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Abstract: Current trends towards on-edge computing on smart portable devices requires
ultra-low power circuits to be able to make feature extraction and classification tasks of
patterns. This manuscript proposes a novel approach for feature extraction operations in speech
recognition/voice activity detection tasks suitable for portable devices. Whereas conventional
approaches are based on either completely analog or digital structures, we propose a “hybrid”
approach by means of voltage-controlled-oscillators. Our proposal makes use of a bank a band-pass
filters implemented with ring-oscillators to extract the features (energy within different frequency
bands) of input audio signals and digitize them. Afterwards, these data will input a digital
classification stage such as a neural network. Ring-oscillators are structures with a digital nature,
which makes them highly scalable with the possibility of designing them with minimum length
devices. Additionally, due to their inherent phase integration, low-frequency band-pass filters can be
implemented without large capacitors. Consequently, we strongly benefit from power consumption
and area savings. Finally, our proposal may incorporate the analog-to-digital converter into the
structure of the own features extractor circuit to make the full conversion of the raw data when
triggered. This supposes a unique advantage with respect to other approaches. The architecture is
described and proposed at system-level, along with behavioral simulations made to check whether
the performance is the expected one or not. Then the structure is designed with a 65-nm CMOS
process to estimate the power consumption and area on a silicon implementation. The results show
that our solution is very promising in terms of occupied area with a competitive power consumption
in comparison to other state-of-the-art solutions.

Keywords: artificial intelligence; machine learning; speech recognition; features extraction;
voltage-controlled-oscillator; analog-to-digital converter

1. Introduction

High computing capability of portable devices has made possible the implementation over
them of voice user interfaces such as speech recognition or keyword spotting [1,2]. Nevertheless,
conventional digital processing of the microphone input cannot be made uninterruptedly due
to power limitations [3]. One possible solution consists of making the processing on the cloud.
However, this may suppose issues related to user privacy or latency. Consequently, the trend is
towards an on-edge computing with ultra-low power architectures [4,5]. In relation to these topics,
Voice-Activity-Detectors (VADs) have become of interest in the last years with the goal of detecting if
an audio input stream is a human voice or environmental noise [6–8].

Looking at VAD or speech recognition applications, we may distinguish between two approaches,
the digital approach and the analog one. The first approach consists of turning the input analog raw
data into digital data and making intensive digital computing (windowing, FFT, filter operations and
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power calculations (Figure 1a) to estimate the features required to detect data patterns. Afterwards,
a classification stage, such as a feed-forward neural network or a decision tree, decides whether the
data correspond to the human voice or not. The use of this architecture in portable devices is restricted
by the power consumption of digital circuits, which may need high-capacity batteries [9].
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Figure 1. Speech recognition/Voice-Activity-Detector (VAD) approaches: (a) digital features extraction;
and (b) analog features extraction.

Because of this battery-life limitation, a second approach have been recently proposed. It is based
on making equivalent features extraction operations (previously digitally made) but in the analog
domain, and then performing the analog-to-digital conversion (Figure 1b). To implement the analog
features extraction, a bank of band-pass filters and power estimators are used in order to get the
energy of the input signal filtered within different bands of interest. The number of filters in the
bank sets the frequency resolution. Then, a classification circuit distinguishes between noise and
voice. The advantage of the analog approach is the enormous reduction of the power consumption in
the features extractor circuit, making them suitable for ultra-low power applications [8]. However,
these architectures often make use of large capacitors due to the low-frequency filters with high time
constants needed. This increases the occupied area of the solution on silicon. In addition, apart from
the bank of filters, a conventional analog-to-digital converter (ADC) is required when the triggering
event is detected. Therefore, system complexity and area are increased even more.

In this manuscript, we propose a “hybrid” approach for VADs applications that makes use of
voltage-controlled-oscillators based ADCs (VCO-based ADCs) to perform the feature extraction of
audio signals [10]. It is known that VCO-based ADCs are suitable for audio applications due to their
low power consumption and dynamic range well-suited to human hearing [11–13]. VCOs can be also
used to implement band-pass filters, such as in [14–16]. Here, we will make use of bi-quadratic filters
implemented with VCO (specifically ring-oscillators) to extract the features of an audio input signal
and generate a digital signal that could input a classification circuit. As the output of a ring-oscillator
is a digital signal, the output of the filter will be a digital representation of the extracted features.
Therefore in comparison with the analog approach (Figure 1b) we save power because we do not
need the array of ADCs. The analog-to-digital conversion is already included in the features extractor
stage and could be used when required to make a full analog-to-digital conversion of the input audio
signal. Additionally, VCO-based filters do not require large capacitors for low-frequency band-pass
structures. Finally, digital counters connected to the VCOs can be implemented with minimum-length
transistors. In consequence, the proposed solution is expected to occupy a much lower area than the
previous approaches, with less power consumption than the digital approach and competitive power
consumption compared to the analog solution.

