as good as the common point-line-assisted VSLAM, but it can
still improve the performance of point-based VSLAM, and the computation burden increased is much
lower. In this way, the edge information of the scene can be used with a very low cost of computation
resource. To the best of our knowledge, this paper explores a new way to make use of line information
in VSLAM.

(a) (b) (c)

Figure 1. A toy case illustrating the proposed LAP-SLAM approach. (a) The initial coordinates of the
points and poses of cameras are calculated through the geometric method, as normal point-based
SLAM. (b) If two or more points are matched, such as A and B, and they are on the same detected line
segments in different frames, these line segments are matched. Besides, we get the collinear
relationship of A, B, and C. These line segments on different frames are parts of the projection of a 3D
line, and the initial coordinate of the 3D line can be estimated from these line segments. (c) Then, we
run the line-assisted bundle adjustment (BA), to optimize the poses of cameras, and coordinates of
points and lines, considering the collinear relationship (the optimized parameters are framed by red
dashed lines).

We match line segments through the matched points on them. In this way, line segments can be
matched while ignoring the shift of the lines along their direction, and then the collinear relationship
of the points and line segments across frames can be obtained. In this paper, we propose a practical
algorithm to match lines and compute the collinear relationship of points. Based on the collinear
relationship, a line-assisted bundle adjustment approach is proposed. In the perspective-n-point
(PnP) problem of global relocalization, we also propose an approach, which considers the collinear

Figure 1. A toy case illustrating the proposed LAP-SLAM approach. (a) The initial coordinates of
the points and poses of cameras are calculated through the geometric method, as normal point-based
SLAM. (b) If two or more points are matched, such as A and B, and they are on the same detected line
segments in different frames, these line segments are matched. Besides, we get the collinear relationship
of A, B, and C. These line segments on different frames are parts of the projection of a 3D line, and
the initial coordinate of the 3D line can be estimated from these line segments. (c) Then, we run the
line-assisted bundle adjustment (BA), to optimize the poses of cameras, and coordinates of points and
lines, considering the collinear relationship (the optimized parameters are framed by red dashed lines).

We match line segments through the matched points on them. In this way, line segments can be
matched while ignoring the shift of the lines along their direction, and then the collinear relationship
of the points and line segments across frames can be obtained. In this paper, we propose a practical
algorithm to match lines and compute the collinear relationship of points. Based on the collinear
relationship, a line-assisted bundle adjustment approach is proposed. In the perspective-n-point

Electronics 2019, 8, 243 3 of 17

(PnP) problem of global relocalization, we also propose an approach, which considers the collinear
relationship of points apart from points and lines information. We evaluate the proposed method
in different scenes in TUM dataset [11], and compare it with the state-of-the-art point-based and
point-line-based methods. The experimental results show that the model built by our algorithm can
improve the performance of point-based VSLAM. Compared with other line-point-based VSLAM
systems, the accuracy of our algorithm is close and the speed is much faster.

2. Related Work

Computing the trajectory of a camera from a continuous monocular image sequence while
producing the 3D structure of the environment has been a hot topic and an important research field in
computer vision and robotics in the past decade. This problem is known as SLAM. Most approaches
rely on feature-based SLAM. The feature-based VSLAM approaches [3,12,13] have relied on features.
These techniques extract features from images, and then match the feature points from different images
of different views. The camera poses and coordinates of feature points are then jointly optimized by
bundle adjustment (BA) [14]. The PTAM algorithm [12] represented a breakthrough in feature-based
VSLAM. More recently, Mur-Artal et al. has proposed the ORB-SLAM [3] system, which provides a
more robust camera tracking and mapping algorithm.

However, previous feature-based methods may lose track in environments with poor texture.
In this case, dense and direct methods can solve this problem. Direct SLAM [15,16] optimizes the
photometric error of sequential image registration over the space of possible pose changes between
captured images. However, compared to feature-based methods, direct methods are more sensitive to
several factors: Image noise, geometric distortion, large displacement, lighting change, etc. Therefore,
feature-based methods are more viable as SLAM solutions for robust and accurate pose tracking.

Apart from points, line features are also widely studied in the field of VSLAM. Some representative
early methods [17,18] use the Kalman filter. They use endpoint-pairs to parameterize 3D lines,
then measure the residual of the projected lines on images. More recently, 3D visual sensors were
considered in the systems of line-assisted VSLAM, such as stereo camera and RGB-D. A line-assisted
RGB-D odometry system [19] was proposed in 2015. Besides, with the development of line detectors
(e.g., LSD [5]) and descriptors (e.g., LBD [6]), more attention has been paid to stereo-based line
VSLAM [8,10]. For line features, the distance between endpoints and lines is commonly used as the
reprojection error. As to line features within monocular VSLAM, some representative works are as
follows. PL-SLAM [10] has a pipeline similar to that of stereo methods. The study of [9] proposed
a more robust variant for the endpoint-to-line distance. Line-assisted methods that are built based
on direct VSLAM [20,21] have also been developed. To solve the problem that the 3D line input
used in the least squares pose optimization is unreliable, a solution that extracts the most-informative
sub-segment from each line has been proposed in [22]. The line residual of them is the least squares of
the endpoint-to-line distance, the same as the other feature-based approaches.

Compared with point-based VSLAM, the additional parts of most line-assisted VSLAM are the
detection, matching, and triangulation of lines. The high computation burden and the potential shift
along the direction of lines are two main problems that are faced. The proposed LAP-SLAM matches
lines through the matched points on them. In this way, the edge information of the scene can be used
with a very low cost of computation resource, and the shift of the lines along their direction can be
ignored. Our work is focused on building a practical algorithm to maintain and update the collinear
relationship in real time, thus optimizing the bundle adjustment and PnP approach to consider the
collinear relationship.

3. System Overview

The architecture of our approach is built based on that of the ORB-SLAM [3]. Compared with
ORB-SLAM, our system integrates the information provided by lines and the collinear relationship
(see Figure 2). ORB-SLAM is representative and one of the most complete and reliable featured-based

Electronics 2019, 8, 243 4 of 17

vison SLAM systems. The ORB-SLAM system is based on ORB (oriented FAST and rotated BRIEF)
features and uses three parallel threads, which are the tracking thread, local mapping thread, and
loop closing thread. Now, we will briefly introduce these threads and emphasize the parts added
by LAP-SLAM.

Electronics 2019, 8, x FOR PEER REVIEW 4 of 17

and loop closing thread. Now, we will briefly introduce these threads and emphasize the parts added
by LAP-SLAM.

Figure 2. LAP-SLAM pipeline is an extension of that of ORB-SLAM [3]. The system consists of three
main threads: Tracking thread, local mapping thread, and loop closing thread. The tracking thread
estimates the position and pose of the camera, and makes the decision of adding new keyframes.
Then, the local mapping thread adds the new keyframe into the map and optimizes the information
in the local map with BA. The additional line-assisted operations are mainly added in this thread. The
loop closing thread is in charge of checking for loops and correcting the accumulated error through
loop closure. The two blocks surrounded by red dashed rectangles are the main novel work of this
paper.

The tracking thread computes the poses of cameras and creates new keyframes. The constant
velocity motion model is used to guess the current camera pose and initially match the current frame
with the previous one. If the tracking is lost, the place recognition module will be used to relocalize
the camera. In ORB-SLAM, this is typically achieved by the EPnP [23] algorithm—a non-iterative
solution to the PnP problem. In LAP-SLAM, we add reprojection error between the detected lines
and their correspondence points. The local mapping thread is mainly for local bundle adjustment.
After the operations of keyframe insertion, map points culling, and new points creation, line
segments in keyframes are detected by means of LSD. Then, we search the matched points on the line
segments. For example, if two or more matched points are detected on a line segment of a keyframe,
and the same points are detected on another line of another keyframe, these two line segments are
matched and all the points on these line segments belong to one 3D line. The initial coordinate of the
3D line can be estimated, and then the location of the points belonging to this 3D line are adjusted on
the 3D line. Afterwards, we run the line-assisted BA to optimize the poses of cameras, and the
coordinates of the points and lines, with the cost function made up of the reprojection error of lines
and points, and the distance between points and their corresponding lines. The loop closing thread
processes the keyframe after the local mapping thread, and tries to check for loops, using only point
features.

