
electronics

Article

Area-Efficient Error Detection Structure for Linear
Feedback Shift Registers

Hwasoo Shin 1, Soyeon Choi 1, Jiwoon Park 1, Byeong Yong Kong 2 and Hoyoung Yoo 1,*
1 Department of Electronics Engineering, Chungnam National University, Daejeon 34134, Korea;

hsshin.cas@gmail.com (H.S.); sychoi.cas@gmail.com (S.C.); jwpark.cas@gmail.com (J.P.)
2 Division of Electrical, Electronic and Control Engineering, Kongju National University, Cheonan 31080,

Korea; bykong@kongju.ac.kr
* Correspondence: hyyoo@cnu.ac.kr; Tel.: +82-42-821-6585

Received: 10 December 2019; Accepted: 18 January 2020; Published: 20 January 2020
����������
�������

Abstract: This paper presents a novel error detection linear feedback shift register (ED-LFSR), which
can be used to realize error detection with a small hardware overhead for various applications such as
error-correction codes, encryption algorithms and pseudo-random number generation. Although the
traditional redundancy methods allow the incorporation of the error detection/correction capability
in the original LFSRs, they suffer from a considerable amount of hardware overheads. The proposed
ED-LFSR alleviates such problems by employing the parity check technique. The experimental results
indicate that the proposed ED-LFSR requires an additional area of only 31.1% compared to that
required by the conventional LFSR and it saves 39.1% and 31.9% of the resources compared to the
corresponding utilization of the hardware and time redundancy methods.

Keywords: area-efficient structure; fault-tolerant; LFSR; parity check

1. Introduction

Reduction in the size of semiconductors tends to increase the number of faults in semiconductor
fabrication [1,2]. With electronic circuits becoming more compact, they are vulnerable to faults resulting
from external noises such as electromagnetic noises, cross-talk and cosmic rays [3–6]. Thus, error
detection/correction designs have become important to improve the reliability and availability of
system control. In particular, in the case of critical applications such as automotive systems, defense
surveillances and space applications, the use of error detection/correction designs is necessary because
even a tiny fault can disrupt the entire functionality of the system [7–9]. Because it is difficult to detect
faults in the fabrication stage, error detection/correction design should be carefully incorporated the
design stage.

The linear feedback shift register (LFSR) is one of the most widely used sequential logics, which
produces the linear function of its previous state [10–21]. The conventional LFSR consists of shift
registers and XORs, as shown in Figure 1. Figure 1a illustrates the conventional LFSR and Figure 1b
exemplifies the conventional LFSR associated with the generator polynomial G(x) = x4 + x2 + x +

1. The number of shift registers are equal to the length N of the generator polynomial G(x) and the
placement of the XORs is determined by the coefficient gn for 0 ≤ n < N within G(x). For each XOR,
one input comes from the previous shift register and the other comes from the feedback signal F[i].
According to Figure 1, the conventional LFSR updates the next state as.

Sn[i + 1] = Sn−1[i] + gnF[i] for 0 ≤ n < N, (1)

where n and i indicate the polynomial and cycle index, respectively. Based on (1), the n-th shift register
Sn[i + 1] at the (i + 1)-th clock cycle is linearly updated by adding the (n − 1)-th shift register Sn−1[i] and

Electronics 2020, 9, 195; doi:10.3390/electronics9010195 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0001-5823-5505
https://orcid.org/0000-0001-9323-0398
http://www.mdpi.com/2079-9292/9/1/195?type=check_update&version=1
http://dx.doi.org/10.3390/electronics9010195
http://www.mdpi.com/journal/electronics

Electronics 2020, 9, 195 2 of 10

n-th feedback signal gnF[i] at the i-th clock cycle. As a result, LFSRs can generate the linear functionality
of the previous state according to the generator polynomial and feedback signal [10–21].

Electronics 2020, 9, x FOR PEER REVIEW 2 of 11

Sn−1[i] and n-th feedback signal gnF[i] at the i-th clock cycle. As a result, LFSRs can generate the linear
functionality of the previous state according to the generator polynomial and feedback signal [10–21].

S0 S1 SN-1

g0 g1 gN-1

S0[i] S1[i] SN-1[i]

F[i]

gN

(a)

S0 S1 S2 S3

(b)

Figure 1. Conventional linear feedback shift register (LFSR). (a) General linear feedback shift register; (b)
Example of LFSR associated with G(x) = x4 + x2 + x + 1.

Because of the use of linear functions, LFSRs are widely employed in various fields [21–27]. For
instance, LFSRs are used to perform the polynomial division for encoding error-correction codes and
produce pseudo-random patterns for encryption algorithms and test pattern generations [21–24].
There are many literatures associated with efficient LFSR structures but they mainly focus on parallel
and low-power designs. Efficient parallel designs achieve a high throughput with a small hardware
increase [15–19] and efficient low-power designs alleviate severe power consumption resulting from
register update at every clock cycle [19–21]. As far as we searched, there are seldom recent literatures
that describe the error detection/correction designs for LFSR implementation. Traditional
redundancy methods [28–32] can be applied to LFSRs to attain a highly reliable design by duplicating
the original LFSR [10–21] in terms of time and hardware. However, the overheads from the
duplication are inevitable and they become a serious burden when the length of the generator
polynomial is large. To avoid this problem, we propose a novel error detection LFSR structure that
can detect undesirable errors with only a small hardware increase.