The document has the structure outlined below. Section 2 summarizes the conventional way
of extracting the features with audio signals, paying particular attention to the Mel Frequency
Cepstrum Coefficients (MFCCs) method. Section 3 theoretically shows the proposed VCO-based
system, the behavioral model and the performance simulations made to validate it. In Section 4 the
circuits designed for the implementation of the architecture are described. Making use of a 65-nm
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CMOS process we are able to estimate the power consumption and the occupied area in a silicon
implementation. Finally, Section 5 concludes the manuscript.

2. VAD Applications with Digital Custom Implementations

If we focus on VAD, applications we will deal with smart systems whose goal is being capable
of detecting whether we are in the presence of human voice or not [17]. This supposes that some
features must be necessarily extracted from the input sound stream and processed. To make this feature
extraction the MFCCs are typically used in speech recognition and VAD tasks when working with
the digital systems. Sounds generated by human voice are filtered out by the shape of the vocal tract.
Knowing the shape of the vocal tract allows us to accurately define the representation of the phoneme
which might be being produced. Additionally, this shape strongly depends on the power of the input
stream sound. The purpose of calculating the MFCCs is to estimate this power, determine the presence
of a phoneme and consequently distinguish between human voice and noise [18,19]. The conventional
way of making this feature extraction is summarized in Figure 2. Once the input sound has been
digitized, it is split up into frames. Then a pre-emphasis filter and windowing operations are applied
to each frame. The FFT is used to calculate the spectrum of the frames and the result gets through a
bank of Mel filters. Here the signal power within different frequency bands is estimated. After a log
operation, the DCT is calculated to finally get the MFCCs. The MFCCs are the extracted features of
the input signal that will feed a classifier circuit such as a neural network, a decision tree, etc. In the
analog solutions proposed in the literature, an equivalent analog version of the MFCCs is extracted
based on the energy split up into different bands of interest [8].

Digital input
    stream

Framing, pre-emphasis filter
& Windowing FFT Mel filter bank,

power estimation
& log 

DCT MFCCs

Figure 2. Mel Frequency Cepstrum Coefficient (MFCC) calculation flow.

3. VCO-Based Bi-Quadratic Filters

We propose a new way to extract the energy of an input audio signal within different frequency
bands making use of highly scalable and ultra-low power VCOs occupying the minimum area. We will
implement VCO-based integrators with ring-oscillators followed by digital counters [14,15]. This will
allow us to build a bank of band-pass filters needed to extract features (energy within different
frequency bands) in voice recognition tasks.

With that purpose in mind, we have selected the conventional bi-quadratic filter (Figure 3a).
Our output is the band-pass filtered one, so that the Laplace-domain representation of the
transfer-function will look as follows:

H(s) =
−K ·ωo · s

s2 + ωo
Q s + ω2

o
, (1)

where K is the input gain, Q is the quality factor and ωo is the center frequency.
There exist architectures of low power and low area analog opamp-based bi-quadratic filters [20].

Nevertheless, the lower the center frequency the larger the capacitor and the resistor required.
In consequence, the occupied area increases prohibitively.
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3.1. Architecture for VCO-Based Bi-Quadratic Filter

The oscillation frequency of a VCO, fosc(t), with an input signal x(t) follows:

fosc(t) = fo + KVCO · x(t), x(t) ∈ [−1, 1] , (2)

where fo is the rest oscillation frequency and KVCO is the gain of the VCO. The input signal is assumed
to be dimensionless and may vary between −1 and 1.

According to [15], an integrator can be built with a pulse frequency modulator (PFM),
composed of a VCO (that integrates the phase of the input signal), and an asynchronous digital counter
(that quantifies the phase). Taking this equivalence into consideration, we can build a bi-quadratic
filter with VCOs and counters just by replacing the conventional opamp-based integrators of Figure 3a
with the equivalent VCO-based integrator structure. The resulting architecture is shown in Figure 3b.

Looking at one single VCO, for instance, VCO1, we notice that we have a VCO connected to one
“up” input of the counter and another VCO (reference VCO, VCOr) connected to one “down” input of
the counter. This is required to remove the phase offset of the VCO1 and VCO2 coming from the rest
oscillation frequency fo. The reference VCO always oscillates at fo. Whereas the internal count value of
the counters is increased by the rising edges in any “up” input, it is decreased by the rising edges in any
“down” input. This way we quantize the phase of the VCOs and make the phase subtraction needed to
implement the filter architecture. The result is digitally represented by the output of the counters.
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Figure 3. Conventional (a) and proposed (b) single-ended voltage-controlled-oscillators (VCO)-based
architectures for a bi-quadratic filter.