The work of this paper consists of three main parts: A practical algorithm to match lines and
acquire the collinear relationship of points, a line-assisted bundle adjustment approach, and a PnP
approach considering lines and the collinear relationship of points. The works are in the tracking
thread and local mapping thread.

4. Matching of Line Segments and the Establishment of the Collinear Relationship

In LAP-SLAM, the collinear relationship is mainly built based on the matched points on different
frames, and it is used in two functions: Line-assisted bundle adjustment and line-assisted global
relocalization. The establishment of the collinear relationship is not operated in real-time, it runs

Figure 2. LAP-SLAM pipeline is an extension of that of ORB-SLAM [3]. The system consists of three
main threads: Tracking thread, local mapping thread, and loop closing thread. The tracking thread
estimates the position and pose of the camera, and makes the decision of adding new keyframes. Then,
the local mapping thread adds the new keyframe into the map and optimizes the information in the
local map with BA. The additional line-assisted operations are mainly added in this thread. The loop
closing thread is in charge of checking for loops and correcting the accumulated error through loop
closure. The two blocks surrounded by red dashed rectangles are the main novel work of this paper.

The tracking thread computes the poses of cameras and creates new keyframes. The constant
velocity motion model is used to guess the current camera pose and initially match the current frame
with the previous one. If the tracking is lost, the place recognition module will be used to relocalize
the camera. In ORB-SLAM, this is typically achieved by the EPnP [23] algorithm—a non-iterative
solution to the PnP problem. In LAP-SLAM, we add reprojection error between the detected lines and
their correspondence points. The local mapping thread is mainly for local bundle adjustment. After
the operations of keyframe insertion, map points culling, and new points creation, line segments in
keyframes are detected by means of LSD. Then, we search the matched points on the line segments.
For example, if two or more matched points are detected on a line segment of a keyframe, and the
same points are detected on another line of another keyframe, these two line segments are matched
and all the points on these line segments belong to one 3D line. The initial coordinate of the 3D line
can be estimated, and then the location of the points belonging to this 3D line are adjusted on the 3D
line. Afterwards, we run the line-assisted BA to optimize the poses of cameras, and the coordinates
of the points and lines, with the cost function made up of the reprojection error of lines and points,
and the distance between points and their corresponding lines. The loop closing thread processes the
keyframe after the local mapping thread, and tries to check for loops, using only point features.

The work of this paper consists of three main parts: A practical algorithm to match lines and
acquire the collinear relationship of points, a line-assisted bundle adjustment approach, and a PnP
approach considering lines and the collinear relationship of points. The works are in the tracking
thread and local mapping thread.

4. Matching of Line Segments and the Establishment of the Collinear Relationship

In LAP-SLAM, the collinear relationship is mainly built based on the matched points on different
frames, and it is used in two functions: Line-assisted bundle adjustment and line-assisted global

Electronics 2019, 8, 243 5 of 17

relocalization. The establishment of the collinear relationship is not operated in real-time, it runs when
the system needs a collinear relationship. The first thing to do is to choose the related map points and
keyframes in the map according to the collinear relationship needed. The choosing policy will be fully
illustrated in Section 5.4. The creation and culling of keyframes and map points are unchanged in the
LAP-SLAM compared with ORB-SLAM.

Specifically, the establishment of the relationship consists of the following several steps.

4.1. Detection of Line Segments

After acquiring the needed keyframes and map points, we use the LSD method [5] to detect the
line segments of keyframes. LSD is a linear-time line segment detector that can achieve the accuracy of
a subpixel. The LSD can work on any digital image and does not need to set parameters artificially.
After detection, each line segment is numbered with an ID.

Then, the system generates an image of lines for each keyframe to assist the matching with map
points. The image has the same size as the frames. The detected lines are drawn on the image, with
their IDs stored in their colors. The other part of the image is black. To store the IDs of line segments,
the IDs are converted to three numbers, and these three numbers are used as the BGR values of the
colors of lines. The algorithm to convert the IDs into BGR values is shown as below (Algorithm 1):

Algorithm 1: Algorithm to convert the ID into BGR values

Data: ID of line segment
Result: RGB values R G B
1. B = floor((ID+1)/255/255);
2. if ((ID+1)%(255×255)==0) do
3. B=B-1;
4. G = floor(((ID+1-a×255×255))/255);
5. if (((ID+1-B×255×255))%255==0) do
6. G=G-1;
7. R = ID+1-B×255×255-G×255;

P. S. floor () is the rounding function.

Two examples of the generated line images are shown in Figure 3.

Electronics 2019, 8, x FOR PEER REVIEW 5 of 17

points and keyframes in the map according to the collinear relationship needed. The choosing policy
will be fully illustrated in Section 5.4. The creation and culling of keyframes and map points are
unchanged in the LAP-SLAM compared with ORB-SLAM.

Specifically, the establishment of the relationship consists of the following several steps.

4.1. Detection of Line Segments

After acquiring the needed keyframes and map points, we use the LSD method [5] to detect the
line segments of keyframes. LSD is a linear-time line segment detector that can achieve the accuracy
of a subpixel. The LSD can work on any digital image and does not need to set parameters artificially.
After detection, each line segment is numbered with an ID.

Then, the system generates an image of lines for each keyframe to assist the matching with map
points. The image has the same size as the frames. The detected lines are drawn on the image, with
their IDs stored in their colors. The other part of the image is black. To store the IDs of line segments,
the IDs are converted to three numbers, and these three numbers are used as the BGR values of the
colors of lines. The algorithm to convert the IDs into BGR values is shown as below:

Algorithm 1: Algorithm to convert the ID into BGR values
Data: ID of line segment
Result: RGB values R G B
1. B = floor((ID+1)/255/255);
2. if ((ID+1)%(255×255)==0) do
3. B=B-1;
4. G = floor(((ID+1-a×255×255))/255);
5. if (((ID+1-B×255×255))%255==0) do
6. G=G-1;
7. R = ID+1-B×255×255-G×255;

P. S. floor () is the rounding function.

Two examples of the generated line images are shown in Figure 3.

(a) (b)

Figure 3. Two examples of the generated line images. The R values calculated by our algorithm is the
largest and changes fastest, so the red is the most obvious color in the images.

4.2. Match Line Segments and Points

Each map point is projected on the line images. In every line image, the projection of the point
will be discarded in the following circumstance: First, the projection is outside of the image bounds.
Second, the angle between the current viewing ray, 𝒗, and the map point mean viewing direction, 𝒏, is more than 60°, (𝒗 · 𝒏 < cos (60°)). Third, the distance from the map point to the camera center
is out of the scale invariance region of the map point.

Figure 3. Two examples of the generated line images. The R values calculated by our algorithm is the
largest and changes fastest, so the red is the most obvious color in the images.

4.2. Match Line Segments and Points

Each map point is projected on the line images. In every line image, the projection of the point
will be discarded in the following circumstance: First, the projection is outside of the image bounds.
Second, the angle between the current viewing ray, v, and the map point mean viewing direction, n, is

Electronics 2019, 8, 243 6 of 17

more than 60
◦
, (v·n < cos

(
60
◦)

). Third, the distance from the map point to the camera center is out of
the scale invariance region of the map point.