2. Existing Error Detection/Correction LFSRs

Redundancy methods are simple and efficient error detection/correction design techniques and
they can be traditionally categorized into hardware and time redundancy methods [28–32].
Hardware redundancy [28–30] can be accomplished by adding copies of the original design to protect
the design against malicious faults. For instance, dual modular redundancy (DMR) duplicates the
original design to detect the failure of one of two copies and triple modular redundancy (TMR)
triplicates the original design to correct an incorrect output, according to majority voting. In general,
hardware redundancy [28–30] has only negligible effects on the overall system performance but
incurs significant hardware overheads to maintain the desired level of reliability. Time redundancy
[31,32] employs redundancy in terms of time instead of hardware and the same operation is executed
multiple times with the same hardware resource. This approach detects or corrects faults by
comparing all the results obtained at different times. For instance, two-time-redundancy, which is
similar to DMR, allows the failure detection in one of two execution times and three-time-
redundancy, which is similar to TMR allows the correction of an incorrect output according to
majority voting. Unlike hardware redundancy [28–30], time redundancy [31,32] involves an
affordable hardware overhead but incurs a performance penalty. Examples of hardware [28–30] and
time [31,32] redundancy methods to detect undesirable faults are shown in Figures 2 and 3,
respectively. In both figures, the black line corresponds to the conventional LFSR [10–21] and the
dashed blue line indicates the additional hardware overhead.

Figure 1. Conventional linear feedback shift register (LFSR). (a) General linear feedback shift register;
(b) Example of LFSR associated with G(x) = x4 + x2 + x + 1.

Because of the use of linear functions, LFSRs are widely employed in various fields [21–27].
For instance, LFSRs are used to perform the polynomial division for encoding error-correction codes
and produce pseudo-random patterns for encryption algorithms and test pattern generations [21–24].
There are many literatures associated with efficient LFSR structures but they mainly focus on parallel
and low-power designs. Efficient parallel designs achieve a high throughput with a small hardware
increase [15–19] and efficient low-power designs alleviate severe power consumption resulting from
register update at every clock cycle [19–21]. As far as we searched, there are seldom recent literatures
that describe the error detection/correction designs for LFSR implementation. Traditional redundancy
methods [28–32] can be applied to LFSRs to attain a highly reliable design by duplicating the original
LFSR [10–21] in terms of time and hardware. However, the overheads from the duplication are
inevitable and they become a serious burden when the length of the generator polynomial is large. To
avoid this problem, we propose a novel error detection LFSR structure that can detect undesirable
errors with only a small hardware increase.

2. Existing Error Detection/Correction LFSRs

Redundancy methods are simple and efficient error detection/correction design techniques and
they can be traditionally categorized into hardware and time redundancy methods [28–32]. Hardware
redundancy [28–30] can be accomplished by adding copies of the original design to protect the design
against malicious faults. For instance, dual modular redundancy (DMR) duplicates the original
design to detect the failure of one of two copies and triple modular redundancy (TMR) triplicates
the original design to correct an incorrect output, according to majority voting. In general, hardware
redundancy [28–30] has only negligible effects on the overall system performance but incurs significant
hardware overheads to maintain the desired level of reliability. Time redundancy [31,32] employs
redundancy in terms of time instead of hardware and the same operation is executed multiple times
with the same hardware resource. This approach detects or corrects faults by comparing all the results
obtained at different times. For instance, two-time-redundancy, which is similar to DMR, allows
the failure detection in one of two execution times and three-time-redundancy, which is similar to
TMR allows the correction of an incorrect output according to majority voting. Unlike hardware
redundancy [28–30], time redundancy [31,32] involves an affordable hardware overhead but incurs a
performance penalty. Examples of hardware [28–30] and time [31,32] redundancy methods to detect

Electronics 2020, 9, 195 3 of 10

undesirable faults are shown in Figures 2 and 3, respectively. In both figures, the black line corresponds
to the conventional LFSR [10–21] and the dashed blue line indicates the additional hardware overhead.Electronics 2020, 9, x FOR PEER REVIEW 3 of 11

S0 S1 S2 S3

S'0 S'1 S'2 S'3

e[0] e[1] e[2] e[3]

Figure 2. Example of hardware redundancy method [28–30].

S'0 S'1 S'2 S'3

S0 S1 S2 S3

e[0] e[1] e[2] e[3]

en_up

en_low

Figure 3. Example of time redundancy method [31,32].

As shown in Figure 2, hardware redundancy [28–30] is simply realized by duplicating the
conventional LFSR [10–21] shown in Figure 1 to operate with the same functionality in parallel.
Accordingly, this approach requires more than twice hardware resources compared to the
conventional LFSR [10–21]. In contrast, as shown in Figure 3, the time redundancy [31,32] approach
computes the same functionality using the same hardware resources in series, although additional
registers are necessary to store and compare the outputs obtained at different times. The outputs of
the first computation are stored in the lower registers activated by en_low and those from the second
computation are stored in the upper registers activated by en_up alternately. Although the time
redundancy technique [31,32] improves the reliability, it demands a latency that is two times longer
than that of the conventional LFSR [10–21]. These examples indicate that the overheads resulting
from the redundancy methods [28–32] are as high as those of the conventional LFSR [10–21] and the
overhead becomes more severe when the length N of the generator polynomial G(x) is large. Recently,
more advanced redundancy technique is introduced targeting for error detection/correction adders
[33–35], which achieves error detection/correction using information redundancy. Information
redundancy saves hardware resources but demands additional computation overhead. As far as we
know, there is no such information redundancy approach for an error detection LFSR structure.

3. Proposed ED-LFSR

To overcome the limitations of the existing redundancy methods, we propose a new error
detection LFSR, which can detect errors with a small hardware overhead by employing the parity
check technique [25–27]. The proposed error detection lFSR (ED-LFSR) estimates the parity of the
next state by using the linear operation of the LFSRs. At the next clock cycle, the actual parity is

Figure 2. Example of hardware redundancy method [28–30].

Electronics 2020, 9, x FOR PEER REVIEW 3 of 11

S0 S1 S2 S3

S'0 S'1 S'2 S'3

e[0] e[1] e[2] e[3]

Figure 2. Example of hardware redundancy method [28–30].