Note that in the architecture depicted in Figure 3b the reference VCO (VCOr) is required because
there is no other way of removing the offset phase term. However, we will see later on that if we
implement a pseudo-differential architecture this offset term can be canceled without any extra VCO,
just by combining the outputs of the VCOs of both differential branches.

3.2. Behavioral Simulation

A behavioral model of the VCO-based system of Figure 3b was built and several simulations were
made to validate the performance.
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Firstly, to check the proper performance of the filter, an input signal composed of three sinusoidal
waveforms spaced one decade between them in frequency was selected. The central input frequency
was equal to 1 kHz. In relation to the VCO oscillation parameters, fo of 100 kHz and KVCO of 50 kHz
were chosen for all the VCOs. The central frequency of the filter was selected to be 1 kHz as well.
Figure 4 plots both the input signal (a) and the output signal (b) in time. The output signal (Figure 4b)
has been low-pass filtered to avoid aliasing phenomena [11]. The output spectra of the input and
the output signals are depicted in Figure 4c,d, respectively. As expected from (1), the most powerful
component at the output corresponds to the closest input frequency to the center frequency of the filter,
while the others are 20-dB attenuated.

Figure 4. Behavioral simulation of the proposed VCO-based bi-quad filter: (a) input signal in time;
(b) demodulated output signal in time; (c) input signal spectrum; and (d) output signal spectrum.

It is relevant to note that the filter output signal is actually a digital signal, corresponding to the
output of a digital counter (Figure 3). This is of high relevance because we no longer require an ADC
to digitize the analog extracted features. Furthermore, the first VCO (VCO1) can be reused to make the
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conventional analog-to-digital conversion after the detection stage. This strongly reduces the power
consumption and the area in comparison to other speech recognition/VAD solutions, and confers on
this solution an important advantage not present in other architectures.

The frequency response for a non-sinusoidal input (Figure 5a) wave has been also tested. Figure 5b
depicts the output spectrum when the input signal is a sinc function with a bandwidth of 22 kHz.
In Figure 5b, the red-colored spectrum depicts the output spectrum that would be obtained from
the conventional bi-quadratic filter implemented with opamps, and the blue-colored one depicts the
output spectrum obtained from our proposal. Whereas, for the band of interest the results are similar,
in our proposal the sideband components due to the pulse frequency modulation can be appreciated
at higher frequencies, similarly to VCO-based ADCs [11].
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Figure 5. Behavioral simulation with sinc function as the input signal: (a) input signal spectrum;
and (b) output signal spectrum (in blue the output spectrum with conventional bi-quad filter and in
red the output spectrum with proposed VCO-based bi-quad filter).

Finally, one of the most common ways of generating the input signal for speech recognition/VAD
applications consists of transforming the audio samples into spectrograms. The input signal is split
up into frames of some ms (typically between 5 and 20 ms), and the energy within each frequency
band is extracted. This way, if the whole system is composed of M different filters and the audio signal
is divided into N frames, the input signal of the filter will become a MxN image. In Figure 6a we
show an example of this. In this case, the input sample is a chirp function with an initial frequency
of 20 Hz and a final frequency of 10 kHz. Low-frequency filters detect energy for low frequencies
at the beginning and as the input frequency increases the power is shifted towards high-frequency
filters. In Figure 6 each frame is of 5 ms, with 20 channels of band-pass filters. The center frequency
increases 500 Hz along the bank of filters, starting at 20 Hz. For this example, the quality factor Q was
kept constant (Q equals 3). That’s the reason why the higher the center frequency, the higher the filter
bandwidth and the higher the activity within different frequency bands [21]. The output data collected
from Figure 6b could be the input of a decision stage for smart audio applications, with the advantages
described above.
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Figure 6. Spectrograms: (a) chirp function as input signal; and (b) output digital spectrogram.

3.3. Extension to Differential Configuration

As stated before, the architecture proposed in Figure 3b is a single-ended configuration where
a reference VCO (VCOr) is used to remove the phase offset [10]. If we extend this single-ended
configuration to a pseudo-differential configuration, the reference VCO will become unnecessary.
For the pseudo-differential configuration, we propose to make use of the architecture shown in
Figure 7. The performance of this architecture was tested and the results were similar to the ones
described in Section 3.2.
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Figure 7. Pseudo-differential configuration of the VCO-based bi-quad filter.

