
electronics

Article

Formal Analysis and Verification of Airborne
Software Based on DO-333

Zongyu Cao 1,*, Wanyou Lv 1, Yanhong Huang 1,2,*, Jianqi Shi 1,3 and Qin Li 2

1 National Trusted Embedded Software Engineering Technology Research Center, East China Normal
University, Shanghai 200062, China; wanyou.lv@ntesec.ecnu.edu.cn (W.L.); jqshi@sei.ecnu.edu.cn (J.S.)

2 Shanghai Key Laboratory of Trustworthy Computing, Shanghai 200062, China; qli@sei.ecnu.edu.cn
3 Hardware/software Co-Design Technology and Application Engineering Research Center,

Shanghai 200062, China
* Correspondence: zongyu.cao@ntesec.ecnu.edu.cn (Z.C.); yhhuang@sei.ecnu.edu.cn (Y.H.)

Received: 25 December 2019; Accepted: 11 February 2020; Published: 14 February 2020
����������
�������

Abstract: With rapid technological advances in airborne control systems, it has become imperative
to ensure the reliability, robustness, and adaptability of airborne software since failure of these
software could result in catastrophic loss of property and life. DO-333 is a supplement to the DO-178C
standard, which is dedicated to guiding the application of formal methods in the review and analysis
of airborne software development processes. However, DO-333 lacks theoretical guidance on how to
choose appropriate formal methods and tools to achieve verification objectives at each stage of the
verification process, thereby limiting their practical application. This paper is intended to illustrate
the formal methods and tools available in the verification process to lay down a general guide for the
formal development and verification of airborne software. We utilized the Air Data Computer (ADC)
software as the research object and applied different formal methods to verify software lifecycle
artifacts. This example explains how to apply formal methods in practical applications and proves
the effectiveness of formal methods in the verification of airborne software.

Keywords: formal verification; airborne software; DO-333

1. Introduction

The aviation industry has seen a gradual increase in the application of software in airborne systems.
The software’s failure to perform the designated task, however, can have undesirable consequences,
such as equipment damage and risk to human life. The Boeing 737 crashes in 2018 and 2019 have
made this concern even more pronounced. Hence, strict verification processes must be followed while
creating safety-critical software so as to ensure their reliability and security.

The Radio Technical Commission for Aeronautics (RTCA) released the DO-178B Airworthiness
Certification Standard [1] in 1992 to illustrate the software lifecycle and provide guidance on the
development process of airborne software. However, with steady growth in the scale and complexity
of airborne software, the number of components, modules, and interfaces required for an enhanced
development process has also increased. Such substantial increase brings with it a higher probability
of software failure with unpredictable consequences. In 2011, the RTCA passed the DO-178C
standard [2], together with four development technology supplements. DO-333 [3] is the formal
supplement for DO-178C, to guide the application of formal methods in software development and
verification processes.

In recent years, research on the formal verification of airborne software has received extensive
attention, and several formal methods have been applied in the industry. Souyris et al. show how the
Airbus has been integrating several abstract interpretation-based analysis tools into the development

Electronics 2020, 9, 327; doi:10.3390/electronics9020327 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
http://www.mdpi.com/2079-9292/9/2/327?type=check_update&version=1
http://dx.doi.org/10.3390/electronics9020327
http://www.mdpi.com/journal/electronics

Electronics 2020, 9, 327 2 of 20

process of avionics software products [4]. Odile and Thomas et al. both discuss how Airbus applies
model-checking techniques on the Safety Critical Application Development Environment (SCADE)
to the validation and verification process of avionics systems [5,6]. NASA applies theorem proving,
model checking, and abstract interpretation techniques to achieve different verification objectives in its
case study on the Dual-Channel Flight Guidance System [7]. There are some case studies ([8–10]) that
focus on applying formal methods to artifacts and objectives at a certain software verification stage.

With reference to relevant cases, it is observed that the application of formal verification for
airborne software in the industry was mostly focused on applying SCADE to the software development
cycle or using a single formal method to verify the artifacts at a certain software development stage.
At present, there is a lack of systematic guidance for the application of formal methods for airborne
software verification, and several methods and tools that have been successfully applied in other
industries is yet to be introduced here.

This paper proposes a methodology for formal analysis and verification of airborne software
based on DO-333 to provide guidance in integrating formal methods in software development and
verification. It showcases the Air Data Computer (ADC) software to illustrate how this research’s
methodology could be applied and how formal methods and tools have to be selected to verify specific
objectives. We hope that the readers can derive inspiration from our case. The contributions of this
study can be presented as follows:

• Present a comprehensive formal verification methodology for the airborne software.
According to the software lifecycle defined for DO-178C, this study divides verification activity

into three parts: requirements and design, source code, and executable object code. The methodology
used summarizes the commonly used formal analysis and verification methods in each phase and
enumerates some frequently used mature formal models and tools. This research covers the entire
A-level software verification process defined in DO-333, which can guide the formal analysis and
verification of airborne software.

• Demonstrate the practical application of formal methods using the ADC software
For the software discussed in this study, all the requirements were formalized with Event-B and

objectives like compliance and traceability were verified by Rodin. This was followed by the extraction
of formal specifications from the behavior model and compiling with VCC annotations to automatically
verify the software at the source code level. Furthermore, a static analysis tool called PolySpace was
used to detect runtime errors in the source code level. For verification of the binary code, we analyzed
the minimum subset of the source code structure to verify the traceability of the executable object code
to the source code. By using this approach, the correctness of the verification of the executable object
code was converted into formal analysis in the source code level. After formal verification and review
of the ADC software, a total of 16 errors were identified. This shows that the formal method is an
effective verification method.

The rest of the paper is organized as follows: Section 2 provides a brief introduction of airworthiness
certification standards and formal methods; Section 3 describes the methodology used, providing
advice on how to apply formal methods to the software development process (based on DO-333);
Section 4 illustrates ADC software’s formal verification process and shows how to use formal methods
to verify specific objectives; and Section 5 concludes the work and discusses further research.

2. Background

2.1. Airworthiness Certification Standards

To establish development guidelines for airborne systems and equipment software that ensure
that it could perform its intended safety functions according to airworthiness requirements, the RTCA
published the DO-178B (Software Considerations in Airborne Systems and Equipment Certification)
in 1992. In DO-178B, the safety conditions are divided into five levels (A-E level) based on their
effects on the aircraft, crew, and passengers. However, the increasing size and complexity of modern

Electronics 2020, 9, 327 3 of 20

avionics software have raised questions on the viability of the DO-178B. The guideline takes little
or no account of current development and validation methods, such as model-based development
and object-oriented techniques. Therefore, in 2011, the RTCA passed the DO-178C standard and
prepared four supplementary documents: tool identification (DO-330), model-based development and
verification (DO-331), object-oriented technology (OOT) and related technologies (DO-332), and formal
methods (DO-333).

DO-333 is a supplementary document for the DO-178C. It discusses the use of formal methods in
the software lifecycle for software produced following the DO-178C. DO-333 is used to describe how
verification objectives, activities, explanatory texts, and software lifecycle data in DO-178C should be
addressed when formal methods are used as part of the software lifecycle. This includes artifacts that
could be expressed using formal notations and the verification foundation derived from them. It guides
the applicants and certification or approval authorities in facilitating the use of formal methods. Based
on the DO-333, the formal methods used in this paper carry out formal verification of the objectives
defined in DO-178C.

2.2. Formal Methods

Formal methods are mathematically based techniques for the specification, development,
and verification of the software aspects of digital systems. They use mathematical methods for all phases
of the system, so that the behavior of the system can be accurately described and characterized [11].
Further extensions are supported based on formal models, thus ensuring that the properties of the
developed system meet requirements and determine the correctness and robustness of the design.
Formal methods usually involve the following three types of activities [12]:

1. System modeling: formal model is an abstract representation of software for analysis, simulation,
and code generation.

2. Formal specification: formal specification is a description of some properties that the system
must satisfy.

3. Formal verification: formal verification is used to verify that the formal model of the system
satisfies the formal specification.

Formal verification methods can typically be classified into three categories: model checking,
theorem proving, and abstract interpretation.

• Model checking explores all possible behaviors of a formal model to determine whether a specified
property is satisfied. If the property does not hold, the model checking algorithm generates a
counterexample. Model checking can realize fully automated verification with high efficiency.
However, the increase of scale and complexity of the software causes great difficulties in the
modeling and may lead to the explosion of state space.

• Theorem proving models the system and the specification as logic formulae and proves the
satisfaction relation between them by deductive proof calculus. It uses inductive methods to
describe the behavior and attributes of the program, which can well solve the “state explosion”
problem. However, theorem proving cannot be automated at present. When encountering
complex problems with a large scale of code, the proof work needs to be completed with the help
of the user’s heuristics.

• Abstract interpretation is used to construct semantics-based analysis algorithms for the automatic,
static, and sound determination of dynamic properties of infinite-state programs. The essence
of abstract interpretation is to sacrifice accuracy for computational feasibility and efficiency,
which will limit its application.

The drawbacks of formal methods can be worked on by continuous development and application;
however, it is not the focus of this paper. Based on existing technology, this paper discusses the
formal technologies and tools that can be applied to airborne software and provides guidance for
industrial applications.

Electronics 2020, 9, 327 4 of 20

3. Methodology and Process

The DO-333 standard was introduced in 2011 as a supplement to the formal verification method
of DO-178C for airworthiness certifications. For specific verification objectives in DO-178C, it refers to
artifacts that could be expressed using formal notations and the verification evidence derived from
them. Figure 1 depicts the data items, development activities, and verification activities involved in
the requirement, design, and coding processes of A-level software.

Electronics 2020, 9, x FOR PEER REVIEW 4 of 20

3. Methodology and Process

The DO-333 standard was introduced in 2011 as a supplement to the formal verification method of
DO-178C for airworthiness certifications. For specific verification objectives in DO-178C, it refers to
artifacts that could be expressed using formal notations and the verification evidence derived from them.
Figure 1 depicts the data items, development activities, and verification activities involved in the
requirement, design, and coding processes of A-level software.