S'0 S'1 S'2 S'3

S0 S1 S2 S3

e[0] e[1] e[2] e[3]

en_up

en_low

Figure 3. Example of time redundancy method [31,32].

As shown in Figure 2, hardware redundancy [28–30] is simply realized by duplicating the
conventional LFSR [10–21] shown in Figure 1 to operate with the same functionality in parallel.
Accordingly, this approach requires more than twice hardware resources compared to the
conventional LFSR [10–21]. In contrast, as shown in Figure 3, the time redundancy [31,32] approach
computes the same functionality using the same hardware resources in series, although additional
registers are necessary to store and compare the outputs obtained at different times. The outputs of
the first computation are stored in the lower registers activated by en_low and those from the second
computation are stored in the upper registers activated by en_up alternately. Although the time
redundancy technique [31,32] improves the reliability, it demands a latency that is two times longer
than that of the conventional LFSR [10–21]. These examples indicate that the overheads resulting
from the redundancy methods [28–32] are as high as those of the conventional LFSR [10–21] and the
overhead becomes more severe when the length N of the generator polynomial G(x) is large. Recently,
more advanced redundancy technique is introduced targeting for error detection/correction adders
[33–35], which achieves error detection/correction using information redundancy. Information
redundancy saves hardware resources but demands additional computation overhead. As far as we
know, there is no such information redundancy approach for an error detection LFSR structure.

3. Proposed ED-LFSR

To overcome the limitations of the existing redundancy methods, we propose a new error
detection LFSR, which can detect errors with a small hardware overhead by employing the parity
check technique [25–27]. The proposed error detection lFSR (ED-LFSR) estimates the parity of the
next state by using the linear operation of the LFSRs. At the next clock cycle, the actual parity is

Figure 3. Example of time redundancy method [31,32].

As shown in Figure 2, hardware redundancy [28–30] is simply realized by duplicating the
conventional LFSR [10–21] shown in Figure 1 to operate with the same functionality in parallel.
Accordingly, this approach requires more than twice hardware resources compared to the conventional
LFSR [10–21]. In contrast, as shown in Figure 3, the time redundancy [31,32] approach computes
the same functionality using the same hardware resources in series, although additional registers
are necessary to store and compare the outputs obtained at different times. The outputs of the
first computation are stored in the lower registers activated by en_low and those from the second
computation are stored in the upper registers activated by en_up alternately. Although the time
redundancy technique [31,32] improves the reliability, it demands a latency that is two times longer
than that of the conventional LFSR [10–21]. These examples indicate that the overheads resulting
from the redundancy methods [28–32] are as high as those of the conventional LFSR [10–21] and
the overhead becomes more severe when the length N of the generator polynomial G(x) is large.
Recently, more advanced redundancy technique is introduced targeting for error detection/correction
adders [33–35], which achieves error detection/correction using information redundancy. Information
redundancy saves hardware resources but demands additional computation overhead. As far as we
know, there is no such information redundancy approach for an error detection LFSR structure.

3. Proposed ED-LFSR

To overcome the limitations of the existing redundancy methods, we propose a new error
detection LFSR, which can detect errors with a small hardware overhead by employing the parity
check technique [25–27]. The proposed error detection lFSR (ED-LFSR) estimates the parity of the next
state by using the linear operation of the LFSRs. At the next clock cycle, the actual parity is generated
and compared with the estimated one to detect the occurrence of errors. For further mathematical

Electronics 2020, 9, 195 4 of 10

explanation, we adopt the parity function P(S), where P(S) = 0 and P(S) = 1 indicate even and odd
parities, respectively. It can be noted that the parity function contains a linear property as it satisfies
the additivity P(S0 + S1) = P(S0) + P(S1) and homogeneity P(cS) = cP(S) conditions.

The proposed ED-LFSR expects the estimation of the next parity at the i-th clock cycle by applying
the parity function to the right-hand-side of (1) for 0 ≤ n < N as

Pest[i] = P

N−1∑
n=0

(Sn−1[i] + gnF[i])

. (2)

Although (2) can be directly used to implement an error detection LFSR, it is necessary to simplify
(2) to reduce the hardware complexity. Using the additive and homogeneity properties of the parity
function, (2) can be expressed as

Pest[i] = P
(

N−1∑
n=0

Sn−1[i]
)
+ P

(
N−1∑
n=0

gnF[i]
)

= P
(

N−1∑
n=0

Sn−1[i]
)
+ F[i]P

(
N−1∑
n=0

gn

) . (3)

The last term of (3) can be implemented using a single variable as either F[i] or zero. When the
parity of the generator polynomial is even, P(

∑N
n=0 gn) = 0, the last term of (3) becomes F[i] since

P(
∑N−1

n=0 gn) = 1 due to the fact that the most significant coefficient gn is always one in the generator
polynomial G(x). Otherwise, when the parity of the generator polynomial is odd, P(

∑N
n=0 gn) = 1, the

last term of (3) becomes zero since P(
∑N−1

n=0 gn) = 0, which becomes independent of the feedback F[i].
In other words, (2) requires 2N − 1 binary additions and (3) requires N binary additions and 1 selection.
Note that the initial S−1[i] is assumed to be zero because no corresponding shift register exists.

Furthermore, the actual parity at the (i + 1)-th clock cycle is obtained by applying the parity
function to the left-hand-side of (1) for 0 ≤ n < N as

Pact[i + 1] = P

N−1∑
n=0

Sn[i + 1]

, (4)

where N − 1 binary additions are required. The proposed ED-LFSR compares the estimated parity Pest

[i] computed at the i-th clock cycle using (3) and the actual parity Pact[i + 1] determined at the (i + 1)-th
clock cycle using (4) to detect faults. Because the conventional LFSR updates the state linearly, the
parity function is seamlessly applicable to the LFSR and the simple comparison allows error detection
at every clock cycle.