4. Circuit Application

The architecture proposed in Figure 7 was designed in a 65-nm CMOS process to have an intuition
about the area and power consumption we may expect from a silicon test. Although it is an old
design process it is narrow enough to observe significant savings in power and area with respect to
larger-length processes [10].

In this section, we will describe all the designed blocks, especially focusing on the VCOs and
the asynchronous counters, and we will get an approach to the area and power consumption of each
of them.

4.1. VCO and Front-End Circuit

The first element we need in a speech recognition task is a sound source. In this case, we chose
a capacitor-based MEMS sensor in accordance with [12]. The performance of this sensor is based on
the variation of a capacitance that depends on the input sound pressure. This capacitance, along with
a biasing circuitry, generates a differential proportional voltage that is connected to the VCO1,p and
VCO1,n of Figure 7. Thus, the resulting input stage will look as in Figure 8a.
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The VCO is built with a ring-oscillator configuration [11], where the input voltage signal x(t)
is turned into a current i(t) that feeds the inverters. In our proposal, these first ring-oscillators
are composed of eleven taps. However, only one tap per ring-oscillator will be connected to the
asynchronous counter afterwards (the P-side ring-oscillator to the “up” input and the N-side one to
the “down” input, Figure 2b. The oscillation parameters of the VCO define the number of taps.

4.2. DCOs

If we look at the VCOs of Figure 7, we will notice that only the VCOs of the front-end will
have an analog signal. The remaining ones will have a digital input signal, which means that they
are digitally-controlled oscillators (DCOs). This supposes that they must be implemented with a
different architecture with respect to the circuit of the ring-oscillator depicted in Figure 8. The designed
circuit for the DCOs is shown in Figure 8b. Although the structure of the inverters connected in a
ring configuration remains, the current that feeds them is digitally controlled by means of switches.
These switches will be closed or not depending on the value of the input digital signal. As the weight
of the digital inputs is the same for all of them, the input current will be mirrored from a reference
current I0. For the DCOs, an architecture with only three inverters is chosen.

4.3. Digital Logic Design: Asynchronous Counters

As depicted in Figure 7 the first counter is a 4-bit counter, with two inputs for the P-side and two
inputs for the N-side. Figure 9a depicts the schematic of this counter. The four input signal gets into
the clock input of four flip-flops and the outputs of these flip-flops are connected to a combinational
digital logic that compares the count value for both sides of the differential configuration and makes
the subtraction.

The second counter is a 2-bit counter with two inputs, one for each side of the differential
configuration. Figure 9b shows the schematic of this counter. In this case, for the selected oscillation
parameters, we only require a 2-bit counter, which significantly simplifies the circuit of the counter.
For both counters, two very close edges with opposite directions (counting up and down) will not be
lost due to the input flip-flops. If metastability occurs, the logic will only take a longer time to resolve.
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Xn(t)
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(a) (b)
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Figure 8. (a) Front-end circuit: MEMS, biasing circuitry and first VCOs; (b) three-tap digitally-controlled
oscillator (DCO) circuit. The sizes for the transistors of the inverters are the same for (a) and (b).
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Figure 9. Asynchronous counters: (a) 4-bit counter; and (b) 2-bit counter.

4.4. Power Consumption and Area Estimation

To validate the proposed circuit, we have designed the previous circuits in a 65-nm CMOS process.
The supply voltage for all of the described blocks is 1.0 V. The oscillation parameters for all the
oscillators remain from the behavioral simulations of Section 2. With these conditions, we performed
transient simulations to estimate the power consumption of the architecture. Regarding the
ring-oscillators, we estimate the power consumption with an oscillation frequency that equals the
rest oscillation frequency (fo), which is the mean value of the input signal and is proven to provide
accurate results. Regarding the counters, we calculate the average energy spent in an input transition
by the counter and divide the result over fo, for each of the inputs of the counters. We have added for
these estimations the parasitic capacitances expected in layout in order to have more realistic results.
Concerning the area, we take the area of the devices that compose each of the blocks and multiply
it by three to consider the area needed for routing, guard-rings and pads. The results for the power
consumption and the estimated area are shown in Table 1.

Table 1. Estimated power consumption and occupied area per channel, VDD = 1 V.

Component Current (nA) Area (µm2) # Total Current (nA) Total Area (µm2) Total Power (nW)

VCO 0.4 2 2 0.8 4 0.8
DCO 0.4 3 4 1.6 12 1.6

4-bit counter 16.40 38 1 16.40 38 16.40
2-bit counter 5.52 23 1 5.52 23 5.52

Total 24.32 77 24.32

The values provided by Table 1 refer to one single channel of the feature extractor circuit.
If we assume to make use of 20 channels to be able of making a proper decision, the whole power
consumption will be equal to 0.48 µW and the occupied area will be 0.002 mm2.