Figure 1. Level A software verification processes.

Figure 1 lists the objectives of each verification activity, including accuracy, consistency,
compliance, and traceability, among others. Consistency means there is no logical conflict between
two data items (requirements or source code). Compliance refers to the satisfaction relationship
between two data items; for example, the compliance of high-level requirements (HLR) to system
requirements. Traceability refers to the association between data items; it usually refers to two-way
tracking relationships. For example, traceability between HLR and Low-Level Requirements (LLR).
All HLR are developed into more detailed LLR, while all LLR can correspond to the HLR. Based on
accurate and unambiguous formal descriptions of software lifecycle data items, formal methods can
prove (or combine with review and other methods to prove) whether the data items meet the above
verification objectives.

It is imperative to mention that formal analysis may be applied to a small portion of the
verification objectives or as the primary source of evidence for accomplishing the desired
development and verification objectives. Some objectives may be fully compliant with formal
methods, while others may require additional verification, such as testing in an integrated target
computer. Thus, review, analysis and testing are also presented as means of attaining these
verification objectives.

According to Figure 1, we divide the entire verification process into three parts: requirements
and design, source code, and executable object code. The following sections will summarize some of
the formal techniques and methods that can be applied.

Figure 1. Level A software verification processes.

Figure 1 lists the objectives of each verification activity, including accuracy, consistency, compliance,
and traceability, among others. Consistency means there is no logical conflict between two data items
(requirements or source code). Compliance refers to the satisfaction relationship between two data items;
for example, the compliance of high-level requirements (HLR) to system requirements. Traceability
refers to the association between data items; it usually refers to two-way tracking relationships. For
example, traceability between HLR and Low-Level Requirements (LLR). All HLR are developed into
more detailed LLR, while all LLR can correspond to the HLR. Based on accurate and unambiguous
formal descriptions of software lifecycle data items, formal methods can prove (or combine with review
and other methods to prove) whether the data items meet the above verification objectives.

It is imperative to mention that formal analysis may be applied to a small portion of the
verification objectives or as the primary source of evidence for accomplishing the desired development
and verification objectives. Some objectives may be fully compliant with formal methods, while others
may require additional verification, such as testing in an integrated target computer. Thus, review,
analysis and testing are also presented as means of attaining these verification objectives.

According to Figure 1, we divide the entire verification process into three parts: requirements and
design, source code, and executable object code. The following sections will summarize some of the
formal techniques and methods that can be applied.

Electronics 2020, 9, 327 5 of 20

3.1. Formal Analysis of Requirements and Design

As shown in Figure 2, the main idea of formal analysis of requirements and design is to respectively
establish behavior and requirements models to depict the system to be verified and the properties that
the system must satisfy. There are two main formal analysis methods for this process: model checking
and theorem proving.

Electronics 2020, 9, x FOR PEER REVIEW 5 of 20

3.1. Formal Analysis of Requirements and Design

As shown in Figure 2, the main idea of formal analysis of requirements and design is to
respectively establish behavior and requirements models to depict the system to be verified and the
properties that the system must satisfy. There are two main formal analysis methods for this process:
model checking and theorem proving.

Figure 2. Formal methods of requirement and behavior models.

Model checking is used to verify whether the behavior model can satisfy the specifications
written in temporal logic, like LTL, CTL, TCTL [13], etc. This logic focuses on the sequence and timing
of events, and can describe a wide range of properties, such as safety, reachability, aliveness, fairness,
and real-time. For formal specifications written using temporal logic, the behavior model needs to be
described with the corresponding formal language, like CSP [14], Promela [15], BDD [16], TA [17],
etc. If the model and specifications are formalized correctly, the model checker will automatically
determine whether the property is satisfied. Applicable model checkers for the selected temporal
logic and modeling language include PAT [18], SPIN [19], SMV [20], UPPAAL [21], etc. Their
relationship is shown in Figure 2.

Theorem proving verifies formal specifications written in predicate logic, like FOL, HOL [22], etc. In
the theorem prover, requirement specifications are written into theorems, and then they are automatically
or semi-automatically proved by adding defined axioms and induction rules. Commonly used theorem
provers are ACL2 [23], PVS [24], Isabelle/HOL [25], Coq [26], etc. Among them, the ACL2 specification
language is based on FOL, while PVS, Isabelle/HOL, and Coq are based on HOL.

There are certain integrated development tools that not only provide a modeling environment,
but also have certain embedded model checkers or theorem provers to directly verify the model’s
accuracy. The most familiar integrated development environment is SCADE, which can cover all
development phases from requirements to code, including requirement modeling, model checking,
simulation, formal verification, code generation, and more [27]. Therefore, it has been widely used in
industrial applications. In addition, there are some open-source platforms that support embedded
formal verification tools, like Rodin, the platform for Event-B modeling [28].

When the models are built by different formal languages, model transformation needs to be
considered. The idea of model transformation can be used for shortcomings between two models. On
the one hand, when a model is not sufficient to describe certain properties, it can be converted into
another model to realize system modeling more efficiently. On the other hand, a model written in a
semi-formal language needs to be converted into a formal model for model checking, like SysML [29],
AADL [30], etc.

Figure 2. Formal methods of requirement and behavior models.

Model checking is used to verify whether the behavior model can satisfy the specifications written
in temporal logic, like LTL, CTL, TCTL [13], etc. This logic focuses on the sequence and timing of
events, and can describe a wide range of properties, such as safety, reachability, aliveness, fairness,
and real-time. For formal specifications written using temporal logic, the behavior model needs to
be described with the corresponding formal language, like CSP [14], Promela [15], BDD [16], TA [17],
etc. If the model and specifications are formalized correctly, the model checker will automatically
determine whether the property is satisfied. Applicable model checkers for the selected temporal logic
and modeling language include PAT [18], SPIN [19], SMV [20], UPPAAL [21], etc. Their relationship is
shown in Figure 2.

Theorem proving verifies formal specifications written in predicate logic, like FOL, HOL [22],
etc. In the theorem prover, requirement specifications are written into theorems, and then they are
automatically or semi-automatically proved by adding defined axioms and induction rules. Commonly
used theorem provers are ACL2 [23], PVS [24], Isabelle/HOL [25], Coq [26], etc. Among them, the ACL2
specification language is based on FOL, while PVS, Isabelle/HOL, and Coq are based on HOL.

There are certain integrated development tools that not only provide a modeling environment,
but also have certain embedded model checkers or theorem provers to directly verify the model’s
accuracy. The most familiar integrated development environment is SCADE, which can cover all
development phases from requirements to code, including requirement modeling, model checking,
simulation, formal verification, code generation, and more [27]. Therefore, it has been widely used in
industrial applications. In addition, there are some open-source platforms that support embedded
formal verification tools, like Rodin, the platform for Event-B modeling [28].

When the models are built by different formal languages, model transformation needs to be
considered. The idea of model transformation can be used for shortcomings between two models.
On the one hand, when a model is not sufficient to describe certain properties, it can be converted into
another model to realize system modeling more efficiently. On the other hand, a model written in a

Electronics 2020, 9, 327 6 of 20

semi-formal language needs to be converted into a formal model for model checking, like SysML [29],
AADL [30], etc.

The above mentioned formal methods and tools are commonly used in academia and industry.
With continuous research and development of formal methods, many novel formal languages and tools
have appeared and are widely used, like NuSMV [31], CCS [32], RSML−e [33], etc. We do not list them
in Figure 2, but in the following sections, we will cite a few research papers and show their applications.

3.2. Formal Analysis of Source Code

Figure 3 shows that the verification of source code can be divided into the compliance of source
code to requirement specifications, traceability between source code and behavior models, and static
analysis of source code. This paper focused on a single target language, namely C, for the reason that
most airborne software is written in it.

Electronics 2020, 9, x FOR PEER REVIEW 6 of 20

The above mentioned formal methods and tools are commonly used in academia and industry.
With continuous research and development of formal methods, many novel formal languages and
tools have appeared and are widely used, like NuSMV [31], CCS [32], RSML−e [33], etc. We do not list
them in Figure 2, but in the following sections, we will cite a few research papers and show their
applications.

3.2. Formal Analysis of Source Code

Figure 3 shows that the verification of source code can be divided into the compliance of source
code to requirement specifications, traceability between source code and behavior models, and static
analysis of source code. This paper focused on a single target language, namely C, for the reason that
most airborne software is written in it.

Figure 3. Formal methods of design layer and source code.

Theorem proving and model checking offer a solution to verify compliance of source code with
requirement specifications. To apply theorem proving, the specifications need to be extracted as pre- and
post-conditions and then converted to annotations in the C program; finally, deductive reasoning is used
to verify the annotations. Here, we list two theorem proving tools that are commonly used in the industry:
VCC [34] and Frama-C [35]. Another verification method is based on model checking. By constructing
a formal model from the source code, and using the temporal logic (primarily LTL and CTL) to
represent requirements specifications, model checking tools can provide a counter-example path
when the system is not satisfied. There are many model checkers such as SPIN [36], SMV [20],
NuSMV [37], etc., which can be used to achieve the objective of compliance of source code with
requirement specifications.

In the development process based on formal methods, this is an excellent method to improve
the model utilization rate by directly converting the verified formal models into source code.
Furthermore, development cycles can be shortened significantly with automatic code generation.
SCADE from Esterel Technologies, Simulink [38] from Mathworks, and many other tools like Rodin
have built-in code generators that can transform behavior models into equivalent C code. The code
generated from the formal model ensures traceability from the source code to the behavior model.

The static analysis tool used does not actually need to run the program in the target hardware,
but rather analyzes control and data flow, combined with abstract interpretation and symbolic
execution techniques, to check for data overflow, divide-by-zero, out-of-bounds array access, and
other run-time errors in the source code, and realize the accurate location of the problems [39].
Commonly used static analysis tools include Astre’ e [40], PolySpace [41], Fluctuat [42] (based on

Figure 3. Formal methods of design layer and source code.