Figure 4 shows the proposed ED-LFSR based on (3) and (4). The proposed ED-LFSR requires
additional circuitry to perform the operations related to Pest and Pact. At the i-th clock cycle, the
proposed ED-LFSR estimates Pest for the next clock cycle and stores it in the additional register Dest.
The left-sided MUX shown in Figure 4 selectively adds either the feedback or no feedback based on
the parity of the generator polynomial G(x). At the next (i + 1)-th clock cycle, the proposed ED-LFSR
computes Pact and compares it with the previously estimated Pest to detect malicious faults. It can
be noted that the XORs to perform the binary additions for (3) and (4) are shared to save hardware
resources. While (3) is implemented to estimate the parity of the next state by using the XORs, (4) is
implemented to compute and compare the parity of the current state by using a part of the same XORs.
Thus, the estimation and comparison of the parities occur simultaneously at each clock cycle. Without
loss of generality, the black and dashed blue lines in Figure 4 represent the conventional LFSR and
additional hardware overhead, respectively. Unlike the traditional redundancy methods that require
a large amount of hardware overheads, the proposed ED-LFSR incurs a small hardware overhead
owing to the use of the parity check technique [25–27]. The parity function enables the use of only
one additional register rather than N registers, as shown in Figures 2 and 3. Moreover, we can further

Electronics 2020, 9, 195 5 of 10

eliminate the selective MUX from the implementation point of view, as the generator polynomial is
normally determined before the design stage. According to the parity of the determined generator
polynomial, hard-wiring is applicable to the proposed ED-LFSR. As a result, the proposed ED-LFSR
can provide the fault-detection functionality to the conventional LFSR with only a minor increase in
the hardware.

Electronics 2020, 9, x FOR PEER REVIEW 5 of 11

determined generator polynomial, hard-wiring is applicable to the proposed ED-LFSR. As a result,
the proposed ED-LFSR can provide the fault-detection functionality to the conventional LFSR with
only a minor increase in the hardware.

Dest0 e

Pact

Pest

S0 S1 S2 S3

odd/even

Fg

Figure 4. Structure of the proposed FT-LFSR.

Figure 5 shows the operation of the proposed ED-LFSR in detail, where even generator
polynomial x4 + x2 + x + 1 and odd generator polynomial x4 + x + 1 are exemplified. Fg indicates the
output of the left-sided MUX representing the last term of (3) and S0, S1, S2 and S3 represent the output
from the registers shown in Figure 4. Although both even and odd polynomials generate the actual
parity Pact in the same way by XORing all the register outputs based on (4), the estimated parity Pest
is determined in a different way according to the parity of the generator polynomial based on (3).
When the generator polynomial G(x) is even, Fg is selected as F[i] leading from S3 as shown in Figure
5a. Otherwise, Fg is selected as zero as shown in Figure 5b. According to Figure 5, we can find that
the estimated parity Pest[i] always have the same pairty as the actural parity Pact[i + 1] at the (i + 1)-th
clock cycle. Therefore, the proposed ED-LFSR allows error detection at every clock cycle by
comparing the estimated parity and actual parity.

Figure 4. Structure of the proposed FT-LFSR.

Figure 5 shows the operation of the proposed ED-LFSR in detail, where even generator polynomial
x4 + x2 + x + 1 and odd generator polynomial x4 + x + 1 are exemplified. Fg indicates the output of the
left-sided MUX representing the last term of (3) and S0, S1, S2 and S3 represent the output from the
registers shown in Figure 4. Although both even and odd polynomials generate the actual parity Pact in
the same way by XORing all the register outputs based on (4), the estimated parity Pest is determined in
a different way according to the parity of the generator polynomial based on (3). When the generator
polynomial G(x) is even, Fg is selected as F[i] leading from S3 as shown in Figure 5a. Otherwise, Fg is
selected as zero as shown in Figure 5b. According to Figure 5, we can find that the estimated parity
Pest[i] always have the same pairty as the actural parity Pact[i + 1] at the (i + 1)-th clock cycle. Therefore,
the proposed ED-LFSR allows error detection at every clock cycle by comparing the estimated parity
and actual parity.

Electronics 2020, 9, x FOR PEER REVIEW 6 of 11

Iteration LFSR output Parity

Fg S0 S1 S2 S3 Pact Pest
0 1 1 1 1 1 0 0
1 1 1 0 0 1 0 0
2 0 1 0 1 0 0 0
3 1 0 1 0 1 0 0
4 0 1 1 0 0 0 0
5 0 0 1 1 0 0 0
6 1 0 0 1 1 0 0
7 1 1 1 1 1 0 0

i

(a)

Iteration LFSR output Parity

Fg S0 S1 S2 S3

0 0 1 1 1 1 0 1
1 0 1 0 1 1 1 0
2 0 1 0 0 1 0 1
3 0 1 0 0 0 1 1
4 0 0 1 0 0 1 1
5 0 0 0 1 0 1 1
6 0 0 0 0 1 1 0
7 0 1 1 0 0 0 0

i Pact Pest

(b)

Figure 5. Proposed error detection LFSR (ED-LFSR) operation at (a) even generator polynomial x4 + x2

+ x + 1; (b) odd generator polynomial x4 + x + 1.

In general, practical LFSR applications including error-correction codes, encryption algorithms
and pseudo-random number generation adopt a high number of parallel factor to provide a high
system throughput, so that it is important whether the proposed method can be applied to a parallel
structure with any number of parallel factor. Among various parallel structures, the simplest LFSR
structure can be obtained by concatenating the XOR network as many as the number of parallel factor
[14,15]. Figure 6 shows that the proposed method can be applied seamlessly to the parallel LFSR
structure. Without loss of generality, the black and dashed blue lines represent the conventional
parallel LFSR and additional hardware overhead, respectively. According to Figures 4 and 6, the
extra hardware circuitry is independent of the number of parallel factor. Therefore, the proposed
method can be widely used to realize error detection with a small hardware overhead for various
applications.