4.5. Circuit Impairments

The proposal of a whole architecture with the potential of being taped-out is not the scope of the
manuscript. However, below we would like to make some considerations about circuit impairments
we will have to face in case of going ahead with a prototype design.

The performance of ring-oscillators when included in an architecture such as the one shown
in Figure 7 may vary because of several phenomena. Firstly, it is known that phase noise is the
main limiting factor for high-resolution low-bandwidth applications, such as audio or biomedical
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sensing. To overcome this issue noise simulations must be made first to calculate the input-referred
phase noise [22] and compare it with the required resolution. Then, parameters like the number of
phases, the power consumption and the devices’ sizes must be adjusted to accomplish with that noise
requirement. In our approach, phase noise will become of special relevance for the first ring-oscillator
when making a full conversion once human voice has been detected. Strong noise requirements are
not expected for the features extraction stage.

Secondly, open-loop VCO-based ADCs suffer from non-linearity behavior that generates
distortion. This would be the case of the first ring-oscillator in Figure 7 which is out of the loop.
Nevertheless, this is not a problem in audio applications because of the low amplitude of the input
signal [13]. On the other hand, the purpose of using single-ended cells in the ring-oscillators is saving
power. Although in the literature it is stated that this might suppose not enough PSRR performance,
with a pseudo-differential architecture and a proper layout design, the PSRR will not become a
limitation [12,13,23].

Finally, we propose an architecture composed of several ring-oscillators distributed over different
channels but sharing the same silicon wafer. Undesired injection locking effects between different
oscillators might occur. Thus a proper layout with a minimum distance between the different channels
must be carried out at the expense of increasing the occupied area.

5. Comparison to State-of-the-Art Applications

In Table 2 our solution is compared to other equivalent solutions. Our proposal shows the best
performance in terms of the area due to its high scalability and the mostly digital implementation.
Additionally, the power consumption is competitive in comparison to other ultra-low-power analog
solutions. Finally, it is the only solution in which the ADC is included in the features of extractor
architecture. Note that the estimated area and power consumption only refers to the features extractor
stage. In a complete system that makes both voice recognition and voice digitization, the first VCO of
the architecture must accomplish with the conversion requirements required to make a full conversion
of the analog input signal. Some extra digital logic is also needed (Figure 3b). Consequently, the results
provided here will increase [12].

Table 2. Comparison to equivalent solutions.

Power (µW) Channel Number Area (mm2) Approach ADC Included

This work 0.48 20 0.002 Hybrid (VCOs) Yes
[6] 0.06 16–48 0.73 approx. Hybrid No
[7] 61 16 2 Analog No
[8] 0.38 16 0.16 Analog No
[9] >50 - - Digital No

1 The power of the classification stage is included.

6. Conclusions

A new approach for the implementation of the features extraction stage in speech recognition and
VADs applications is described. Making use of VCO-based ADC filters we propose a hybrid solution
between completely analog and completely digital architectures, leading to extraordinary area savings
and competitive power consumption. The architecture is validated by behavioral simulations and
designed in a 65-nm CMOS process. Estimations of the occupied area and the power consumption
are made. The proposed solution is almost one hundred times smaller than the smallest architecture
found in the literature, while keeping a similar power consumption than some of the analog solutions.
Additionally, whereas the rest of the solutions need an ADC to digitize raw data when human voice
has been detected, our solution could reuse part of the blocks included in the features extraction stage
to perform the analog-to-digital conversion. This supposes a unique advantage of our solution with
respect to the state-of-the-art. Finally, the solution is highly scalable due to the mostly digital nature of
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the circuits, which means that higher power and area savings could be achieved if a narrower process
is used. In comparison with [10], power consumption is reduced by 2.5 times and the occupied area is
decreased more than 20 times.
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Abbreviations

The following abbreviations are used in this manuscript:

ADC Analog-to-Digital Converter
DCO Digitally-Controlled-Oscillator
DCT Discrete Cosine Transform
FFT Fast Fourier Transform
MEMS Microelectromechanical Systems
MFCC Mel Frequency Cepstrum Coefficient
NMOS N-type Metal Oxide Semiconductor
PFM Pulse Frequency Modulator
PMOS P-type Metal Oxide Semiconductor
PSRR Power Supply Rejection Ratio
VAD Voice Activity Detector
VCO Voltage-Controlled-Oscillator
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