Theorem proving and model checking offer a solution to verify compliance of source code with
requirement specifications. To apply theorem proving, the specifications need to be extracted as pre-
and post-conditions and then converted to annotations in the C program; finally, deductive reasoning
is used to verify the annotations. Here, we list two theorem proving tools that are commonly used in
the industry: VCC [34] and Frama-C [35]. Another verification method is based on model checking.
By constructing a formal model from the source code, and using the temporal logic (primarily LTL and
CTL) to represent requirements specifications, model checking tools can provide a counter-example
path when the system is not satisfied. There are many model checkers such as SPIN [36], SMV [20],
NuSMV [37], etc., which can be used to achieve the objective of compliance of source code with
requirement specifications.

In the development process based on formal methods, this is an excellent method to improve the
model utilization rate by directly converting the verified formal models into source code. Furthermore,
development cycles can be shortened significantly with automatic code generation. SCADE from
Esterel Technologies, Simulink [38] from Mathworks, and many other tools like Rodin have built-in
code generators that can transform behavior models into equivalent C code. The code generated from
the formal model ensures traceability from the source code to the behavior model.

The static analysis tool used does not actually need to run the program in the target hardware,
but rather analyzes control and data flow, combined with abstract interpretation and symbolic execution

Electronics 2020, 9, 327 7 of 20

techniques, to check for data overflow, divide-by-zero, out-of-bounds array access, and other run-time
errors in the source code, and realize the accurate location of the problems [39]. Commonly used static
analysis tools include Astre’ e [40], PolySpace [41], Fluctuat [42] (based on abstract interpretation),
SLAM [43], BLAST [44], and CBMC [45] (based on model checking), among others.

3.3. Formal Analysis of Executable Object Code

Figure 1 shows that the verification objectives of the executable object code (EOC) are chiefly
achieved by testing and assisted by reviews and analysis, as indicated in DO-178C. Since DO-178C
allows formal verification to replace certain forms of testing, this section summarizes the formal
methods that can be used to supplement or replace test activities.

1. Static Analysis of Worst-case Execution Time and Stack Usage
Worst-case execution time (WCET) and stack usage must be analyzed at the EOC level because

compilers, linkers, and some hardware features may have a non-negligible impact on them. Based
on the information flow of the program, the static analysis method estimates the WCET of the
program according to the characteristics of the target processor, rather than directly executing on
the hardware. The tools aiT [46] from AbsInt GmbH, and Bound-T [47] from Tidorum Ltd. both
use this approach. Similarly, StackAnalyzer [48] which is also from AbsInt GmbH and Bound-T,
can compute the worst-case stack usage of the program in its binary form, which contributes to proving
that execution of the program will not cause stack overflow.

2. Verification of Property Preservation Between Source and Executable Object Code
FM.6.7, item f in DO-333, states, “By verifying the correctness of the translation of source to object

code, formal analysis performed at the Source Code level against high or low-level requirements can
be used to infer correctness of the Executable Object Code against high or low-level requirements.”
Therefore, the main work at the binary code level is focused on verifying the traceability of the EOC to
the source code. There are two mainstream approaches to verify correctness of the translation from
source code to EOC.

• Analysis of the minimum subset of the source code structure
• Proving this property indirectly by formal verification of the compiler

In the verification process of ADC software, the method of analyzing the minimum subset of the
source code structure is used to verify traceability from the EOC to source code. The specific process is
described in Section 4.4.

The formal verification of airborne software is a hot research topic in the field of safety-critical
software. Many researchers have carried out relevant work, and some of their academic papers and
industrial reports are cited in this paper. We list the formal methods or tools used in their studies and
associate the verification work in these reports with the verification objectives in DO-333. According to
the methodology of this paper, we divide all verification work into three stages; the final results are
shown in Table 1.

Electronics 2020, 9, 327 8 of 20

Table 1. An overview of the verification objectives achieved by formal methods in related work.

Ref
Formal

Method or
Tools

Stage

Requirements and Design Source Code EOC

Accuracy
and

Consistency

Compatibility
with the
Target

Computer

Verifiability
Conformance

to
Standards

Algorithm
Accuracy Compliance Traceability Verifiability

Conformance
to

Standards

Accuracy
and

Consistency
Compliance Traceability

Completeness
and

Correctness
Traceability

Souyris
et al. [4]

Caveat,
Astrée,

Frama-C,
aiT,

Stackanalyzer,
Fluctuat

• • • • • •

Laurent
[5] SCADE • • • • • • • • • •

Cofer
et al. [7]

PVS, Kind,
Simulink,

Astrée,
PolySpace

• • • • • • • • • • •

Fernandes
et al. [8] Frama-C • • • •

Chaudemar
et al. [9] Event-B • • • • • •

Torens
et al. [10] NuSMV • ◦ • • • •

Boniol
et al. [49]

Lesar, SMV,
SCADE,
Uppaal

• • • • • • •

Miller
et al. [50]

Simulink,
NuSMV • • • • ◦

Brauer
et al. [51] RTT-STO ◦ •

Webster
et al. [52] Agent JPF • • • • ◦

Tribble
et al. [53]

RSML−e,
PVS,

NuSMV
• • • • • • •

Heitmeyer
et al. [54]

finite-state
automaton • • • • • •

• indicates that the verification objective is fully satisfied. ◦ indicates that the verification objective is partially satisfied.

Electronics 2020, 9, 327 9 of 20

4. Formal Verification of Air Data Computer Software

In this section, we conduct a complete formal verification process for Air Data Computer (ADC)
software, which comprehensively demonstrates how our methodology can be applied to engineering
projects. Through the demonstration of this case, we hope that readers will have a certain understanding
of how to use formal methods to achieve the verification objectives in DO-333, and how to choose
the corresponding formal methods and tools. For practical applications, we should consider the
characteristics of the software while carrying out verification activities.

ADC is an A-level software that receives the input signal of the aircraft airspeed tube, converts it
into a digital signal through analog quantity, and outputs atmospheric parameters after calculation.
The software consists of 12 modules, and we will show part of our experimental contents and results.
We select the parameter validity module to demonstrate the verification process. It analyzes the
validity of 15 parameters, including static pressure, total pressure, and total temperature, among others.
We take total pressure parameters as an example and describe its requirements as follows:

• If the combination of total pressure sensor fails, total pressure is indicated as invalid; else,
total pressure is valid.

• If the current total pressure value exceeds the limit but does not meet 10 consecutive cycles,
total pressure is set to be valid, and the value is set as that of the last period; if not, total pressure
is invalid, and the value obtained is set as critical value.

The primary verification process for this case is shown in Figure 4. Since the ADC software contains
many modules, the functions of the entire software are considered first during the requirements design
phase, and different functions are detailed in the specific module. Therefore, refinement strategies
can be considered in verification at the requirements level. This is why we chose to use Event-B,
which is based on model refinement to verify the relationship between HLR and LLR, as shown in
Section 4.1. In terms of traceability between source code and requirements, we need to individually
verify whether the code of each module in ADC can realize the requirements. Therefore, we consider
the VCC tool, which can separate each module independently and achieve separate requirements
verification objectives without requiring a full scan of the entire software code. The relevant content is
described in Section 4.2. In Section 4.3, PolySpace is used to detect the source code statically, because it
is a relatively mature tool for static analysis of codes, which can detect runtime errors without running
programs in the actual environment. Finally, we verify the traceability between the EOC and the
source code by analyzing the minimum subset of the source code structure (Section 4.4). The detailed
verification process will be described below.

 Electronics 2020, 9, x FOR PEER REVIEW 9 of 20

4. Formal Verification of Air Data Computer Software

In this section, we conduct a complete formal verification process for Air Data Computer (ADC)
software, which comprehensively demonstrates how our methodology can be applied to engineering
projects. Through the demonstration of this case, we hope that readers will have a certain
understanding of how to use formal methods to achieve the verification objectives in DO-333, and
how to choose the corresponding formal methods and tools. For practical applications, we should
consider the characteristics of the software while carrying out verification activities.

ADC is an A-level software that receives the input signal of the aircraft airspeed tube, converts
it into a digital signal through analog quantity, and outputs atmospheric parameters after calculation.
The software consists of 12 modules, and we will show part of our experimental contents and results.
We select the parameter validity module to demonstrate the verification process. It analyzes the validity
of 15 parameters, including static pressure, total pressure, and total temperature, among others. We take
total pressure parameters as an example and describe its requirements as follows:

 If the combination of total pressure sensor fails, total pressure is indicated as invalid; else, total
pressure is valid.

 If the current total pressure value exceeds the limit but does not meet 10 consecutive cycles, total
pressure is set to be valid, and the value is set as that of the last period; if not, total pressure is
invalid, and the value obtained is set as critical value.

The primary verification process for this case is shown in Figure 4. Since the ADC software
contains many modules, the functions of the entire software are considered first during the
requirements design phase, and different functions are detailed in the specific module. Therefore,
refinement strategies can be considered in verification at the requirements level. This is why we chose
to use Event-B, which is based on model refinement to verify the relationship between HLR and LLR,
as shown in Section 4.1. In terms of traceability between source code and requirements, we need to
individually verify whether the code of each module in ADC can realize the requirements. Therefore,
we consider the VCC tool, which can separate each module independently and achieve separate
requirements verification objectives without requiring a full scan of the entire software code. The relevant
content is described in Section 4.2. In Section 4.3, PolySpace is used to detect the source code statically,
because it is a relatively mature tool for static analysis of codes, which can detect runtime errors without
running programs in the actual environment. Finally, we verify the traceability between the EOC and the
source code by analyzing the minimum subset of the source code structure (Section 4.4). The detailed
verification process will be described below.

Figure 4. Verification process of ADC Software. Figure 4. Verification process of ADC Software.