Figure 5. Proposed error detection LFSR (ED-LFSR) operation at (a) even generator polynomial x4 + x2

+ x + 1; (b) odd generator polynomial x4 + x + 1.

Electronics 2020, 9, 195 6 of 10

In general, practical LFSR applications including error-correction codes, encryption algorithms
and pseudo-random number generation adopt a high number of parallel factor to provide a high
system throughput, so that it is important whether the proposed method can be applied to a parallel
structure with any number of parallel factor. Among various parallel structures, the simplest LFSR
structure can be obtained by concatenating the XOR network as many as the number of parallel
factor [14,15]. Figure 6 shows that the proposed method can be applied seamlessly to the parallel
LFSR structure. Without loss of generality, the black and dashed blue lines represent the conventional
parallel LFSR and additional hardware overhead, respectively. According to Figures 4 and 6, the extra
hardware circuitry is independent of the number of parallel factor. Therefore, the proposed method
can be widely used to realize error detection with a small hardware overhead for various applications.

Electronics 2020, 9, x FOR PEER REVIEW 7 of 11

Dest0 e

Pact

Pest

S0 S1 S2 S3

odd/even

Fg

Figure 6. Structure of the proposed LFSR with a parallel factor of 4.

4. Experimental Results

For a fair comparison, we implemented various LFSRs including the conventional LFSR (Figure
1a), LFSRs with hardware [28–30] (Figure 2) and time redundancies [31,32] (Figure 3) and the
proposed ED-LFSR (Figure 4) by using 180-nm CMOS technology with the typical case of 1.8 Voltage
and 25 Celsius degree. Table 1 presents the equivalent gate counts of the error detection methods for
generator polynomials of different lengths synthesized with an operating frequency of 200 MHz.
Note that the equivalent gate count is calculated by dividing the total design area by the 2-input
NAND gate for a fair complexity comparison. Because the traditional redundancy methods [28–32]
require overheads that are as high as those of the conventional LFSR [10–21], the total hardware
complexity for the hardware and time redundancy LFSRs [28–32] is almost two times that of the
conventional LFSR [10–21] regardless of the length of the generator polynomial. Although the time
redundancy technique [31,32] exhibits a complexity slightly less than that of the hardware
redundancy approach [28–30], the system throughput is degraded by 50% to perform the same
operation two times. Unlike the traditional redundancy methods [28–32] whose complexities are
approximately two times that of the conventional LFSR, the proposed ED-LFSR considerably reduces
the hardware resources by employing the linear property of the parity check function according to
(3) and (4). For a length of 64, the proposed ED-LFSR requires an additional hardware of only 31.1%
compared to that required by the original LFSR [10–21] and it saves 39.1% and 31.9% of the resources
compared to the corresponding utilization of the hardware and time redundancy methods [28–32].

Table 1. Equivalent gate counts for various LFSR designs.

 Conventional Hardware Redundancy Time Redundancy Proposed
8-bit 107.1 224.9 203.6 134.1

16-bit 202.9 431.2 387.3 251.2
32-bit 399.9 847.2 769.3 497.1
64-bit 780.3 1653.4 1502.5 1023.1

Figure 6. Structure of the proposed LFSR with a parallel factor of 4.

4. Experimental Results

For a fair comparison, we implemented various LFSRs including the conventional LFSR (Figure 1a),
LFSRs with hardware [28–30] (Figure 2) and time redundancies [31,32] (Figure 3) and the proposed
ED-LFSR (Figure 4) by using 180-nm CMOS technology with the typical case of 1.8 Voltage and
25 Celsius degree. Table 1 presents the equivalent gate counts of the error detection methods for
generator polynomials of different lengths synthesized with an operating frequency of 200 MHz.
Note that the equivalent gate count is calculated by dividing the total design area by the 2-input
NAND gate for a fair complexity comparison. Because the traditional redundancy methods [28–32]
require overheads that are as high as those of the conventional LFSR [10–21], the total hardware
complexity for the hardware and time redundancy LFSRs [28–32] is almost two times that of the
conventional LFSR [10–21] regardless of the length of the generator polynomial. Although the time
redundancy technique [31,32] exhibits a complexity slightly less than that of the hardware redundancy
approach [28–30], the system throughput is degraded by 50% to perform the same operation two times.
Unlike the traditional redundancy methods [28–32] whose complexities are approximately two times
that of the conventional LFSR, the proposed ED-LFSR considerably reduces the hardware resources by
employing the linear property of the parity check function according to (3) and (4). For a length of 64,

Electronics 2020, 9, 195 7 of 10

the proposed ED-LFSR requires an additional hardware of only 31.1% compared to that required by
the original LFSR [10–21] and it saves 39.1% and 31.9% of the resources compared to the corresponding
utilization of the hardware and time redundancy methods [28–32].

Table 1. Equivalent gate counts for various LFSR designs.