After the projection, if the projected point on the line image passes the mentioned tests above, the
system reads the BGR values of the projected point. If the values are all zero, it means the point is not
projected on lines. If not, the point is projected on a line segment. The system then recovers the ID of
the line segment from the BGR values of the point with the following equation:

ID = R + 255× G + 255× 255× B− 1 (1)

The map points on every line segment are then recorded, as shown in the left of Figure 4.

Electronics 2019, 8, x FOR PEER REVIEW 6 of 17

After the projection, if the projected point on the line image passes the mentioned tests above,
the system reads the BGR values of the projected point. If the values are all zero, it means the point
is not projected on lines. If not, the point is projected on a line segment. The system then recovers the
ID of the line segment from the BGR values of the point with the following equation: 𝐼𝐷 = 𝑅 + 255 × 𝐺 + 255 × 255 × 𝐵 െ 1 (1)

The map points on every line segment are then recorded, as shown in the left of Figure 4.

4.3. Matching of Line Segments and the Establishment of the Collinear Relationship of Points

After the projection of all map points, all the correspondences of the lines and points are
searched. If two or more matched points are detected on a line segment of a keyframe, and the same
points are detected on another line of another keyframe, these two line segments are matched. If line
segments are to be matched, the shared points of them should be more than two, in case the only
shared point is at the intersection of two crossed lines. The system then generates a matrix to store
the collinear relationship of line segments. Each row or column of the matrix represents a line
segment. If two line segments are matched, the cross points of these line segments in the matrix are
set as 1. If not, they are set as 0. After the search of all the correspondence, the collinear matrix of line
segments has been built. Then, we search the matrix row by row and record all the line segments that
belong to one 3D line. The method is briefly illustrated in Figure 4.

Figure 4. A toy case illustrating the proposed method of matching line segments. On the left is the
correspondence of line segments and map points, where A, B, …, E represents line segments and
colorful balls are points. The collinear matrix in the middle is built from the search and match from
the correspondence. From the matrix, we can get the collinear relationship of line segments.

In this way, we can match line segments, even though there a shift along their direction exists,
and some line segments cannot be directly matched with each other, as shown in Figure 5. After the
matching, we can also get the collinear relationship of points, for all the points detected on the
matched line segments are on the same 3D line.

(a) (b) (c)

Figure 5. An example of the establishment of a collinear relationship. From the correspondence
between lines and points, we can match the line segments in frame 1 (a) and frame 2 (b), and frame 3
(c). In this way, we know all three line segments are parts of the projection of one 3D line, ignoring
the shift of endpoints, and all the three points are on this 3D line.

5. Line-Assisted Bundle Adjustment

Figure 4. A toy case illustrating the proposed method of matching line segments. On the left is the
correspondence of line segments and map points, where A, B, . . . , E represents line segments and
colorful balls are points. The collinear matrix in the middle is built from the search and match from the
correspondence. From the matrix, we can get the collinear relationship of line segments.

4.3. Matching of Line Segments and the Establishment of the Collinear Relationship of Points

After the projection of all map points, all the correspondences of the lines and points are searched.
If two or more matched points are detected on a line segment of a keyframe, and the same points are
detected on another line of another keyframe, these two line segments are matched. If line segments
are to be matched, the shared points of them should be more than two, in case the only shared point
is at the intersection of two crossed lines. The system then generates a matrix to store the collinear
relationship of line segments. Each row or column of the matrix represents a line segment. If two line
segments are matched, the cross points of these line segments in the matrix are set as 1. If not, they are
set as 0. After the search of all the correspondence, the collinear matrix of line segments has been built.
Then, we search the matrix row by row and record all the line segments that belong to one 3D line.
The method is briefly illustrated in Figure 4.

In this way, we can match line segments, even though there a shift along their direction exists,
and some line segments cannot be directly matched with each other, as shown in Figure 5. After the
matching, we can also get the collinear relationship of points, for all the points detected on the matched
line segments are on the same 3D line.

Electronics 2019, 8, x FOR PEER REVIEW 6 of 17

After the projection, if the projected point on the line image passes the mentioned tests above,
the system reads the BGR values of the projected point. If the values are all zero, it means the point
is not projected on lines. If not, the point is projected on a line segment. The system then recovers the
ID of the line segment from the BGR values of the point with the following equation: 𝐼𝐷 = 𝑅 + 255 × 𝐺 + 255 × 255 × 𝐵 െ 1 (1)

The map points on every line segment are then recorded, as shown in the left of Figure 4.

4.3. Matching of Line Segments and the Establishment of the Collinear Relationship of Points

After the projection of all map points, all the correspondences of the lines and points are
searched. If two or more matched points are detected on a line segment of a keyframe, and the same
points are detected on another line of another keyframe, these two line segments are matched. If line
segments are to be matched, the shared points of them should be more than two, in case the only
shared point is at the intersection of two crossed lines. The system then generates a matrix to store
the collinear relationship of line segments. Each row or column of the matrix represents a line
segment. If two line segments are matched, the cross points of these line segments in the matrix are
set as 1. If not, they are set as 0. After the search of all the correspondence, the collinear matrix of line
segments has been built. Then, we search the matrix row by row and record all the line segments that
belong to one 3D line. The method is briefly illustrated in Figure 4.

Figure 4. A toy case illustrating the proposed method of matching line segments. On the left is the
correspondence of line segments and map points, where A, B, …, E represents line segments and
colorful balls are points. The collinear matrix in the middle is built from the search and match from
the correspondence. From the matrix, we can get the collinear relationship of line segments.

In this way, we can match line segments, even though there a shift along their direction exists,
and some line segments cannot be directly matched with each other, as shown in Figure 5. After the
matching, we can also get the collinear relationship of points, for all the points detected on the
matched line segments are on the same 3D line.

(a) (b) (c)

Figure 5. An example of the establishment of a collinear relationship. From the correspondence
between lines and points, we can match the line segments in frame 1 (a) and frame 2 (b), and frame 3
(c). In this way, we know all three line segments are parts of the projection of one 3D line, ignoring
the shift of endpoints, and all the three points are on this 3D line.

5. Line-Assisted Bundle Adjustment

Figure 5. An example of the establishment of a collinear relationship. From the correspondence
between lines and points, we can match the line segments in frame 1 (a) and frame 2 (b), and frame 3
(c). In this way, we know all three line segments are parts of the projection of one 3D line, ignoring the
shift of endpoints, and all the three points are on this 3D line.

Electronics 2019, 8, 243 7 of 17

5. Line-Assisted Bundle Adjustment

To integrate line and collinear relationship information with the current bundle adjustment, we
need to define the line parameterization and error function. Apart from the basic point reprojection
error, we define the line-based reprojection error and point collinear-constraint error. We next describe
how this is integrated within bundle adjustment.

5.1. Line-Based Reprojection Error

To introduce lines to the ORB-SLAM, we need to properly define the reprojection error and
parameterization of the line. P, Q ∈ R3 are two random points on a 3D line, and they are used for
the parameterization of the line. One 3D line has n correspondence line segments on different frames.
ph

i , qh
i represent the homogeneous coordinates of the projection of the points, P and Q, onto the frame

plane. li is the projected 3D line coefficient on the image plane of the i-th correspondence line segment.
The normalized line coefficients are:

li =
ph

i × qh
i∣∣ph

i × qh
i

∣∣ (2)

ph
i = π(p, θi, K) (3)

qh
i = π(q, θi, K) (4)

where K is the internal camera calibration matrix, and θi = {Ri, ti} is the camera parameters. Ri is the
rotation parameters and ti is translation parameters, respectively.

ai, bi ∈ R2 are the endpoints of the i-th correspondence line segment. We define the line
reprojection error, Eline, of a 3D line as the sum of the point-to-line distances, Epl, between all the
endpoints of the detected line segments and their correspondence projected lines in their image planes
(see Figure 6). That is:

Eline =
n

∑
i=1

E2
pl (ai, p, Q, θi, K) + E2

pl(bi, p, Q, θi, K) (5)

with:
Epl(ai, p, Q, θi, K) = li

Tai , Epl(bi, p, Q, θi, K) = li
Tbi (6)

Electronics 2019, 8, x FOR PEER REVIEW 7 of 17

To integrate line and collinear relationship information with the current bundle adjustment, we
need to define the line parameterization and error function. Apart from the basic point reprojection
error, we define the line-based reprojection error and point collinear-constraint error. We next
describe how this is integrated within bundle adjustment.