Electronics 2020, 9, 327 10 of 20

4.1. Compliance and Traceability from Low- to High-Level Requirements

To verify the relationship between HLR and LLR, a refinement strategy is considered. The modeling
process commences from an abstract model and attains the final form of an efficient system through
continuous refinement, which ensures traceability between the LLR and HLR. Event-B is a modeling
language based on refinement strategy, which allows controlling of the complexity of a system with
progressive and safe development. Rodin is the application platform for Event-B language. Its crucial
functions include modeling, static syntax analysis, model verification, etc. Rodin can automatically
generate proof obligations, and integrate SMT solvers (such as Z3, CVC3) and theorem prover (Isabella)
for automatic or interactive verification for validity of the generated proof obligation [55]. The accuracy
of the refinement can be guaranteed by verifying the proof obligation in the model. Figure 5 is
the Event-B model based on requirement specifications and behavior descriptions of the parameter
validity module.

Electronics 2020, 9, x FOR PEER REVIEW 10 of 20

4.1. Compliance and Traceability from Low- to High-Level Requirements

To verify the relationship between HLR and LLR, a refinement strategy is considered. The
modeling process commences from an abstract model and attains the final form of an efficient system
through continuous refinement, which ensures traceability between the LLR and HLR. Event-B is a
modeling language based on refinement strategy, which allows controlling of the complexity of a
system with progressive and safe development. Rodin is the application platform for Event-B
language. Its crucial functions include modeling, static syntax analysis, model verification, etc. Rodin
can automatically generate proof obligations, and integrate SMT solvers (such as Z3, CVC3) and
theorem prover (Isabella) for automatic or interactive verification for validity of the generated proof
obligation [55]. The accuracy of the refinement can be guaranteed by verifying the proof obligation
in the model. Figure 5 is the Event-B model based on requirement specifications and behavior
descriptions of the parameter validity module.

Figure 5. Event-B model.

In mac1, we refined the state value of Ptfail, which was a Boolean variable, and counted the
number of times the total pressure value exceeded the boundary. If the total pressure value exceeded
the limit and reached 10 consecutive times, Ptfail was set to be true; otherwise, its value was false. At
the same time, we used two gluing invariables in mac1 to describe the conversional relationship of
Ptfail between the two machines.

After the model was built, Rodin generated proof obligations, for example: failcount1/actinvalid/SIM.
SIM means “simulation proof obligation”, its purpose is to make sure that each action in an abstract
event is correctly simulated in the corresponding refinement. Another example is failcount1/gluing1/INV.
INV means “invariant preservation proof obligation”; it ensures that each invariant in a machine is
preserved by each event. Some of Rodin’s built-in theorem provers can automatically verify most of
the proof obligations. For the remaining obligations, we manually add certain qualifications to show
the satisfaction of these invalidated rules or prove them interactively by using the integrated provers with
inductive rules. Verification of all the proof obligation rules can ensure correctness of the model, as well
as consistency between HLR and LLR.

In this case, we established the original model according to the requirements document and the
refined model using the detailed design document; we found that certain SIM obligations could not
be automatically verified. After exploring the reasons, it was found that some data outside the
boundary values were not further processed in the detailed design. After we had identified a further
refinement of the requirements, we added the qualification conditions in the refined model and made
a corresponding supplementary operation. All of the proof obligations were then verified.

Since LLR was refined from HLR, we were able to achieve verification goals in DO-178C
Appendix A [5], including:

Figure 5. Event-B model.

In mac1, we refined the state value of Ptfail, which was a Boolean variable, and counted the
number of times the total pressure value exceeded the boundary. If the total pressure value exceeded
the limit and reached 10 consecutive times, Ptfail was set to be true; otherwise, its value was false.
At the same time, we used two gluing invariables in mac1 to describe the conversional relationship of
Ptfail between the two machines.

After the model was built, Rodin generated proof obligations, for example: failcount1/actinvalid/SIM.
SIM means “simulation proof obligation”, its purpose is to make sure that each action in an abstract
event is correctly simulated in the corresponding refinement. Another example is failcount1/gluing1/INV.
INV means “invariant preservation proof obligation”; it ensures that each invariant in a machine is
preserved by each event. Some of Rodin’s built-in theorem provers can automatically verify most of
the proof obligations. For the remaining obligations, we manually add certain qualifications to show
the satisfaction of these invalidated rules or prove them interactively by using the integrated provers
with inductive rules. Verification of all the proof obligation rules can ensure correctness of the model,
as well as consistency between HLR and LLR.

In this case, we established the original model according to the requirements document and
the refined model using the detailed design document; we found that certain SIM obligations could
not be automatically verified. After exploring the reasons, it was found that some data outside the
boundary values were not further processed in the detailed design. After we had identified a further
refinement of the requirements, we added the qualification conditions in the refined model and made
a corresponding supplementary operation. All of the proof obligations were then verified.

Electronics 2020, 9, 327 11 of 20

Since LLR was refined from HLR, we were able to achieve verification goals in DO-178C Appendix
A [5], including:

• Table FM. A-4, Objective FM1: Low-level requirements comply with high-level requirements.
• Table FM. A-4, Objective FM6: Low-level requirements are traceable to high-level requirements.

At the same time, we formalized the requirements in mathematics based on natural language,
which gets rid of ambiguity and integrates them to be dispersed in different chapters, without any
interference and consideration from the real code. This process can also verify the accuracy, consistency,
and verifiability of requirements (Table FM. A-3: Objective FM2, FM4; Table FM. A-4: Objective FM2,
FM4, etc.).

4.2. Compliance from Source Code to Requirements

The ADC software is implemented in C code. To realize automatic verification in C code,
we applied Verifying C Compiler (VCC), a tool developed by Microsoft Research, to guarantee
compliance from source code to requirements. VCC is based on a Satisfiability Modulo Theories
(SMT) solver called Z3 [56]. It uses the patterns of deductive proof to generate a certain number
of validity specifications. By using VCC, we first formalized the specification by Hoare Logic and
manually transformed the pre- and post-conditions into annotations that can be accepted by VCC.
VCC generates a logic language (Boogie PL) program through the annotated C program, and then
generates a standard input of theorem provers such as Z3 for verification. All of the specifications and
other required information should be manually added as annotations to the source code, which may
require some expertise; following this, VCC will automatically verify the code. The verification process
is shown in Figure 6.

Electronics 2020, 9, x FOR PEER REVIEW 11 of 20

 Table FM. A-4, Objective FM1: Low-level requirements comply with high-level requirements.
 Table FM. A-4, Objective FM6: Low-level requirements are traceable to high-level requirements.

At the same time, we formalized the requirements in mathematics based on natural language,
which gets rid of ambiguity and integrates them to be dispersed in different chapters, without any
interference and consideration from the real code. This process can also verify the accuracy,
consistency, and verifiability of requirements (Table FM. A-3: Objective FM2, FM4; Table FM. A-4:
Objective FM2, FM4, etc.).

4.2. Compliance from Source Code to Requirements

The ADC software is implemented in C code. To realize automatic verification in C code, we
applied Verifying C Compiler (VCC), a tool developed by Microsoft Research, to guarantee
compliance from source code to requirements. VCC is based on a Satisfiability Modulo Theories
(SMT) solver called Z3 [56]. It uses the patterns of deductive proof to generate a certain number of
validity specifications. By using VCC, we first formalized the specification by Hoare Logic and
manually transformed the pre- and post-conditions into annotations that can be accepted by VCC.
VCC generates a logic language (Boogie PL) program through the annotated C program, and then
generates a standard input of theorem provers such as Z3 for verification. All of the specifications
and other required information should be manually added as annotations to the source code, which
may require some expertise; following this, VCC will automatically verify the code. The verification
process is shown in Figure 6.

Figure 6. Verification process of compliance from source code to requirements.

If the proof is successful, VCC will assume that the program meets the specifications. If the proof
fails, VCC will reflect on the reason for failure. VCC sometimes reports some (potential) errors
because we do not provide enough information to let VCC infer that this suspected error may not
occur. Usually, this “error” can be solved by strengthening the annotations.

The following is a sample of the annotations for validity of total pressure parameters. Detailed
grammar rules are found in [57]. The full version of the formal specification of the module contains
formalizations of 15 parameters—about 72 properties—and cost approximately two man-weeks.
After the verification, we found an (potential) error: the specification on checking the rationality of
some data cannot be satisfied by the program.

Figure 6. Verification process of compliance from source code to requirements.

If the proof is successful, VCC will assume that the program meets the specifications. If the proof
fails, VCC will reflect on the reason for failure. VCC sometimes reports some (potential) errors because
we do not provide enough information to let VCC infer that this suspected error may not occur. Usually,
this “error” can be solved by strengthening the annotations.

The following is a sample of the annotations for validity of total pressure parameters. Detailed
grammar rules are found in [57]. The full version of the formal specification of the module contains
formalizations of 15 parameters—about 72 properties—and cost approximately two man-weeks. After
the verification, we found an (potential) error: the specification on checking the rationality of some
data cannot be satisfied by the program.

Electronics 2020, 9, 327 12 of 20
Electronics 2020, 9, x FOR PEER REVIEW 12 of 20

The verification objective can be achieved by reviewing and resolving the error: Table FM. A-5,

Objective FM1: Source code complies with low-level requirements.

4.3. Static Analysis of Source Code Level

The static analysis technique can be used to detect and prove run-time errors in source code.
PolySpace is a static analysis tool that focuses on the embedded systems market, involving safety or
life-critical applications, which is suitable for airborne software. In this case, we chose the PolySpace
Code Prover to statically analyze the source code. It can prove the absence of overflow, divide-by-
zero, out-of- bounds array access, and other run-time errors in C and C++ source code [58].

We created a new project in PolySpace, placed the code together with its associated headers in
the same folder, and then ran the code prover. After the operation, each code statement was color-
coded to indicate whether it is free of run-time errors, proven to fail, unreachable, or unproven. The
analysis results of the parameter validity module are displayed in Figure 7. As can be seen in the
figure, there are some unreachable codes (dead code). On clicking on the section we are focusing on,
the program jumps to the relevant code area. A manual review observed that certain logic errors
result in a dead code. Some program blocks can never be executed because the corresponding
conditions will never be satisfied.