Conventional Hardware Redundancy Time Redundancy Proposed

8-bit 107.1 224.9 203.6 134.1
16-bit 202.9 431.2 387.3 251.2
32-bit 399.9 847.2 769.3 497.1
64-bit 780.3 1653.4 1502.5 1023.1

To bring a practical analysis, Table 2 compares the physical metrics for each LFSR structure
with a length of 64. Synopsys Design compiler are used to measure equivalent gate count, area
and critical-path delay and Synopsys Power compiler are used to estimate power consumption with
180-nm CMOS technology. Compared to the conventional LFSR, ED-LFSRs including hardware
redundancy, time redundancy and proposed ones inevitably increases equivalent gate count, area,
power consumption, critical-path delay and decreases throughput due to additional detection circuits.
Although the proposed ED-LFSR requires slightly longer critical-path delay and lower throughput,
the proposed ED-LFSR improves equivalent gate count, area and power consumption significantly
compared to the previous hardware and time redundancies. Note that the throughputs for the
conventional, hardware redundancy, proposed are obtained by taking the inverse of the clock period
or critical-path delay since one clock cycle is necessary to operate one bit shift or operation. However,
the throughput for the time redundancy is obtained by taking a half of the inverse of the clock period
or critical-path delay. The previous time redundancy needs two clock cycles to operate one bit shift
since the time redundancy computes the same operation twice to detect an error using the same
hardware. As a result, the proposed ED-LFSR outperforms the previous ED-LFSRs for the normalized
performance metrics while allowing error detection capability to the conventional LFSR structure.

Table 2. Physical metrics for various LFSR designs with a length of 64.

Physical Metrics Conventional Hardware Redundancy Time Redundancy Proposed

Area [A] 7786.99 µm2 16,499.19 µm2 14,994.06 µm2 10,209.15 µm2

Equivalent Gate Count 780.34 1653.43 1502.52 1023.14
Power Consumption [B] 0.71 mW 1.26 mW 1.49 mW 0.84 mW

Critical-Path Delay 3.74 ns 3.90 ns 3.74 ns 3.99 ns
Throughput [C] 267.37 Mbps 256.41 Mbps 133.69 Mbps 250.63 Mbps

Normalized Metric [D] * 1.00 0.26 0.13 0.60

* [D] = [C]/([A] × [B]) Mbps/(µm2
×mW).

Table 3 presents the hardware resources required by the various LFSRs in terms of the length N
and weight G of a generator polynomial. In all cases, the proposed ED-LFSR requires the smallest
overheads to improve the reliability and availability of the conventional LFSRs [10–21] regardless of
the considered generator polynomial.

Table 3. Summary of hardware complexities.

Conventional Hardware Redundancy Time Redundancy Proposed

Register N 2N 2N N + 1
XOR G 2G + N G + N G + N + 1
MUX - - - 1

In addition, Missed Detection Rate (MDR) is calculated for more accurate performance
measurement of the proposed ED-LFSR. Due to the nature of the 1-bit parity code, the proposed

Electronics 2020, 9, 195 8 of 10

ED-LFSR is able to detect the odd number of errors completely but not the even number of errors.
Accordingly, MDR of the n-bit ED-LFSR with respect to the probability of error occurrence p is
obtained as

MDR =
n/2∑
k=1

nC2kp2k(1− p)n−2k. (5)

Figure 7 shows theoretical and experimental results for various lengths of LFSR with different
error occurrence p ranging from 10−1 to 10−4. The theoretical results obtained from (5) are shown as
lines and the experimental results obtained from simulations are indicated as markers. According to
Figure 7, the experimental results are exactly fit in the theoretical results.Electronics 2020, 9, x FOR PEER REVIEW 9 of 11

10-410-310-210-1

Bit Error Occurence

10-6

10-5

10-4

10-3

10-2

10-1

100

M
is

se
d

D
et

ec
tio

n
R

at
e

 8-bit LFSR without error detection
 16-bit LFSR without error detection
 32-bit LFSR without error detection
 64-bit LFSR without error detection
 8-bit LFSR with error detection
 16-bit LFSR with error detection
 32-bit LFSR with error detection
 64-bit LFSR with error detection

Figure 7. Missed Detection Rates for the proposed FT-LFSR.

5. Conclusions

We proposed a new error detection linear feedback shift register that can detect the undesirable
errors with only a small hardware overhead by employing the parity check technique [25–27]. The
parity function is applied to the conventional LFSR [10–21] and later simplified using the linear
property of the parity function. The proposed structure is carefully designed to reduce hardware
complexity by sharing a part of the circuitries. The experimental results indicate that the proposed
ED-LFSR always maintains the smallest hardware complexity among all the error detection LFSR
designs, regardless of the employed generator polynomials. Thus, the proposed method can provide
an area-efficient solution to incorporate the error detection technique in the conventional LFSRs [10–
21]. The further work includes the complete error detection and the error-correction methods for
LFSRs since the proposed method can support only the odd numbers of error detection due to the
property of the parity check.

Author Contributions: Conceptualization, B.Y.K.; Data curation, H.S.; Formal analysis, B.Y.K.; Funding
acquisition, H.Y.; Investigation, S.C. and J.P.; Methodology, H.S.; Project administration, H.Y.; Resources, H.S.;
Software, J.P.; Supervision, H.Y.; Validation, S.C.; Visualization, H.S.; Writing—Original draft, H.S.; Writing—
Review & editing, H.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: This work was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (NRF-2019M3F3A1A01074449) and EDA tools were supported by
IDEC, Korea.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. He, Q.P.; Wang, J. Fault Detection Using the k-Nearest Neighbor Rule for Semiconductor Manufacturing
Processes. IEEE Trans. Semicond. Manuf. 2007, 20, 345–354.

2. Cherry, G.A.; Qin, S.J. Multiblock principal component analysis based on a combined index for
semiconductor fault detection and diagnosis. IEEE Trans. Semicond. Manuf. 2006, 19, 159–172.

3. Cangellaris, A.C.; Pinello, W.; Ruehli, A. Circuit-based description and modeling of electromagnetic noise
effects in packaged low-power electronics. In Proceedings of the International Conference on Computer
Design VLSI in Computers and Processors, Austin, TX, USA, 12–15 October 1997; pp. 136–142.

4. Catt, I. Crosstalk (Noise) in Digital Systems. IEEE Trans. Electron. Comput. 1967, 16, 743–763.

Figure 7. Missed Detection Rates for the proposed FT-LFSR.