5.1. Line-Based Reprojection Error

To introduce lines to the ORB-SLAM, we need to properly define the reprojection error and
parameterization of the line. 𝐏, 𝐐 ∈ Rଷ are two random points on a 3D line, and they are used for the
parameterization of the line. One 3D line has n correspondence line segments on different frames. p௜h, q௜h represent the homogeneous coordinates of the projection of the points, P and Q, onto the frame
plane. 𝐥௜ is the projected 3D line coefficient on the image plane of the i-th correspondence line
segment. The normalized line coefficients are:

𝐥𝒊 = p௜h × q௜hหp௜h × q௜hห (2)

p௜h = 𝜋(P, 𝜽௜,K) (3) q௜h = 𝜋(Q, 𝜽௜,K) (4)
where K is the internal camera calibration matrix, and 𝜽௜ = ሼR௜, 𝒕௜ሽ is the camera parameters. R௜

is the rotation parameters and 𝒕௜ is translation parameters, respectively.

Figure 6. Line reprojection error. The green dashed line, 𝐥௜, represents the projected 3D line on the
image plane. a௜, b௜ are the endpoints of the i-th correspondence line segment. Red lines, 𝒅௜ଵ and 𝒅௜ଶ,
are the line reprojection error between a projected 3D line (green dashed) and the corresponding
detected 2D line (green solid). The line-based reprojection error of a 3D line is the sum of the line
reprojection error of all the correspondence line segments. a௜, b௜ ∈ Rଶ are the endpoints of the i-th correspondence line segment. We define the line

reprojection error, Eline, of a 3D line as the sum of the point-to-line distances, Epl, between all the
endpoints of the detected line segments and their correspondence projected lines in their image
planes (see Figure 6). That is:

Eline = ෍ Epl
2 (𝐚௜,P,Q, 𝜽௜,K) + Epl

2 (b௜,P,Q, 𝜽௜,K)௡
௜ୀଵ (5)

with: E୮୪(𝐚௜,P,Q, 𝜽௜,K) = 𝐥௜T𝐚௜ , E୮୪(𝐛௜,P,Q, 𝜽௜,K) = 𝐥௜T𝐛௜ (6)

In the local mapping thread, before BA, we first use the line-based reprojection error to
estimate the initial pose of the 3D line.

5.2. Point Collinear-Constraint Error

Figure 6. Line reprojection error. The green dashed line, li, represents the projected 3D line on the
image plane. ai, bi are the endpoints of the i-th correspondence line segment. Red lines, di1 and di2, are
the line reprojection error between a projected 3D line (green dashed) and the corresponding detected
2D line (green solid). The line-based reprojection error of a 3D line is the sum of the line reprojection
error of all the correspondence line segments.

In the local mapping thread, before BA, we first use the line-based reprojection error to estimate
the initial pose of the 3D line.

Electronics 2019, 8, 243 8 of 17

5.2. Point Collinear-Constraint Error

To add collinear constraint to map points on the same lines, we define point collinear-constraint
error. One 3D line has m correspondence map points on it. P, Q ∈ R3 are two random points on a 3D
line. ph, Qh represents the homogeneous coordinates of them. The normalized line coefficient of the
line is:

I =
ph ×Qh∣∣∣ph ×Qh

∣∣∣ (7)

pi ∈ R3 is the i-th correspondence map point. We then define the collinear-constraint error, Ecc,
of a 3D line as the sum of point-to-line distances, Epl, between all the collinear map points and their
correspondence 3D line (see Figure 7). That is:

Ecc =
m

∑
i=1

E2
pl (pi, P, Q) (8)

with:
Epl(pi, P, Q) = ITpi (9)

where l is the 3D line coefficient.

Electronics 2019, 8, x FOR PEER REVIEW 8 of 17

To add collinear constraint to map points on the same lines, we define point collinear-constraint
error. One 3D line has m correspondence map points on it. 𝐏, 𝐐 ∈ Rଷ are two random points on a 3D
line. Ph, Qh represents the homogeneous coordinates of them. The normalized line coefficient of the
line is:

I = Ph × QhหPh × Qhห (7)

p௜ ∈ R𝟑 is the i-th correspondence map point. We then define the collinear-constraint error, Ecc,
of a 3D line as the sum of point-to-line distances, Epl, between all the collinear map points and their
correspondence 3D line (see Figure 7). That is:

Ecc = ෍ Epl
2 (𝐩௜,P,Q)௠

௜ୀଵ (8)

with: E୮୪(𝐩௜,P,Q) = 𝐈T𝐩௜ (9)

where 𝐥 is the 3D line coefficient.

Figure 7. Point collinear-constraint error. The green line, 𝐥, represents the 3D line. Red lines, 𝒅௔, 𝒅௕,
and 𝒅௖, are point-to-line distances between the 3D line and its corresponding map points. The point
collinear-constraint error of a 3D line is the sum of point-to-line distances between the 3D line and all
its corresponding collinear map points.

5.3. Line-Assisted Bundle Adjustment

The camera pose and coordinates and points coordinates in the map are optimized through the
bundle adjustment (BA) method. We build our BA based on the framework of the ORB-SLAM, but
apart from point features, we also include the line features and collinear relationships. The specific
cost function of our BA combines three types of geometric error, and it is defined as follows. 𝐗௝ ∈ Rଷ are the j-th map point. For the i-th keyframe, the coordinate of the projection of this
point on the image plane is:

x෤௜,௝ = 𝜋൫𝐗௝, 𝜽௜,K൯ (10)

where 𝜽௜ = ሼR௜, 𝒕௜ሽ is the pose of the i-th keyframe. x௜,௝ is the observed coordinate of this point on
the frame. We define the 3D error of points: 𝑬௜,௝௣ = x௜,௝ െ x෤௜,௝ (11) P௞, Q௞ ∈ Rଷ are two random points on the 3D correspondence line of the k-th detected line
segments. The corresponding line projections onto the same keyframe are written as follow
(expressed in homogeneous coordinates):

Figure 7. Point collinear-constraint error. The green line, l, represents the 3D line. Red lines, da, db,
and dc, are point-to-line distances between the 3D line and its corresponding map points. The point
collinear-constraint error of a 3D line is the sum of point-to-line distances between the 3D line and all
its corresponding collinear map points.

5.3. Line-Assisted Bundle Adjustment

The camera pose and coordinates and points coordinates in the map are optimized through the
bundle adjustment (BA) method. We build our BA based on the framework of the ORB-SLAM, but
apart from point features, we also include the line features and collinear relationships. The specific
cost function of our BA combines three types of geometric error, and it is defined as follows.