Figure 7. Result of PolySpace analysis.

By solving the problems found by PolySpace, we can achieve the following verification
objectives:

• Table FM. A-5, Objective FM3: Source Code is verifiable.
• Table FM. A-5, Objective FM6: Source Code is accurate and consistent.

requires(thread_local(&ad_air_data) && mutable(&pt_last)
&&mutable(&in_air_data)&& mutable(&fail_count))
writes(span(&ad_air_data))
writes(&pt_last)
ensures(fail_count.pt_fail > fail_count.last_fail || ((fail_count.pt_fail & 0x3ff) == 0x3ff))
==>((ad_air_data.pt>PT_MAX_VALUE)|| (ad_air_data.pt<PT_MIN_VALUE)))
ensures((((ad_air_data.pt < PT_MIN_VALUE) || (ad_air_data.pt>PT_MAX_VALUE))
((fail_count.pt_fail & 0x3ff)! = 0x3ff)) ==>(ad_air_data.pt == pt_last))
ensures(((ad_air_data.pt >= PT_MIN_VALUE) && (ad_air_data.pt<=PT_MAX_VALUE))
==>pt_last == ad_air_data.pt)

The verification objective can be achieved by reviewing and resolving the error: Table FM. A-5,
Objective FM1: Source code complies with low-level requirements.

4.3. Static Analysis of Source Code Level

The static analysis technique can be used to detect and prove run-time errors in source code.
PolySpace is a static analysis tool that focuses on the embedded systems market, involving safety or
life-critical applications, which is suitable for airborne software. In this case, we chose the PolySpace
Code Prover to statically analyze the source code. It can prove the absence of overflow, divide-by-zero,
out-of- bounds array access, and other run-time errors in C and C++ source code [58].

We created a new project in PolySpace, placed the code together with its associated headers in the
same folder, and then ran the code prover. After the operation, each code statement was color-coded to
indicate whether it is free of run-time errors, proven to fail, unreachable, or unproven. The analysis
results of the parameter validity module are displayed in Figure 7. As can be seen in the figure, there
are some unreachable codes (dead code). On clicking on the section we are focusing on, the program
jumps to the relevant code area. A manual review observed that certain logic errors result in a dead
code. Some program blocks can never be executed because the corresponding conditions will never
be satisfied.

Electronics 2020, 9, x FOR PEER REVIEW 12 of 20

The verification objective can be achieved by reviewing and resolving the error: Table FM. A-5,

Objective FM1: Source code complies with low-level requirements.

4.3. Static Analysis of Source Code Level

The static analysis technique can be used to detect and prove run-time errors in source code.
PolySpace is a static analysis tool that focuses on the embedded systems market, involving safety or
life-critical applications, which is suitable for airborne software. In this case, we chose the PolySpace
Code Prover to statically analyze the source code. It can prove the absence of overflow, divide-by-
zero, out-of- bounds array access, and other run-time errors in C and C++ source code [58].

We created a new project in PolySpace, placed the code together with its associated headers in
the same folder, and then ran the code prover. After the operation, each code statement was color-
coded to indicate whether it is free of run-time errors, proven to fail, unreachable, or unproven. The
analysis results of the parameter validity module are displayed in Figure 7. As can be seen in the
figure, there are some unreachable codes (dead code). On clicking on the section we are focusing on,
the program jumps to the relevant code area. A manual review observed that certain logic errors
result in a dead code. Some program blocks can never be executed because the corresponding
conditions will never be satisfied.

Figure 7. Result of PolySpace analysis.

By solving the problems found by PolySpace, we can achieve the following verification
objectives:

• Table FM. A-5, Objective FM3: Source Code is verifiable.
• Table FM. A-5, Objective FM6: Source Code is accurate and consistent.

requires(thread_local(&ad_air_data) && mutable(&pt_last)
&&mutable(&in_air_data)&& mutable(&fail_count))
writes(span(&ad_air_data))
writes(&pt_last)
ensures(fail_count.pt_fail > fail_count.last_fail || ((fail_count.pt_fail & 0x3ff) == 0x3ff))
==>((ad_air_data.pt>PT_MAX_VALUE)|| (ad_air_data.pt<PT_MIN_VALUE)))
ensures((((ad_air_data.pt < PT_MIN_VALUE) || (ad_air_data.pt>PT_MAX_VALUE))
((fail_count.pt_fail & 0x3ff)! = 0x3ff)) ==>(ad_air_data.pt == pt_last))
ensures(((ad_air_data.pt >= PT_MIN_VALUE) && (ad_air_data.pt<=PT_MAX_VALUE))
==>pt_last == ad_air_data.pt)

Figure 7. Result of PolySpace analysis.

By solving the problems found by PolySpace, we can achieve the following verification objectives:

• Table FM. A-5, Objective FM3: Source Code is verifiable.
• Table FM. A-5, Objective FM6: Source Code is accurate and consistent.

Electronics 2020, 9, 327 13 of 20

4.4. Traceability from Executable Object Code to Source Code

As explained in RTCA/DO-178C, airborne software structure coverage analysis can be performed
at the source code level. If the software is at the A level and the object code generated during the
compilation cannot be traced back to the source code, additional validation must be performed at the
object code level to ensure correctness of the object code [59]. Hence, for the object code generated
by the A-level airborne software, in addition to source code level coverage analysis, the traceability
analysis between the source code and the object code must be completed, and the additional object
code that cannot be traced back to the source code should be further verified. The methods mentioned
in Section 3.3 will be applied to verify traceability from EOC to source code so that the verification
objectives of the EOC can be achieved.

In general, traceability from EOC to source code can be performed using two strategies:
comprehensive object code analysis and minimum subset of source code structure analysis.
Comprehensive object code analysis compiles the source code into assembly code, and thereafter
manually determines which object code is not required to run the source code. The main purpose of
analyzing the minimum subset of the source code structure is to write the sample code according to the
constraints of the software coding standard, compile it, and use manual analysis to examine the trace
relationship between the object code of the sample code and the source code [60]. In comparison to
comprehensive code analysis, the work for traceability analysis of the source code structure minimum
subset analysis method is greatly reduced, and the analysis report can be reused in multiple onboard
software projects [61]. To demonstrate the versatility of this method, minimum subset of code structure
analysis was applied to verify the traceability from EOC to source code, based on three aspects
(discussed below). The method is displayed in Figure 8.

Electronics 2020, 9, x FOR PEER REVIEW 13 of 20

4.4. Traceability from Executable Object Code to Source Code

As explained in RTCA/DO-178C, airborne software structure coverage analysis can be
performed at the source code level. If the software is at the A level and the object code generated
during the compilation cannot be traced back to the source code, additional validation must be
performed at the object code level to ensure correctness of the object code [59]. Hence, for the object
code generated by the A-level airborne software, in addition to source code level coverage analysis,
the traceability analysis between the source code and the object code must be completed, and the
additional object code that cannot be traced back to the source code should be further verified. The
methods mentioned in Section 3.3 will be applied to verify traceability from EOC to source code so
that the verification objectives of the EOC can be achieved.

In general, traceability from EOC to source code can be performed using two strategies:
comprehensive object code analysis and minimum subset of source code structure analysis.
Comprehensive object code analysis compiles the source code into assembly code, and thereafter
manually determines which object code is not required to run the source code. The main purpose of
analyzing the minimum subset of the source code structure is to write the sample code according to
the constraints of the software coding standard, compile it, and use manual analysis to examine the
trace relationship between the object code of the sample code and the source code [60]. In comparison
to comprehensive code analysis, the work for traceability analysis of the source code structure
minimum subset analysis method is greatly reduced, and the analysis report can be reused in
multiple onboard software projects [61]. To demonstrate the versatility of this method, minimum
subset of code structure analysis was applied to verify the traceability from EOC to source code,
based on three aspects (discussed below). The method is displayed in Figure 8.

Figure 8. Analysis of minimum subset of the source code.

1. Traceability from sample object code to sample source code: According to ADC software
coding standards, the programming language, rules, complexity, etc. used in software coding are first
constrained and limited; thereafter, the minimum subset of software source code structures is
extracted as per the constraints and restrictions in the ADC software coding standard. This is
followed by comparison of the source code of the ADC software project with the minimum subset of
the source code structure; this helps determine whether the minimum subset of the source code
structure covers all source code structures in the ADC software project. Subsequently, the sample
source code is compiled, according to the minimum subset of the source code structure. The sample
source code is actually compiled in the same compilation environment, which includes the use of the
same compiler and setting of the same options to compile the sample code. This is followed by
manual analysis of traceability from sample EOC to sample source code.

2. Consistency from sample object code to ADC software object code: On comparing the sample
object code and the ADC software object code through manual analysis, we verify that the ADC
software structure coverage meets the requirements of RTCA/DO-178C at the object code level.

Figure 8. Analysis of minimum subset of the source code.

1. Traceability from sample object code to sample source code: According to ADC software
coding standards, the programming language, rules, complexity, etc. used in software coding are
first constrained and limited; thereafter, the minimum subset of software source code structures is
extracted as per the constraints and restrictions in the ADC software coding standard. This is followed
by comparison of the source code of the ADC software project with the minimum subset of the source
code structure; this helps determine whether the minimum subset of the source code structure covers
all source code structures in the ADC software project. Subsequently, the sample source code is
compiled, according to the minimum subset of the source code structure. The sample source code is
actually compiled in the same compilation environment, which includes the use of the same compiler
and setting of the same options to compile the sample code. This is followed by manual analysis of
traceability from sample EOC to sample source code.

Electronics 2020, 9, 327 14 of 20

2. Consistency from sample object code to ADC software object code: On comparing the sample
object code and the ADC software object code through manual analysis, we verify that the ADC
software structure coverage meets the requirements of RTCA/DO-178C at the object code level.