5. Conclusions

We proposed a new error detection linear feedback shift register that can detect the undesirable
errors with only a small hardware overhead by employing the parity check technique [25–27]. The parity
function is applied to the conventional LFSR [10–21] and later simplified using the linear property of
the parity function. The proposed structure is carefully designed to reduce hardware complexity by
sharing a part of the circuitries. The experimental results indicate that the proposed ED-LFSR always
maintains the smallest hardware complexity among all the error detection LFSR designs, regardless
of the employed generator polynomials. Thus, the proposed method can provide an area-efficient
solution to incorporate the error detection technique in the conventional LFSRs [10–21]. The further
work includes the complete error detection and the error-correction methods for LFSRs since the
proposed method can support only the odd numbers of error detection due to the property of the
parity check.

Author Contributions: Conceptualization, B.Y.K.; Data curation, H.S.; Formal analysis, B.Y.K.; Funding acquisition,
H.Y.; Investigation, S.C. and J.P.; Methodology, H.S.; Project administration, H.Y.; Resources, H.S.; Software, J.P.;
Supervision, H.Y.; Validation, S.C.; Visualization, H.S.; Writing—Original draft, H.S.; Writing—Review & editing,
H.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: This work was supported by the National Research Foundation of Korea (NRF) grant funded
by the Korea government (MSIT) (NRF-2019M3F3A1A01074449) and EDA tools were supported by IDEC, Korea.

Conflicts of Interest: The authors declare no conflict of interest.

Electronics 2020, 9, 195 9 of 10

References

1. He, Q.P.; Wang, J. Fault Detection Using the k-Nearest Neighbor Rule for Semiconductor Manufacturing
Processes. IEEE Trans. Semicond. Manuf. 2007, 20, 345–354. [CrossRef]

2. Cherry, G.A.; Qin, S.J. Multiblock principal component analysis based on a combined index for semiconductor
fault detection and diagnosis. IEEE Trans. Semicond. Manuf. 2006, 19, 159–172. [CrossRef]

3. Cangellaris, A.C.; Pinello, W.; Ruehli, A. Circuit-based description and modeling of electromagnetic noise
effects in packaged low-power electronics. In Proceedings of the International Conference on Computer
Design VLSI in Computers and Processors, Austin, TX, USA, 12–15 October 1997; pp. 136–142.

4. Catt, I. Crosstalk (Noise) in Digital Systems. IEEE Trans. Electron. Comput. 1967, 16, 743–763. [CrossRef]
5. Paul, B.C.; Roy, K. Testing cross-talk induced delay faults in static CMOS circuit through dynamic timing

analysis. In Proceedings of the International Test Conference, Baltimore, MD, USA, 7–10 October 2002;
pp. 384–390.

6. O’Gorman, T.J.; Ross, J.M.; Taber, A.H.; Ziegler, J.F.; Muhlfeld, H.P.; Montrose, C.J.; Curtis, H.W.; Walsh, J.L.
Field testing for cosmic ray soft errors in semiconductor memories. IBM J. Res. Dev. 1996, 40, 41–50.
[CrossRef]

7. Isermann, R.; Schwarz, R.; Stolzl, S. Fault-tolerant drive-by-wire systems. IEEE Control Syst. Mag. 2002, 22,
64–81.

8. Baleani, M.; Ferrari, A.; Mangeruca, L.; Sangiovanni-Vincentelli, A.; Peri, M.; Pezzini, S. Fault-tolerant
platforms for automotive safety-critical applications. In Proceedings of the 2003 international conference on
Compilers, architectures and synthesis for embedded systems, San Jose, CA, USA, 30 October–1 November
2003; pp. 170–177.

9. Cardarilli, G.C.; Ottavi, M.; Pontarelli, S.; Re, M.; Salsano, A. Fault tolerant solid state mass memory for space
applications. IEEE Trans. Aerosp. Electron. Syst. 2005, 41, 1353–1372. [CrossRef]

10. Cheng, C.; Parhi, K.K. High speed VLSI architecture for general linear feedback shift register (LFSR) structures.
In Proceedings of the 2009 Conference Record of the Forty-Third Asilomar Conference on Signals, Systems
and Computers, Pacific Grove, CA, USA, 1–4 November 2009; pp. 713–717.

11. Aloisi, W.; Mita, R. Gated-Clock Design of Linear-Feedback Shift Registers. IEEE Trans. Circuits Syst. Π
Express Briefs 2008, 55, 546–550. [CrossRef]

12. Wang, L.-T.; McCluskey, E.J. Linear feedback shift register design using cyclic codes. IEEE Trans. Comput.
1988, 37, 1302–1306. [CrossRef]

13. Bagalkoti, A.; Shirol, S.B.; Ramakrishna, S.; Kumar, P.; Rajashekar, B.S. Design and Implementation of 8-bit
LFSR, Bit-Swapping LFSR and Weighted Random Test Pattern Generator: A Performance Improvement.
In Proceedings of the 2019 International Conference on Intelligent Sustainable Systems (ICISS), Palladam,
Tamilnadu, India, 21–22 February 2019; pp. 82–86.

14. Sprachmann, M. Automatic generation of parallel CRC circuits. IEEE Des. Test Comput. 2001, 18, 108–114.
[CrossRef]

15. Jung, J.; Yoo, H.; Lee, Y.; Park, I.C. Efficient Parallel Architecture for Linear Feedback Shift Registers. IEEE
Trans. Circuits Syst. Π Express Briefs 2015, 62, 1068–1072. [CrossRef]

16. Ayinala, M.; Parhi, K.K. Efficient parallel VLSI architecture for linear feedback shift registers. 2010 IEEE
Workshop Signal Process. Syst. 2010, 52–57.