Xj ∈ R3 are the j-th map point. For the i-th keyframe, the coordinate of the projection of this point
on the image plane is:

x̃i,j = π
(
Xj, θi, K

)
(10)

where θi = {Ri, ti} is the pose of the i-th keyframe. xi,j is the observed coordinate of this point on the
frame. We define the 3D error of points:

Ep
i,j = xi,j − x̃i,j (11)

pk, Qk ∈ R3 are two random points on the 3D correspondence line of the k-th detected line
segments. The corresponding line projections onto the same keyframe are written as follow (expressed
in homogeneous coordinates):

ph
i,k = π(PK, θi, K), qh

i,k = π(QK, θi, K) (12)

Electronics 2019, 8, 243 9 of 17

We estimate the coefficients of the projected line, l̃i,k, by using Equation (3). ai,k and bi,k are the
observed endpoints of the k-th line segment. The error for the line is defined as follows:

Ea
i,k =

(̃
li,k

)T
ai,k, Eb

i,k =
(̃

li,k

)T
bi,k (13)

The error (12) is actually an example of a point-to-line error (1).
Xl ∈ R3 are the l-th map point that is on a 3D line. Pl , Ql ∈ R3 are the two random points on the

correspondence 3D line. The coefficients of the 3D line, ll , are estimated by Equation (6). The following
collinear error of the map points on lines is defined as:

Ec
i,l = (ll)

TXl (14)

We obtain the comparable error representations for the points, lines, and the collinear relationship.
Therefore, the unified cost function integrating each of the error terms is defined as:

C = ∑
i

ρ

[
∑

j
Ep

i,j
TΩ

p
i,jE

p
i,j + ∑

k

(
Ea

i,k
TΩa

i,kEa
i,k + Eb

i,k
TΩb

i,kEb
i,k

)]
+ ∑

l
Ec

l
TΩc

l Ec
l (15)

where ρ is the Huber robust cost function and Ω
p
i,j, Ωa

i,k, Ωb
i,k, Ωc

l are the covariance matrices. They are
associated with the scale at which the map points and line points were detected, respectively.

5.4. Line-Assisted BA in the LAP-SLAM

In the LAP-SLAM, the line-assisted BA is used in map initialization and local BA. Every time
before line-assisted BA, the system will first establish the collinear relationship of these keyframes
and map points involved, and then use the line-based reprojection error to estimate the initial pose of
the 3D lines. These lines are also included and optimized in the lines-assisted BA together with the
involved keyframes and map points, and these lines and their correspondences with map points are
stored in maps after BA.

Map initialization computes the relative pose between two frames, triangulating an initial set of
map points to initialize the system. As in the ORB-SLAM [3], our LAP-SLAM computes in parallel
two geometrical models, a homography for a planar scene and a fundamental matrix for a non-planar
scene. Then, one model is selected by a heuristic and used to recover the relative pose. Finally, in
LAP-SLAM, we perform a full line-assisted BA to optimize the initial map. In the full line-assisted BA,
we optimize the two keyframes and all points, except for the first keyframe, which remains fixed as
the origin.

The local BA is in the local mapping thread. It runs after the system inserting keyframes.
In LAP-SLAM, the current keyframe, all the keyframes are connected to it in the covisibility graph [24],
and all the map points seen by those keyframes are optimized by the line-assisted local BA. All other
keyframes that see those points, but are not connected to the current keyframe are included in the
optimization, but remain fixed.

6. Global Relocalization

For any SLAM method, global relocalization is always an important part of it. When the tracker
is lost, the system uses the approach to relocalize the camera. The PnP algorithm is a typical method
of global relocalization, which tries to relocalize the current frame and estimate its pose based on its
correspondences with 3D points in the map.

6.1. Line-Assisted EPnP

In ORB-SLAM, the used PnP method is EPnP [24], which only considers the point correspondences.
In EPnPL [9], the EPnP is modified by adding line reprojection error. Through the algorithm mentioned

Electronics 2019, 8, 243 10 of 17

before, once feature points on the current frame are matched with map points, we can get the line
segments’ matches and the collinear relationship of the points. To make our approach appropriate
for the consideration of lines and the collinear relationship for relocalization, we modify the EPnP
by adding line reprojection error and collinear points’ reprojection error. To simultaneously consider
points, lines correspondences, and collinear relationship, we modify the EPnP algorithm as follows.

In EPnP, πEPnP(θ, X) is the projection of point X on the camera plane:

πEPnP(θ, X) =
4

∑
1

αjCc
j (16)

where αj are point-specific coefficients computed from the model and Cc
j for j = 1,...,4 are the unknown

control point coordinates on the frame. We define the vector of unknowns as µ =
[
CT

1 , CT
2 , CT

3 , CT
4

]
.

Using Equations (3) and (4), we add the line-based reprojection error into EPnP, which is the sum
of the point-to-line distances between all the detected line segment endpoints, ai, bi ∈ R2, and their
correspondence projected lines, li, on the current frame as error. An expression for line reprojection
error in case of EPnP is:

Eline = ∑
i=1

((
mi

l(ai)
)T

µ

)2
+

((
mi

l(bi)
)T

µ

)2
(17)

with:
mi

l(ai) = ([α1, α2, α3, α4]⊗ li)
T, mi

l(bi) = ([β1, β2, β3, β4]⊗ li)
T (18)

where li is the projected 3D line coefficient on the image plane of the i-th correspondence line segment,
as defined in Equation (3).

Besides, to optimize the pose of the current camera, we also use the collinear relationship of
points. However, unlike the in bundle adjustment, where we can use the sum of point-to-line distances
between the 3D line and all its correspondence map points and to assist optimization, in global
relocalization, the optimized parameter is only the pose of the camera, and the map points and 3D
lines are fixed. Hence, we use the sum of the point-to-line distances of all collinear feature points,
pj ∈ R2, and their projected correspondence lines, lj, on the current frame. An expression for collinear
point-line reprojection error in the case of EPnP is:

Eplr = ∑
j=1

((
mj

l

(
pj

))T
µ

)2
(19)

with:
mj

l

(
pj

)
=
(
[γ1, γ2, γ3, γ4]⊗ lj

)T (20)

Finally, considering points, lines, and the collinear relationship of points, the function to be
minimized by our modified EPnP is:

argmin
µ

{
Epoint + Eline + Eplr

}
= argmin

µ

{∣∣∣∣Mµ
∣∣∣∣2} (21)

with:
Epoint =

∣∣∣∣Mpµ
∣∣∣∣2 (22)

M =
[
MT

p, MT
l , MT

plr,
]T

(23)

where M ∈ R2(np+nl+nplr)×12. Mp ∈ R2np×12 is the matrix of parameters for the np point
correspondences. Ml ∈ R2nl×12 is the matrix of parameters for the nl line correspondences.

Electronics 2019, 8, 243 11 of 17

Mplr ∈ R2nplr×12 is the matrix of parameters for the nplr point-line correspondences. Equation (22) is
finally minimized by the EPnP methodology.

6.2. Line-Assisted EPnP in LAP-SLAM

If the tracking is lost, the system converts the frame into a bag of words [25] and queries
the recognition database for keyframe candidates for global relocalization. We compute the
correspondences with ORB associated to map points. We then perform alternatively RANSAC
iterations for each keyframe and try to find a camera pose using the line-assisted EPnP algorithm. The
line-assisted EPnP uses the map points, their corresponding points on the current frame, and 3D lines
in the map that are inserted after BA. Finally, the camera pose is optimized, and if supported with
enough inliers, tracking thread continues.

7. Experimental Evaluation

We first evaluated the feasibility of our algorithm that matches detected line segments through
matched points. Then, we compared the accuracy of our LAP-SLAM system with some state-of-the-art
VSLAM systems using the TUM benchmark and real data. Besides, we also compared the computation
time of our LAP-SLAM with ORB-SLAM and PL-SLAM. All experiments were conducted on a laptop
with an Intel i7-7700HQ processor (4 cores at 2.8 GHz) and 8 Gb memory. Due to the randomness
throughout the process, all experiments were operated three times and recorded as an average.

7.1. Match of Line Segments

To evaluate the feasibility of our algorithm that matches detected line segments through matched
points, we compared our algorithm and the LBD method that is widely used. In total, 30 picture pairs
from 5 sequences of TUM and 10 picture pairs from our hand-held camera were tested by both our
algorithm and the LBD method. The average number of matched line segments and time spent are
shown in Table 1.