3. Consistency from sample source code to source code decompiled by ADC software object
code: Based on the existing object code of ADC software, the IDA Pro was utilized in this project as a
disassembly tool. The assembly instructions acquired by IDA Pro was shown in Figure 9. As mentioned
previously, it is a powerful and complicated tool, as it consists of several plugins. The Hex-Rays
Decompiler, which is one of its well-known plug-ins for automatic decompilation, was used to
decompile the assembly instructions into C files. More importantly, it supports the compiler-generated
code for the x86, x64, ARM32, ARM64 and PowerPC processors, satisfying the needs of most airborne
software decompilations [62]. The Hex-Rays Decompiler was used to decompile the object code of
the ADC software to acquire the decompiled source code, as displayed in Figure 10. By manually
analyzing the sample source code and the generated source code decompiled from the ADC software
object code, not only can the object code that cannot be traced back to the source code be identified,
but it can also confirm that the additional object code is correct by combining the first aspect.

Electronics 2020, 9, x FOR PEER REVIEW 14 of 20

3. Consistency from sample source code to source code decompiled by ADC software object
code: Based on the existing object code of ADC software, the IDA Pro was utilized in this project as
a disassembly tool. The assembly instructions acquired by IDA Pro was shown in Figure 9. As
mentioned previously, it is a powerful and complicated tool, as it consists of several plugins. The
Hex-Rays Decompiler, which is one of its well-known plug-ins for automatic decompilation, was
used to decompile the assembly instructions into C files. More importantly, it supports the compiler-
generated code for the x86, x64, ARM32, ARM64 and PowerPC processors, satisfying the needs of most
airborne software decompilations [62]. The Hex-Rays Decompiler was used to decompile the object code
of the ADC software to acquire the decompiled source code, as displayed in Figure 10. By manually
analyzing the sample source code and the generated source code decompiled from the ADC software
object code, not only can the object code that cannot be traced back to the source code be identified, but it
can also confirm that the additional object code is correct by combining the first aspect.

Figure 9. Assembly instructions.

Figure 10. Obtained C code.

By verifying the traceability of the target code to the source code, the objective can be
guaranteed.
 Table FM. A-7, Objective FM9: Verification of property preservation between source and object code.

Figure 9. Assembly instructions.

Electronics 2020, 9, x FOR PEER REVIEW 14 of 20

3. Consistency from sample source code to source code decompiled by ADC software object
code: Based on the existing object code of ADC software, the IDA Pro was utilized in this project as
a disassembly tool. The assembly instructions acquired by IDA Pro was shown in Figure 9. As
mentioned previously, it is a powerful and complicated tool, as it consists of several plugins. The
Hex-Rays Decompiler, which is one of its well-known plug-ins for automatic decompilation, was
used to decompile the assembly instructions into C files. More importantly, it supports the compiler-
generated code for the x86, x64, ARM32, ARM64 and PowerPC processors, satisfying the needs of most
airborne software decompilations [62]. The Hex-Rays Decompiler was used to decompile the object code
of the ADC software to acquire the decompiled source code, as displayed in Figure 10. By manually
analyzing the sample source code and the generated source code decompiled from the ADC software
object code, not only can the object code that cannot be traced back to the source code be identified, but it
can also confirm that the additional object code is correct by combining the first aspect.

Figure 9. Assembly instructions.

Figure 10. Obtained C code.

By verifying the traceability of the target code to the source code, the objective can be
guaranteed.
 Table FM. A-7, Objective FM9: Verification of property preservation between source and object code.

Figure 10. Obtained C code.

Electronics 2020, 9, 327 15 of 20

By verifying the traceability of the target code to the source code, the objective can be guaranteed.

• Table FM. A-7, Objective FM9: Verification of property preservation between source and object code.

Then, the properties of the executable object code can be speculated by analyzing the source code.

4.5. Analysis of the Verification Results

In this paper, we introduced the verification properties and results of the ADC software’s
parameter validity module at each step, and analyzed the errors found by formal verification.
In Table 2, we summarize the issues observed in the case study of the ADC software.

Table 2. Formal verification results of the ADC software.

Verification Process Properties under
Verification Potential Errors Identified Errors Time-Consuming

Formal analysis of
requirements and design 276 3 3 2 man-months

Compliance from source
code to requirements 342 8 6 3 man-months

Static analysis in source
code level 230 13 7 90 min

(running time)
Formal analysis of

executable object code 201 30 0 4 man-months

Total number 1049 54 16 9 man-months

The ADC software has a total of 12 modules. Formal verification of each module was conducted
separately, as per the process mentioned above. The verification process was divided into four stages:
formal analysis of requirements and design, compliance from source code to requirements, static
analysis in source code level, and formal analysis of the executable object code. The properties under
verification refer to the properties that the artifacts produced at each stage need to be satisfying.
The total number of the verified properties in ADC software was 1049. After the formal verification
process, we found some unsatisfied properties at various stages, known as potential errors. These
errors had to be reviewed and analyzed again as the formal tools used in the verification process
were not qualified. After a manual review, some potential errors were eliminated, and the rest
identified as errors. Through modeling in Event-B, certain inconsistencies were observed in the abstract
and the refined model, which indicated logic problems in the requirement and design documents.
Some potential errors detected by VCC were determined to be caused by not qualifying the conditions
of the annotations. Hence, the actual number of errors was less than the potential errors. For static
analysis in the source code level, PolySpace detected some potential errors such as bad return value,
uninitialized variables, dead code, etc. After retesting, it was observed that certain potential errors
would never occur. The reason for such phenomenon is that static analysis usually adopts an abstract
model of the program, which can result in the loss of some information, thereby producing false alarms.
During verification of the binary code, we found that some additional generated object codes could
not be traced back to the source code. By validating the additional generated object codes through
manual review and analysis, we found that they were generated automatically for functions such as
handling exceptions and checking the boundaries of the array. In the last column of Table 2, the time
spent on each phase of the project is displayed.

The ADC software was tested prior to formal verification. It can be seen in Table 2 that formal
verification can detect certain errors that testing cannot find, especially for products that are in the
early stages of development, such as requirement and design documentation. This shows that formal
verification can identify errors much earlier in the design cycle, as compared to testing, which potentially
saves money, due to less scrap and rework. Besides, static analysis can detect errors, which, in practice
cannot be identified by testing, like dead codes. However, formal verification is time-consuming,

Electronics 2020, 9, 327 16 of 20

incurs high costs, and requires the verifier to be highly skilled. Therefore, the application of formal
methods is highly recommended as a supplement to testing and to identify problems that testing alone
cannot resolve.

The verification objectives implemented in this case are summarized in Figure 11.
- • indicate that verification objective is fully satisfied.
- ◦ indicate that verification objective is partially satisfied.

Electronics 2020, 9, x FOR PEER REVIEW 16 of 20

- • indicate that verification objective is fully satisfied.
- ◦ indicate that verification objective is partially satisfied.

Figure 11. Achieved verification objectives.

Some verification objectives are partially satisfied, indicating that only a portion of the properties
required by the objectives can be verified. For example, the objective of high-level requirements
conforming to standards that can only be partially proved; in this project, only the Event-B model
that describes the high-level requirements conforms to the syntax standards of Event-B. Due to the
two-way tracking relationship of traceability, traceability from source code to low-level requirements
verified by VCC can only show that all low-level requirements are developed into source code, but it
cannot be inferred that all source code can be traced to some low-level requirements, which can be
illustrated through a review.

DO-178C states that the tools used to generate software or to verify software must be verified to
ensure degree of accuracy. This process of verifying the accuracy of tools is known as qualification.
Since the tools applied in this case can automate the verification process and their outputs used to
justify the elimination of or reduction in verification processes, these tools must be qualified, as these
processes may fail to detect errors. The specific tool qualification process should refer to the DO-330
(Software Tool Qualification Considerations) issued by the RTCA. The verification results can also be
double-checked through review techniques and other analysis methods. In the software life cycle,
reviewing methods such as planning, requirements, design, code, and peer reviews can be used to
review software products in different development periods. Analysis methods include functional
hazard assessment (FHA), failure modes and effects analysis (FMEA), failure tree analysis (FTA),
common cause analysis (CCA), etc. A double-check refers to verification using another method for
objectives that have not been verified. For example, in the verification of traceability of object code, if
the object code produces a redundant code, then the impact of this part of the code must be explained
through analysis. In addition, simulation and testing are common software verification methods.

This example shows in detail how to select an appropriate formal method based on the level and
characteristics of the software. During the verification process, we divided the activity into three
stages and selected different formal methods for each stage. The selection of specific verification tools
is based on the characteristics of the software and the verification objectives to be realized. For
example, in the requirements stage, in order to verify the compliance and traceability between HLR
and LLR, we considered the Event-B model based on refinement strategy, which can ensure
transitivity between the two layers’ models through the built-in prover of the Rodin platform. In
actual industrial applications, we need to refer to the verification objectives of different levels of
airborne software defined in tables FM. A-3 to FM. A-7 in DO-333 to consider the formal verification
methods to be used. Due to the cost and difficulty of formal verification, review and analysis remain
the primary means of airborne software verification. On this basis, for some verification objectives
that are difficult to achieve through review and analysis methods, appropriate formal methods
should be selected for verification based on the characteristics of the software.

5. Conclusion and Future Work

Figure 11. Achieved verification objectives.

Some verification objectives are partially satisfied, indicating that only a portion of the properties
required by the objectives can be verified. For example, the objective of high-level requirements
conforming to standards that can only be partially proved; in this project, only the Event-B model
that describes the high-level requirements conforms to the syntax standards of Event-B. Due to the
two-way tracking relationship of traceability, traceability from source code to low-level requirements
verified by VCC can only show that all low-level requirements are developed into source code, but it
cannot be inferred that all source code can be traced to some low-level requirements, which can be
illustrated through a review.