17. Ayinala, M.; Parhi, K.K. High-Speed Parallel Architectures for Linear Feedback Shift Registers. IEEE Trans.
Signal Process. 2011, 59, 4459–4469. [CrossRef]

18. Lowy, M. Parallel implementation of linear feedback shift registers for low power applications. IEEE Trans.
Circuits Syst. Π Analog Digit. Signal Process. 1996, 43, 458–466. [CrossRef]

19. Zhang, X. A Low-Power Parallel Architecture for Linear Feedback Shift Registers. IEEE Trans. Circuits Syst.
Π Express Briefs 2019, 66, 412–416. [CrossRef]

20. Katti, R.S.; Ruan, X.; Khattri, H. Multiple-output low-power linear feedback shift register design. IEEE Trans.
Circuits Syst. I Regul. Pap. 2006, 53, 1487–1495. [CrossRef]

21. Kumar, G.S.; Saminadan, V. Low Power LFSR for BIST Applications. In Proceedings of the 2018 Second
International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 14–15
June 2018; pp. 1979–1984.

http://dx.doi.org/10.1109/TSM.2007.907607
http://dx.doi.org/10.1109/TSM.2006.873524
http://dx.doi.org/10.1109/PGEC.1967.264721
http://dx.doi.org/10.1147/rd.401.0041
http://dx.doi.org/10.1109/TAES.2005.1561889
http://dx.doi.org/10.1109/TCSII.2007.914901
http://dx.doi.org/10.1109/12.5994
http://dx.doi.org/10.1109/54.922807
http://dx.doi.org/10.1109/TCSII.2015.2456294
http://dx.doi.org/10.1109/TSP.2011.2159495
http://dx.doi.org/10.1109/82.502318
http://dx.doi.org/10.1109/TCSII.2018.2860934
http://dx.doi.org/10.1109/TCSI.2006.877889

Electronics 2020, 9, 195 10 of 10

22. Abu-Issa, A.S.; Quigeley, S.F. Bit-swapping LFSR for low-power BIST. Electron. Lett. 2008, 44, 401–403.
[CrossRef]

23. Nourani, M.; Tehranipoor, M.; Ahmed, N. Low-Transition Test Pattern Generation for BIST-Based Applications.
IEEE Trans. Comput. 2008, 57, 303–315. [CrossRef]

24. Kitsos, P.; Sklavos, N.; Zervas, N.; Koufopavlou, O. A reconfigurable linear feedback shift register (LFSR) for
the Bluetooth system. In Proceedings of the 8th IEEE International Conference on Electronics, Circuits and
Systems, Malta, Malta, 2–5 September 2001; pp. 991–994.

25. Lin, S.; Costello, D.J. Error Control Coding, 2nd ed.; Pearson India: Englewood Cliffs, NJ, USA, 2004; pp. 92–94.
26. Mohanram, K.; Sogomonyan, E.S.; Gossel, M.; Touba, N.A. Synthesis of low-cost parity-based partially

self-checking circuits. In Proceedings of the 9th IEEE On-Line Testing Symposium, Kos Island, Greece, 7–9
July 2003; pp. 35–40.

27. Kubalik, P.; Fiser, P.; Kubatova, H. Fault tolerant system design method based on self-checking circuits. In
Proceedings of the 12th IEEE International On-Line Testing Symposium, Lake Como, Italy, 10–12 July 2006.

28. Johnson, B.W.; Aylor, J.H.; Hana, H.H. Efficient Use of Time and Hardware Redundancy for Concurrent
Error Detection in a 32-bit VLSI Adder. IEEE J. Solid State Circuits 1988, 23, 208–215. [CrossRef]

29. Fuhrman, C.P.; Chutani, S.; Nussbaumer, H.J. Hardware/software fault tolerance with multiple task modular
redundancy. In Proceedings of the IEEE Symposium on Computers and Communications, Alexandria,
Egypt, 27–29 July 1995; pp. 171–177.

30. She, X.; McElvain, K.S. Time Multiplexed Triple Modular Redundancy for Single Event Upset Mitigation.
IEEE Trans. Nucl. Sci. 2009, 56, 2443–2448. [CrossRef]

31. Antola, A.; Negrini, R.; Sami, M.G.; Scarabottolo, N. Fault Tolerance in FFT Arrays: Time Redundancy
Approaches. J. Vlsi Signal Process. 1992, 4, 295–316. [CrossRef]

32. Nicolaidis, M. Time redundancy based soft-error tolerance to rescue nanometer technologies. In Proceedings
of the 17th IEEE VLSI Test Symposium, Dana Point, CA, USA, 25–29 April 1999; pp. 86–94.

33. Bin Talib, G.H.; El-Maleh, A.H.; Sait, S.M. Design of Fault Tolerant Adders: A Review. Arab. J. Sci. Eng. 2018,
43, 6667–6692. [CrossRef]

34. Valinataj, M.; Mirshekar, M.; Jazayeri, H. Novel low-cost and fault-tolerant reversible logic adders. Comput.
Electr. Eng. 2016, 53, 56–72. [CrossRef]

35. Babu, H.H.; Jamal, L.; Saleheen, N. An efficient approach for designing a reversible fault tolerant n-bit carry
look-ahead adder. In Proceedings of the 2013 IEEE International SOC Conference, Erlangen, Germany, 4–6
September 2013; pp. 98–103.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1049/el:20083481
http://dx.doi.org/10.1109/TC.2007.70794
http://dx.doi.org/10.1109/4.281
http://dx.doi.org/10.1109/TNS.2009.2021656
http://dx.doi.org/10.1007/BF00930642
http://dx.doi.org/10.1007/s13369-018-3556-9
http://dx.doi.org/10.1016/j.compeleceng.2016.06.008
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Existing Error Detection/Correction LFSRs
	Proposed ED-LFSR
	Experimental Results
	Conclusions
	References