Table 1. Comparison of our algorithm and the LBD method.

Sequence Average Numbers of Matched Line Segments Average Time Consumed (s)

Ours LBD Ours LBD

fr1_xyz 55 163 0.29 0.72
fr1_floor 51 139 0.30 0.81
fr2_xyz 62 170 0.33 1.10
fr2_desk 45 154 0.15 0.98

fr3_long_office 57 256 0.28 0.76
hand-held camera 50 198 0.27 0.93

From the results, it can be seen that compared with the LBD method, our algorithm matches
fewer line segments, because our algorithm matches line segments through matched points. The line
segments can only be matched if there are two or more matched points on them. The LBD method
computes and matches the descriptor of every line segment, so it can match more lines.

The time used by our method is much shorter and is positively correlated with the number of
detected line segments. The computation and matching of the line segment descriptor is more complex
than points, and will cost more computation time. Because our algorithm does not compute and match
the descriptors of line segments, its speed is much faster.

Besides, as shown in Figure 8, compared with LBD, the main and representative line segments
can be matched by our algorithm. These matched lines can cover most of the matched points in the
image, and they can be used to assist the points by building a collinear relationship. In conclusion, our
algorithm is feasible, and can achieve the expected functionality of matching lines and establishing a
collinear relationship with satisfactory speed.

Electronics 2019, 8, 243 12 of 17

Electronics 2019, 8, x FOR PEER REVIEW 12 of 17

Besides, as shown in Figure 8, compared with LBD, the main and representative line segments
can be matched by our algorithm. These matched lines can cover most of the matched points in the
image, and they can be used to assist the points by building a collinear relationship. In conclusion,
our algorithm is feasible, and can achieve the expected functionality of matching lines and
establishing a collinear relationship with satisfactory speed.

(a)

(b)

Figure 8. Examples of matches: (a) TUM fr1_xyz; (b) hand-held camera. Line segments are detected
by LSD (left) and matched by our algorithm (middle) and LBD (right) in an example pair of pictures
from TUM fr1_xyz. The matched line segments are numbered and drawn on one picture of the pair.
In the middle picture of our algorithm, the ORB feature points are marked by colorful circles.

We then evaluated the application of our algorithm in LAP-SLAM. Table 2 shows the numbers
of lines and points in the maps created by LAP-SLAM in different sequences. It can be seen that their
numbers are roughly positively related. The more points created in the map, the more lines can be
matched and put into the map.

Table 2. The numbers of lines and points in maps created by LAP-SLAM.

Sequence Line Point
fr1_xyz 186 2403

fr1_floor 150 2034
fr2_xyz 235 2605

fr2_desk 113 1971
fr3_long_office 151 2258

fr3_str_tex_near 166 2311

Then, we analyzed the collinear relationship built by our system by recording the number of
points on each line. Figure 9 shows two histograms of lines according to the number of points on
them. From the histograms, we can see that there are some respective lines that are associated with
more points than others. Most lines are short and are associated with less than five points.

Figure 8. Examples of matches: (a) TUM fr1_xyz; (b) hand-held camera. Line segments are detected
by LSD (left) and matched by our algorithm (middle) and LBD (right) in an example pair of pictures
from TUM fr1_xyz. The matched line segments are numbered and drawn on one picture of the pair.
In the middle picture of our algorithm, the ORB feature points are marked by colorful circles.

We then evaluated the application of our algorithm in LAP-SLAM. Table 2 shows the numbers of
lines and points in the maps created by LAP-SLAM in different sequences. It can be seen that their
numbers are roughly positively related. The more points created in the map, the more lines can be
matched and put into the map.

Table 2. The numbers of lines and points in maps created by LAP-SLAM.

Sequence Line Point

fr1_xyz 186 2403
fr1_floor 150 2034
fr2_xyz 235 2605
fr2_desk 113 1971

fr3_long_office 151 2258
fr3_str_tex_near 166 2311

Then, we analyzed the collinear relationship built by our system by recording the number of
points on each line. Figure 9 shows two histograms of lines according to the number of points on them.
From the histograms, we can see that there are some respective lines that are associated with more
points than others. Most lines are short and are associated with less than five points.

Electronics 2019, 8, 243 13 of 17
Electronics 2019, 8, x FOR PEER REVIEW 13 of 17

(a)

(b)

Figure 9. Histogram of the numbers of points of all lines. (a) TUM fr1_xyz; (b) TUM fr2_desk.

7.2. Relocalization

To evaluate the relocalization ability of LAP-SLAM, we performed an experiment of
relocalization in two sequences of the TUM dataset. The same experiments were performed on LAP-
SLAM and ORB-SLAM for comparison. In the experiments, maps were built from the first 30 seconds
of the sequences. We then performed global relocalization with every successive frame and recorded
the accuracy of the recovered poses. The recall rate and the error with respect to the ground truth are
shown in Table 3. We can see from the results that the frames relocalized by the LAP-SLAM and ORB-
SLAM are nearly the same, because they use the same method to check for loops. However, the
accuracy of our LAP-SLAM is higher.

Table 3. Results of the relocalization experiments.

 TUM Sequence fr1_xyz fr3_walk_xyz
Initial Map System LAP-SLAM ORB-SLAM [3] LAP-SLAM ORB-SLAM [3]

KFs 24 24 32 31
RMSE (cm) 0.18 0.19 0.36 0.38

Relocalization Recall (%) 77.1 78.3 78.2 77.9
RMSE (cm) 0.35 0.38 1.21 1.32

Max Error (cm) 1.52 1.67 4.68 4.95

7.3. Localization Accuracy

To test the localization accuracy of LAP-SLAM, we compared our method with two current
state-of-the-art point-based VSLAM methods, ORB-SLAM and LSD-SLAM, and a point-line-based

Figure 9. Histogram of the numbers of points of all lines. (a) TUM fr1_xyz; (b) TUM fr2_desk.

7.2. Relocalization

To evaluate the relocalization ability of LAP-SLAM, we performed an experiment of relocalization
in two sequences of the TUM dataset. The same experiments were performed on LAP-SLAM and
ORB-SLAM for comparison. In the experiments, maps were built from the first 30 s of the sequences.
We then performed global relocalization with every successive frame and recorded the accuracy of the
recovered poses. The recall rate and the error with respect to the ground truth are shown in Table 3. We
can see from the results that the frames relocalized by the LAP-SLAM and ORB-SLAM are nearly the
same, because they use the same method to check for loops. However, the accuracy of our LAP-SLAM
is higher.

Table 3. Results of the relocalization experiments.

TUM Sequence fr1_xyz fr3_walk_xyz

Initial Map
System LAP-SLAM ORB-SLAM [3] LAP-SLAM ORB-SLAM [3]

KFs 24 24 32 31
RMSE (cm) 0.18 0.19 0.36 0.38

Relocalization
Recall (%) 77.1 78.3 78.2 77.9

RMSE (cm) 0.35 0.38 1.21 1.32
Max Error (cm) 1.52 1.67 4.68 4.95

7.3. Localization Accuracy

To test the localization accuracy of LAP-SLAM, we compared our method with two current
state-of-the-art point-based VSLAM methods, ORB-SLAM and LSD-SLAM, and a point-line-based

Electronics 2019, 8, 243 14 of 17

VSLAM, PL-SLAM. The absolute trajectory error (ATE) was used for comparison. Before computing
the ATE error, all trajectories were aligned with the ground truth with 7 DoF. The ground truth data
was provided by the benchmark. The results are summarized in Table 4.

Table 4. Localization accuracy in the TUM RGB-D benchmark.