DO-178C states that the tools used to generate software or to verify software must be verified to
ensure degree of accuracy. This process of verifying the accuracy of tools is known as qualification.
Since the tools applied in this case can automate the verification process and their outputs used to
justify the elimination of or reduction in verification processes, these tools must be qualified, as these
processes may fail to detect errors. The specific tool qualification process should refer to the DO-330
(Software Tool Qualification Considerations) issued by the RTCA. The verification results can also be
double-checked through review techniques and other analysis methods. In the software life cycle,
reviewing methods such as planning, requirements, design, code, and peer reviews can be used to
review software products in different development periods. Analysis methods include functional
hazard assessment (FHA), failure modes and effects analysis (FMEA), failure tree analysis (FTA),
common cause analysis (CCA), etc. A double-check refers to verification using another method for
objectives that have not been verified. For example, in the verification of traceability of object code,
if the object code produces a redundant code, then the impact of this part of the code must be explained
through analysis. In addition, simulation and testing are common software verification methods.

This example shows in detail how to select an appropriate formal method based on the level
and characteristics of the software. During the verification process, we divided the activity into three
stages and selected different formal methods for each stage. The selection of specific verification
tools is based on the characteristics of the software and the verification objectives to be realized.
For example, in the requirements stage, in order to verify the compliance and traceability between HLR
and LLR, we considered the Event-B model based on refinement strategy, which can ensure transitivity
between the two layers’ models through the built-in prover of the Rodin platform. In actual industrial
applications, we need to refer to the verification objectives of different levels of airborne software
defined in tables FM. A-3 to FM. A-7 in DO-333 to consider the formal verification methods to be used.
Due to the cost and difficulty of formal verification, review and analysis remain the primary means

Electronics 2020, 9, 327 17 of 20

of airborne software verification. On this basis, for some verification objectives that are difficult to
achieve through review and analysis methods, appropriate formal methods should be selected for
verification based on the characteristics of the software.

5. Conclusion and Future Work

Based on research on DO-333, this paper proposes a methodology to apply formal methods to
the development and verification processes of airborne software. The methodology described in
this paper covers the entire verification process of A-level software, as stipulated in DO-333. In this
paper, the ADC software was cited to illustrate how the recommended methodology can be practically
applied. A reference has been provided for the software verification process, which applies several
formal verification tools mentioned in the methodology at different stages of the verification process to
achieve multiple objectives. As is evident from the examples, formal methods can be applied to various
stages of the software development process to identify certain errors at an early stage. Correcting
these errors can reduce the cost of testing and reworking. In addition, it is not difficult to infer that
formal methods are particularly convincing as they provide strong guarantees based on rigorous
mathematical theories. It is hoped that readers of this paper are inspired by this example to practically
apply formal methods.

This paper successfully demonstrated the role of formal methods in the airworthiness certification
process of airborne software. We are convinced that techniques, methods, and tools combining formal
verification are the future of system verification. It can be safely assumed that in the near future,
as more theories and tools become available for avionics, more formal verification techniques will
be applied. These techniques are an effective approach to address the dramatic increase in issues
arising from complexity of software, especially when safety is at stake. However, the abstraction and
complexity of formal development methods make it difficult for non-professionals to comprehend and
apply these methods effectively. It is very likely that substantial efforts and capital will be expended
on the analysis of requirement modeling, software design, verification, and qualified tools. Therefore,
we have decided to utilize a qualified toolchain for formal verification of airborne software in our next
research endeavor. We are still working on advancing the application of formal methods on airborne
software based on DO-333.

Author Contributions: Conceptualization, Y.H. and Q.L.; methodology, Z.C. and W.L.; resources, J.S. and Y.H.;
formal analysis and verification, Z.C. and W.L.; project administration, J.S.; supervision, Y.H.; writing, Z.C and
W.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China under Grant No.
61602178, No. 61602177, and in part by the Shanghai Science and Technology Committee Rising-Star Program
under Grant No. 18QB1402000.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. RTCA. DO-178B: Software Considerations in Airborne Systems and Equipment Certification; Boeing Commercial
Airplane Group: Washington, DC, USA, 1992.

2. RTCA. DO-178C: Software Considerations in Airborne Systems and Equipment Certification; Boeing Commercial
Airplane Group: Washington, DC, USA, 2011.

3. RTCA. DO-333: Formal Methods Supplement to DO-178C and DO-278A; Boeing Commercial Airplane Group:
Washington, DC, USA, 2011.

4. Souyris, J.; Wiels, V.; Delmas, D.; Delseny, H. Formal verification of avionics software products. In International
Symposium on Formal Methods; Springer: Berlin/Heidelberg, Germany, 2009; pp. 532–546.

5. Laurent, O. Using formal methods and testability concepts in the avionics systems validation and verification
(v&v) process. In Proceedings of the Third International Conference on Software Testing, Verification and
Validation, Paris, France, 6–10 April 2010; pp. 1–10.

Electronics 2020, 9, 327 18 of 20

6. Bochot, T.; Virelizier, P.; Waeselynck, H.; Wiels, V. Model checking flight control systems: The airbus
experience. In Proceedings of the 31st International Conference on Software Engineering—Companion
Volume, Vancouver, BC, Canada, 16–24 May 2009; pp. 18–27.

7. Cofer, D.; Miller, S.P. Formal Methods Case Studies for DO-333; Rockwell Collins: Cedar Rapids, IA, USA, 2014;
pp. 1–15.

8. Fernandes-Pires, A.; Polacsek, T.; Wiels, V.; Duprat, S. Use of formal methods in embedded software
development: Stakes, constraints and proposal. In Proceedings of the Embedded Real Time Software and
Systems (ERTS), Toulouse, France, 5–7 February 2014.

9. Chaudemar, J.-C.; Bensana, E.; Seguin, C. Model Based Safety Analysis for an Unmanned Aerial System; Open
Archive Toulouse Archive Ouverte: Toulouse, France, 2010.

10. Torens, C.; Adolf, F. Using Formal Requirements and Model-Checking for Verification and Validation of an Unmanned
Rotorcraft; AIAA Infotech @ Aerospace: Kissimmee, FL, USA, 2015; p. 1645.

11. Wing, J.M. A specifier’s introduction to formal methods. Computer 1990, 23, 8–22. [CrossRef]
12. Clarke, E.M.; Wing, J.M. Formal methods: State of the art and future directions. ACM Comput. Surv. 1996, 28,

626–643. [CrossRef]
13. Yamane, S. Deductive verification method of real-time safety properties for embedded assembly programs.

Electronics 2019, 8, 1163. [CrossRef]
14. Hoare, C.A.R. For communicating sequential. In Logic of Programming and Calculi of Discrete Design:

International Summer School; Bauer, F.L., Broy, M., Dijkstra, E.W., Hoare, C.A.R., Eds.; Springer:
Berlin/Heidelberg, Germany, 2012; Volume 36, p. 277.

15. Mikk, E.; Lakhnech, Y.; Siegel, M.; Holzmann, G.J. Implementing statecharts in promela/spin. In Proceedings
of the 2nd IEEE Workshop on Industrial Strength Formal Specification Techniques, Boca Raton, FL, USA, 23
October 1998; pp. 90–101.

16. Burch, J.R.; Clarke, E.M.; Mcmillan, K.L.; Dill, D.L.; Hwang, L.J. Symbolic model checking: 1020 states and
beyond. Inf. Comput. 1992, 98, 142–170. [CrossRef]

17. Alur, R.; Dill, D.L. A theory of timed automata. Theor. Comput. Sci. 1994, 126, 183–235. [CrossRef]
18. Sun, J.; Liu, Y.; Dong, J.S. Model checking CSP revisited: Introducing a process analysis toolkit. In International

Symposium on Leveraging Applications of Formal Methods, Verification and Validation; Springer: Berlin/Heidelberg,
Germany, 2008; pp. 307–322.

19. Holzmann, G.J. The SPIN Model Checker: Primer and Reference Manual; Addison-Wesley: Boston, MA, USA,
2004.

20. McMillan, K.L. The SMV System: Symbolic Model Checking; Springer: Boston, MA, USA, 1993; pp. 61–85.
21. Kunnappilly, A.; Marinescu, R.; Seceleanu, C. A model-checking-based framework for analyzing ambient

assisted living solutions. Sensors 2019, 19, 5057. [CrossRef] [PubMed]
22. Grimm, T.; Lettnin, D.; Hübner, M. A survey on formal verification techniques for safety-critical

systems-on-chip. Electronics 2018, 7, 81. [CrossRef]
23. Kaufmann, M.; Moore, J.S. ACL2: An industrial strength version of Nqthm. In Proceedings of the 11th

Annual Conference on Computer Assurance, Gaithersburg, MD, USA, 17–21 June 1996; pp. 23–34.
24. Owre, S.; Rushby, J.M.; Shankar, N. PVS: A prototype verification system. In Proceedings of the International

Conference on Automated Deduction, New York, NY, USA, 15–18 June 1992; pp. 748–752.
25. Nipkow, T.; Paulson, L.C.; Wenzel, M. Isabelle/HOL: A Proof Assistant for Higher-Order Logic; Springer Science

& Business Media: Berlin/Heidelberg, Germany, 2002; Volume 2283.
26. Delahaye, D. A tactic language for the system coq. In Proceedings of the International Conference on Logic

for Programming Artificial Intelligence and Reasoning, Reunion Island, France, 11–12 November 2000;
pp. 85–95.

27. Abdulla, P.A.; Deneux, J.; Lmarck, G.S.; Gren, H.A.; Kerlund, O.A. Designing safe, reliable systems using
scade. In Proceedings of the International Conference on Leveraging Applications of Formal Methods,
Paphos, Cyprus, 30 October–2 November 2004.

28. Abrial, J.-R.; Hallerstede, S. Refinement, decomposition, and instantiation of discrete models: Application to
event-b. Fundam. Inform. 2007, 77, 1–28.

29. Huang, E.; Ramamurthy, R.; McGinnis, L.F. System and simulation modeling using sysml. In Proceedings of
the 39th Conference on Winter Simulation, Piscataway, NJ, USA, 13–16 December 2007; pp. 796–803.

http://dx.doi.org/10.1109/2.58215
http://dx.doi.org/10.1145/242223.242257
http://dx.doi.org/10.3390/electronics8101163
http://dx.doi.org/10.1016/0890-5401(92)90017-A
http://dx.doi.org/10.1016/0304-3975(94)90010-8
http://dx.doi.org/10.3390/s19225057
http://www.ncbi.nlm.nih.gov/pubmed/31752450
http://dx.doi.org/10.3390/electronics7060081

Electronics 2020, 9, 327 19 of 20

30. Wei, X.; Dong, Y.; Sun, P.; Xiao, M. Safety analysis of AADL models for grid cyber-physical systems via
model checking of stochastic games. Electronics 2019, 8, 212. [CrossRef]

31. Cimatti, A.; Clarke, E.; Giunchiglia, F.; Roveri, M. Nusmv: A new symbolic model verifier. In Proceedings of
the International Conference on Computer Aided Verification, Trento, Italy, 6–10 July 1999; pp. 495–499.

32. Honda, K.; Tokoro, M. An object calculus for asynchronous communication. In Proceedings of the European
Conference on Object-Oriented Programming, Geneva, Switzerland, 15–19 July 1991; pp. 133–147.

33. Whalen, M.W. A formal semantics for RSML-e. Comput. Sci. Eng. 2000, 2–10.
34. Cohen, E.; Dahlweid, M.; Hillebrand, M.; Leinenbach, D.; Moskal, M.; Santen, T.; Schulte, W.; Tobies, S. VCC:

A practical system for verifying concurrent C. In Proceedings of the International Conference on Theorem
Proving in Higher Order Logics, Munich, Germany, 17–20 August 2009; pp. 23–42.

35. Kirchner, F.; Kosmatov, N.; Prevosto, V.; Signoles, J.; Yakobowski, B. Frama-C: A software analysis perspective.
Form. Asp. Comput. 2015, 27, 573–609. [CrossRef]

36. Corbett, J.C.; Dwyer, M.B.; Hatcliff, J.; Laubach, S.; Pasareanu, C.S.; Robby; Zheng, H. Bandera: Extracting
finite-state models from Java source code. In Proceedings of the International Conference on Software
Engineering, Limerick, Ireland, 4–11 June 2000; pp. 439–448.

37. Cavada, R.; Cimatti, A.; Dorigatti, M.; Griggio, A.; Mariotti, A.; Micheli, A.; Mover, S.; Roveri, M.; Tonetta, S.
The nuXmv symbolic model checker. In Proceedings of the International Conference on Computer Aided
Verification, Vienna, Austria, 18–22 July 2014; pp. 334–342.

38. Tzitzilonis, V.; Malandrakis, K.; Zanotti Fragonara, L.; Domingo, J.A.G.; Avdelidis, N.P.; Tsourdos, A.;
Forster, K. Inspection of aircraft wing panels using unmanned aerial vehicles. Sensors 2019, 19, 1824.
[CrossRef] [PubMed]

39. Bertrane, J.; Cousot, P.; Cousot, R.; Feret, J.; Mauborgne, L.; Mine’, A.; Rival, X. Static analysis and verification
of aerospace software by abstract interpretation. Found. Trends Progr. Lang. 2015, 2, 71–190. [CrossRef]

40. Cousot, P.; Cousot, R.; Feret, J.; Mauborgne, L.; Mine’, A.; Monniaux, D.; Rival, X. The astre’e analyzer.
In European Symposiumon Programming; Springer: Berlin/Heidelberg, Germany, 2005; pp. 21–30.

41. Prover, P.C. Static Analysis with Polyspace Products; Mathworks: Natick, MA, USA, 2014.
42. Delmas, D.; Goubault, E.; Putot, S.; Souyris, J.; Tekkal, K.; Ve’drine, F. Towards an industrial use of fluctuat

on safety-critical avionics software. In International Workshop on Formal Methods for Industrial Critical Systems;
Springer: Berlin/Heidelberg, Germany, 2009; pp. 53–69.

43. Ball, T.; Rajamani, S.K. The SLAM project: Debugging system software via static analysis. In Proceedings of
the 29th ACM Sigplan-Sigact Symposium on Principles of Programming Languages, Portland, OR, USA,
16–18 January 2002; pp. 1–3.

44. Henzinger, T.A.; Jhala, R.; Majumdar, R.; Sutre, G. Software verification with blast. In International SPIN
Workshop on Model Checking of Software; Springer: Berlin/Heidelberg, Germany, 2003; pp. 235–239.

45. Kroening, D.; Tautschnig, M. CBMC—C bounded model checker. In Proceedings of the International
Conference on Tools and Algorithms for the Construction and Analysis of Systems, Barcelona, Spain,
29 March–2 April 2014; pp. 389–391.

46. Ferdinand, C.; Heckmann, R. AiT: Worst-case execution time prediction by static program analysis. In Building
the Information Society; Springer: Berlin/Heidelberg, Germany, 2004; pp. 377–383.

47. Holsti, N.; Saarinen, S. Status of the Bound-T Wcet Tool; Space Systems Finland Ltd.: Espoo, Finland, 2002.
48. Ferdinand, C.; Heckmann, R.; Le Sergent, T.; Lopes, D.; Martin, B.; Fornari, X.; Martin, F. Combining a

high-level design tool for safety-critical systems with a tool for wcet analysis of executables. In Proceedings
of the 4th European Congress on Embedded Real Time Software (ERTS), Toulouse, France, 29 January–1
February 2008.

49. Boniol, F.; Wiels, V.; Ledinot, E. Experiences in using model checking to verify real time properties of a
landing gear control system. In Proceedings of the 3rd European Congress Embedded Real Time Software,
Toulouse, France, 25–27 January 2006.

50. Miller, S.; Anderson, E.; Wagner, L.; Whalen, M.W.; Heimdahl, M.P.E. Formal verification of flight critical
software. In Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit, San
Francisco, CA, USA, 14–17 August 2005; p. 6431.

51. Brauer, J.; Dahlweid, M.; Pankrath, T.; Peleska, J. Source-code-to-object-code traceability analysis for avionics
software: Don’t trust your compiler. In Proceedings of the International Conference on Computer Safety,
Reliability, and Security, Florence, Italy, 10–12 September 2014; pp. 427–440.

http://dx.doi.org/10.3390/electronics8020212
http://dx.doi.org/10.1007/s00165-014-0326-7
http://dx.doi.org/10.3390/s19081824
http://www.ncbi.nlm.nih.gov/pubmed/30999568
http://dx.doi.org/10.1561/2500000002

Electronics 2020, 9, 327 20 of 20

52. Webster, M.; Cameron, N.; Jump, M.; Fisher, M. Towards Certification of Autonomous Unmanned Aircraft Using
Formal Model Checking and Simulation; InfoTech @ Aerospace: Kissimmee, FL, USA, 2012; p. 2573.

53. Tribble, A.C.; Lempia, D.L.; Miller, S.P. Software safety analysis of a flight guidance system. In Proceedings
of the 21st Digital Avionics Systems Conference, Irvine, CA, USA, 27–31 October 2002.

54. Heitmeyer, C.L.; Jeffords, R.D.; Labaw, B.G. Automated consistency checking of requirements specifications.
ACM Trans. Softw. Eng. Methodol. 1996, 5, 231–261. [CrossRef]

55. Abrial, J.R.; Butler, M.; Hallerstede, S.; Hoang, T.S.; Mehta, F.; Voisin, L. Rodin: An open toolset for modelling
and reasoning in event-b. Int. J. Softw. Tools Technol. Transf. 2010, 12, 447–466. [CrossRef]

56. de Moura, L.; Bjørner, N. Z3: An efficient smt solver. In Proceedings of the International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, Budapest, Hungary, 29 March–6 April 2008;
pp. 337–340.

57. Moskal, M.; Schulte, W.; Cohen, E.; Hillebrand, M.A.; Tobies, S. Verifying C Programs: A VCC Tutorial; EMIC:
Aachen, Germany, 2012.

58. Emanuelsson, P.; Nilsson, U. A comparative study of industrial static analysis tools. Electron. Notes Theor.
Comput. Sci. 2008, 217, 5–21. [CrossRef]

59. Kos, T.; Mernik, M.; Kosar, T. A tool support for model-driven development: An industrial case study from a
measurement domain. Appl. Sci. 2019, 9, 4553. [CrossRef]

60. Brockhoffand, D.; Zitzler, E. Dimensionality reduction in multiobjective optimization: The minimum objective
subset problem. In Operations Research; Springer: Berlin/Heidelberg, Germany, 2007; pp. 423–429.

61. Browning, B. Floss: Flexible ordered subset analysis for linkage mapping of complex traits. Bioinformatics
2005, 22, 512–513. [CrossRef] [PubMed]

62. Luo, Z.; Wang, B.; Tang, Y.; Xie, W. Semantic-based representation binary clone detection for cross-architectures
in the internet of things. Appl. Sci. 2019, 9, 3283. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/234426.234431
http://dx.doi.org/10.1007/s10009-010-0145-y
http://dx.doi.org/10.1016/j.entcs.2008.06.039
http://dx.doi.org/10.3390/app9214553
http://dx.doi.org/10.1093/bioinformatics/btk012
http://www.ncbi.nlm.nih.gov/pubmed/16368771
http://dx.doi.org/10.3390/app9163283
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Airworthiness Certification Standards
	Formal Methods

	Methodology and Process
	Formal Analysis of Requirements and Design
	Formal Analysis of Source Code
	Formal Analysis of Executable Object Code

	Formal Verification of Air Data Computer Software
	Compliance and Traceability from Low- to High-Level Requirements
	Compliance from Source Code to Requirements
	Static Analysis of Source Code Level
	Traceability from Executable Object Code to Source Code
	Analysis of the Verification Results

	Conclusion and Future Work
	References