TUM Sequence Absolute Keyframe Trajectory RMSE (cm)

LAP-SLAM ORB-SLAM PL-SLAM [10] LSD-SLAM

fr1_xyz 1.34 1.34 1.30 10.15
fr1_floor 7.85 8.12 7.82 42.66
fr2_xyz 0.46 0.47 0.43 3.65
fr2_desk 0.70 1.11 0.64 5.11

fr2_desk_person 2.75 3.24 2.15 35.63
fr2_360_kidnap 4.12 4.46 4.09 —
fr3_long_office 2.45 3.75 2.17 31.92

fr3_str_tex_near 1.31 1.62 1.25 —
fr3_sit_xyz 0.27 0.81 0.16 5.36

fr3_walk_xyz 1.54 1.56 1.54 12.47
fr3_walk_halfsph 1.76 1.97 1.71 —

Note that our LAP-SLAM consistently improves the trajectory accuracy of ORB-SLAM in all
sequences. LSD-SLAM lost track in 3 out of 11 sequences, respectively. Compared with point-based
SLAM, our method adds the information of the lines and collinear relationship in the optimization,
which can provide the optimization with a more accurate cost function.

Indeed, the accuracy of LAP-SLAM is lower than that of PL-SLAM, because the point-line based
SLAM, like PL-SLAM, has more matched lines and thus means more input information. However, the
gap between their accuracy is not obvious. In some sequences, the accuracy of LAP-SLAM is very close
to and can nearly match the accuracy of PL-SLAM. These sequences where LAP-SLAM performs well
share the characteristics that there are main and respective lines in the scene and multiple feature points
can be detected on these lines. The collinear relationship of points can help a lot in this circumstance.

To further evaluate the effect of our line-assisted method, we then performed an experiment on an
example sequence, fr2_desk, of TUM. In this experiment, we defined a restriction parameter, r, which
means the lines with fewer than r corresponding points were abandoned. The change of accuracy of
LAP-SLAM and the number of lines in the final map with r is shown in Figure 10.

Electronics 2019, 8, x FOR PEER REVIEW 14 of 17

VSLAM, PL-SLAM. The absolute trajectory error (ATE) was used for comparison. Before computing
the ATE error, all trajectories were aligned with the ground truth with 7 DoF. The ground truth data
was provided by the benchmark. The results are summarized in Table 4.

Table 4. Localization accuracy in the TUM RGB-D benchmark.

TUM Sequence
Absolute Keyframe Trajectory RMSE (cm)

LAP-SLAM ORB-SLAM PL-SLAM [10] LSD-SLAM
fr1_xyz 1.34 1.34 1.30 10.15

fr1_floor 7.85 8.12 7.82 42.66
fr2_xyz 0.46 0.47 0.43 3.65

fr2_desk 0.70 1.11 0.64 5.11
fr2_desk_person 2.75 3.24 2.15 35.63
fr2_360_kidnap 4.12 4.46 4.09 —
fr3_long_office 2.45 3.75 2.17 31.92

fr3_str_tex_near 1.31 1.62 1.25 —
fr3_sit_xyz 0.27 0.81 0.16 5.36

fr3_walk_xyz 1.54 1.56 1.54 12.47
fr3_walk_halfsph 1.76 1.97 1.71 —

Note that our LAP-SLAM consistently improves the trajectory accuracy of ORB-SLAM in all
sequences. LSD-SLAM lost track in 3 out of 11 sequences, respectively. Compared with point-based
SLAM, our method adds the information of the lines and collinear relationship in the optimization,
which can provide the optimization with a more accurate cost function.

Indeed, the accuracy of LAP-SLAM is lower than that of PL-SLAM, because the point-line based
SLAM, like PL-SLAM, has more matched lines and thus means more input information. However,
the gap between their accuracy is not obvious. In some sequences, the accuracy of LAP-SLAM is very
close to and can nearly match the accuracy of PL-SLAM. These sequences where LAP-SLAM
performs well share the characteristics that there are main and respective lines in the scene and
multiple feature points can be detected on these lines. The collinear relationship of points can help a
lot in this circumstance.

To further evaluate the effect of our line-assisted method, we then performed an experiment on
an example sequence, fr2_desk, of TUM. In this experiment, we defined a restriction parameter, r,
which means the lines with fewer than r corresponding points were abandoned. The change of
accuracy of LAP-SLAM and the number of lines in the final map with r is shown in Figure 10.

Figure 10. Change of RMSE of LAP-SLAM and the number of lines with r.

From the figure, it can be seen that the lines with few corresponding points are a lot, but they
have relatively little influence on the RMSE. In general, the RMSE rises and the lines decrease as r
increases. The lines that have more than eight points on them play a major role in improving the
accuracy.

Figure 10. Change of RMSE of LAP-SLAM and the number of lines with r.

From the figure, it can be seen that the lines with few corresponding points are a lot, but they have
relatively little influence on the RMSE. In general, the RMSE rises and the lines decrease as r increases.
The lines that have more than eight points on them play a major role in improving the accuracy.

Electronics 2019, 8, 243 15 of 17

7.4. Computation Time

While introducing line information to the VSLAM improves accuracy, it also increases the
computational burden of the system. Table 5 summarizes the time used in each subtask in the
threads of “Tracking” and “Local Mapping”, for LAP-SLAM, PL-SLAM, and ORB-SLAM. The time
recorded is the average computation time of five different sequences of the TUM sequences.

Table 5. Average execution time consumed in tracking and local mapping.

Thread Operation Average Execution Time (ms)

LAP-SLAM ORB-SLAM PL-SLAM [10]

Tracking

Feature Extraction 15.91 15.84 44.36
Initial Estimation 11.18 11.29 11.58
Track Local Map 5.22 5.14 18.75

Total 32.31 32.27 74.69

Local Mapping

Keyframe Insertion 14.91 14.79 25.62
Feature Culling 1.69 1.72 1.77
Feature Creation 83.68 12.59 119.42

Local BA 303.55 189.61 349.23
Keyframe Culling 4.87 4.23 17.78

Total 358.70 222.94 513.82

Compared with ORB-SLAM, the time consumed by LAP-SLAM is longer, but much shorter than
that of PL-SLAM. The tracking thread of LAP-SLAM and ORB-SLAM is the same, because LAP-SLAM
only extracts and matches line features in keyframes in local mapping. The subtask with the largest
cost of time is the map feature creation and the local BA. Note that the feature creation of LAP-SLAM
includes the operation of the extract and match line features in keyframes, but LAP-SLAM are still
faster than PL-SLAM in these subtasks for less features. In all the sequences, the final frame rate of the
LAP-SLAM can operate in real time on a normal computer.

8. Conclusions

In this paper, we propose LAP-SLAM, an algorithm that is based on points, but also uses
the information of lines as assistance. In LAP-SLAM, the lines are not used as in other common
point-line-based VSLAM, which normally detect and match both lines and points in parallel. We
matched lines without a descriptor through the matched points on them. Since the computation and
matching of the line descriptor is very time consuming, the matching speed of our method is much
faster. We proposed a practical algorithm to match lines and compute the collinear relationship of
points. In this way, although the number of matched lines are fewer, the main and representative
lines can still be matched. The edge information of the scene can be used with a very low cost
of computation resources. These matched line segments in LAP-SLAM are used to establish the
collinear relationship of points. The collinear relationship is included in LAP-SLAM, and it is the main
contribution of our paper. The current point-based VSLAM algorithm was optimized by adding the
collinear relationship. Specifically, in this work, a line-assisted bundle adjustment approach and a
PnP approach considering lines and the collinear relationship of points were proposed. To the best of
our knowledge, this paper proposes a new way to include line information in VSLAM. We built upon
the architecture of state-of-the-art ORB-SLAM and modified its original pipeline without significantly
compromising its efficiency. We evaluated the proposed method on a diverse range of indoor scenes
in the TUM dataset and compared it with state-of-the-art point-based and point-line-based VSLAM
systems. The results show that our method can improve the accuracy of point-based VSLAM, and even
close to point-line-based VSLAM. Compared with point-line based VSLAM, although the accuracy
of LAP-SLAM is a little lower, the time consumed is much shorter. In other words, our method can
improve the VSLAM system in a relatively more efficient way.

Electronics 2019, 8, 243 16 of 17

In future work, we plan to further exploit line features and incorporate other geometric primitives,
like planes, which can be built from lines in a similar manner as we have built lines from point features.

Author Contributions: F.Z. and T.R. conceived and designed the experiments; F.Z. performed the experiments;
F.Z. and C.Y. analyzed the data; J.S. contributed analysis tools; F.Z. wrote the paper.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Newcombe, R.A.; Lovegrove, S.J.; Davison, A.J. DTAM: Dense tracking and mapping in real-time.
In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Barcelona, Spain,
6–13 November 2011; pp. 2320–2327.

2. Engel, J.; Schöps, T.; Cremers, D. LSD-SLAM: Large-scale direct monocular SLAM. In Proceedings of the
European Conference on Computer Vision (ECCV), Zurich, Switzerland, 6–12 September 2014; pp. 834–849.

3. Mur-Artal, R.; Montiel, J.M.M.; Tardós, J.D. ORB-SLAM: A Versatile and Accurate Monocular SLAM System.
IEEE Trans. Robot. 2015, 31, 1147–1163. [CrossRef]

4. Gee, A.P.; Mayol-Cuevas, W. Real-time model-based slam using line segments. In International Symposium on
Visual Computing; Springer: Berlin/Heidelberg, Germany, 2006; pp. 354–363.

5. Von Gioi, R.G.; Jakubowicz, J.; Morel, J.-M.; Randall, G. LSD: A Fast Line Segment Detector with a False
Detection Control. IEEE Trans. Softw. Eng. 2010, 32, 722–732. [CrossRef] [PubMed]

6. Zhang, L.; Koch, R. Line matching using appearance similarities and geometric constraints. In Proceedings
of the Pattern Recognition: Joint 34th DAGM and 36th OAGM Symposium, Graz, Austria, 28–31 August
2012; pp. 236–245.

7. Bartoli, A.; Sturm, P. Structure-from-motion using lines: Representation, triangulation, and bundle
adjustment. Comput. Visi. Image Understand. 2005, 100, 416–441. [CrossRef]

8. Koletschka, T.; Puig, L.; Daniilidis, K. MEVO: Multienvironment stereo visual odometry. In Proceedings
of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA,
14–18 September 2014; pp. 4981–4988.

9. Vakhitov, A.; Funke, J.; Moreno-Noguer, F. Accurate and linear time pose estimation from points and
lines. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands,
11–14 October 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 583–599.

10. Pumarola, A.; Vakhitov, A.; Agudo, A.; Sanfeliu, A.; Moreno-Noguer, F. Pl-slam: Real-time monocular visual
slam with points and lines. In Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), Singapore, 29 May–3 June 2017; pp. 4503–4508.

11. Huitl, R.; Schroth, G.; Hilsenbeck, S.; Schweiger, F.; Steinbach, E. TUM indoor: An extensive image and
point cloud dataset for visual indoor localization and mapping. In Proceedings of the IEEE International
Conference on Image Processing, Melbourne, Australia, 15–18 September 2013; pp. 1773–1776.

12. Klein, G.; Murray, D. Parallel tracking and mapping for small AR workspaces. In Proceedings of the IEEE and
ACM International Symposium on Mixed and Augmented Reality (ISMAR), Nara, Japan, 13–16 November
2007; pp. 225–234.

13. Davison, A.J.; Reid, I.D.; Molton, N.D.; Stasse, O. MonoSLAM: Real-time single camera SLAM. IEEE Trans.
Pattern Anal. Mach. Intell. 2007, 29, 1052–1067. [CrossRef] [PubMed]

14. Triggs, B.; McLauchlan, P.F.; Hartley, R.I.; Fitzgibbon, A.W. Bundle adjustment a modern synthesis. In Vision
Algorithms: Theory and Practice; Springer: Berlin/Heidelberg, Germany, 2000; pp. 298–372.

15. Forster, C.; Zhang, Z.; Gassner, M.; Werlberger, M.; Scaramuzza, D. Svo: Semidirect visual odometry for
monocular and multicamera systems. IEEE Trans. Robot. 2016, 33, 249–265. [CrossRef]

16. Engel, J.; Koltun, V.; Cremers, D. Direct sparse odometry. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40,
611–625. [CrossRef] [PubMed]

17. Smith, P.; Reid, I.D.; Davison, A.J. Real-Time Monocular SLAM with Straight Lines. In Proceedings of the
British Machine Conference, Edinburgh, UK, 4–7 September 2006; Chantler, M., Fisher, B., Trucco, M., Eds.; BMVA
Press: Edinburgh, UK, 2006; pp. 3.1–3.10.

http://dx.doi.org/10.1109/TRO.2015.2463671
http://dx.doi.org/10.1109/TPAMI.2008.300
http://www.ncbi.nlm.nih.gov/pubmed/20224126
http://dx.doi.org/10.1016/j.cviu.2005.06.001
http://dx.doi.org/10.1109/TPAMI.2007.1049
http://www.ncbi.nlm.nih.gov/pubmed/17431302
http://dx.doi.org/10.1109/TRO.2016.2623335
http://dx.doi.org/10.1109/TPAMI.2017.2658577
http://www.ncbi.nlm.nih.gov/pubmed/28422651

Electronics 2019, 8, 243 17 of 17

18. Gomez-Ojeda, R.; Moreno, F.; Scaramuzza, D.; Gonzalez-Jimenez, J. Pl-slam: A stereo slam system through
the combination of points and line segments. arXiv 2017, arXiv:1705.09479.

19. Lu, Y.; Song, D. Robust rgb-d odometry using point and line features. In Proceedings of the IEEE International
Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 3934–3942.

20. Gomez-Ojeda, R.; Briales, J.; Gonzalez-Jimenez, J. Pl-svo: Semidirect monocular visual odometry by
combining points and line segments. In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016; pp. 4211–4216.

21. Yang, S.; Scherer, S. Direct monocular odometry using points and lines. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 3871–3877.

22. Zhao, Y.; Vela, P.A. Good Line Cutting: Towards Accurate Pose Tracking of Line-assisted VO/VSLAM.
In Proceedings of the Computer Vision, ECCV, Munich, Germany, 8–14 September 2018.

23. Lepetit, V.; Moreno-Noguer, F.; Fua, P. Epnp: An accurate o(n) solution to the pnp problem. Int. J. Comput. Vis.
2009, 81, 155–166. [CrossRef]

24. Mei, C.; Sibley, G.; Newman, P. Closing loops without places. In Proceedings of the 2010 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010.

25. GálvezLópez, D.; Tardós, J.D. Bags of binary words for fast place recognition in image sequences.
IEEE Trans. Robot. 2012, 28, 1188–1197. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s11263-008-0152-6
http://dx.doi.org/10.1109/TRO.2012.2197158
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	System Overview
	Matching of Line Segments and the Establishment of the Collinear Relationship
	Detection of Line Segments
	Match Line Segments and Points
	Matching of Line Segments and the Establishment of the Collinear Relationship of Points

	Line-Assisted Bundle Adjustment
	Line-Based Reprojection Error
	Point Collinear-Constraint Error
	Line-Assisted Bundle Adjustment
	Line-Assisted BA in the LAP-SLAM

	Global Relocalization
	Line-Assisted EPnP
	Line-Assisted EPnP in LAP-SLAM

	Experimental Evaluation
	Match of Line Segments
	Relocalization
	Localization Accuracy
	Computation Time

	Conclusions
	References

