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Abstract: Per-flow traffic measurement has emerged as a critical but challenging task in data centers
in recent years in the face of massive network traffic. Many approximate methods have been proposed
to resolve the existing resource-accuracy trade-off in per-flow traffic measurement, one of which is
the sketch-based method. However, sketches are affected by their high computational cost and low
throughput; moreover, their measurement accuracy is hard to guarantee under the conditions of
changing network bandwidth or flow size distribution. Recently, FPGAplatforms have been widely
deployed in data centers, as they demonstrate a good fit for high-speed network processing. In this
work, we aim to address the problem of per-flow traffic measurement from a hardware architecture
perspective. We thus design SAPTM, a pipelined systolic array-like architecture for high-throughput
per-flow traffic measurement on FPGA. We adopt memory-friendly D-left hashing in the design of
SAPTM, which guarantees high space utilization during flow insertion and eviction, successfully
addressing the challenge of tracking a high-speed data stream under limited memory resources on
FPGA. Evaluations on the Xilinx VCU118 platform with real-world benchmarks demonstrate that
SAPTM possesses high space utilization. Comparisons with state-of-the-art sketch-based solutions
show that SAPTM outperforms comparison methods in terms of throughput by a factor of 14.1x–70.5x
without any accuracy loss.

Keywords: per-flow traffic measurement; D-left hash; systolic arrays

1. Introduction

Globally speaking, IP traffic has experienced dramatic growth in recent years. By 2022, the amount
of monthly IP traffic will reach 50 GB per capital, representing an increase of about 3.1× relative to
2017 figures (16 GB) [1]. Per-flow traffic measurement, which involves counting the number of packets
for each active network flow during a certain measurement period, has long been a key problem
in various network applications, including traffic monitoring, load balancing, capacity planning,
etc. Achieving per-flow traffic measurement high speed and error-free has become more and more
challenging in recent years in the face of massive network traffic. For example, thousands of current
flows can appear in a very short period of time (e.g., 5 ms [2]) in today’s data center. However, there is
still an increasing need to track the size of all flows (flow size, i.e., the number of packets in a network
flow) at all times, especially in data centers [3]. In addition, modern data center networks have scaled
up to 100 Gbps or even higher speeds; consequently, measuring network traffic at line rate remains
a challenge.

Recently, mainstream approaches to per-flow traffic measurement have centered around sketch-based
solutions [4], which utilize ’sketches’, i.e., compact data structures to record or summarize traffic statistics.
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The main defect of the sketch approach is that the measurement accuracy is not stable, meaning that
their accuracy could be influenced by a number of factors, including network bandwidth and flow
size distribution [5]. In fact, this approach only guarantees an error bound. In addition, according
to [6], most state-of-the-art sketches suffer from a high cost CPU overhead and low throughput
(typically < 5 Gbps), which is far lower than the high throughput that a state-of-the-art Ethernet switch
can provide (e.g., Barefoot TofinoTM2 can process packets at 6.4 Tbps).

FPGA platforms have been widely deployed in contemporary data centers, as they can provide
substantial performance and power improvements for many popular applications including machine
learning, gene sequencing, and 5G wireless. In addition, some presently deployed FPGA platforms are
armed with a 100+ GbE networking capacity, representing good high-speed network processing ability.
Therefore, we can observe the trend that FPGAs have become attractive options for high-speed network
processing; this is based on the fact that the reconfigurability of FPGA fits well with the concept of
SDN (Software Defined Network). When deploying sketches on FPGA, the mismatch between the
throughput and processing speed of the host and FPGA will lower the utilization of FPGA, causing
a bottleneck in network traffic measurement performance.

Accordingly, this work focuses on measuring the frequency of all flows on FPGA with high
throughput. To ease the burden of the collector, we do not consider adopting any sketch methods;
instead, we opt to record each flow independently. The associated challenges exit are two-fold: 1. firstly,
how to insert flows efficiently given the limited on-chip memory available on FPGAs; 2. secondly,
how to evict flows in a timely fashion to make room for new flows in the face of large amounts of flows
coming at the line rate.

Overall, this paper makes the following major contributions:

• We propose a systolic array-like multi-stage architecture, named SAPTM, for per-flow traffic
measurement purposes. SAPTM enables it to exploit the hardware parallelism of FPGA to pipeline
the measurement of flow traffic. Our method also utilizes D-left hashing to improve space
utilization, which enables it to trace a large number of flows with only a small storage budget.

• We propose efficient architectural design and working mechanisms for flow insertion and eviction.
This approach guarantees that active network flows (flows are extremely large (in total number of
packets)) are maintained while mice flows (short flows) with small size are periodically removed
from FPGA to the host.

• We prototype SAPTM on the Xilinx VCU118 platform. Evaluations using real-world traces
demonstrate that SAPTM can outperform state-of-the-art sketch-based solutions by a factor
of 14.1x–70.5x in terms of throughput.

2. Background

2.1. Approaches to Traffic Measurement

Due to the tension between the huge scale of network traffic and the resource limitations
of the measurement platform, most existing approaches to traffic measurement are approximate.
It can therefore be summarized that there are three main kinds of measurement methods: sampling
(e.g., NetFlow [7]), counter-based (e.g., top-k counting) [6,8,9] and sketch-based [5,6,10–12] approaches.
Sketch-based and counter-based methods are widely used for network traffic measurement.
Generally speaking, sketches are mainly used for estimating the sizes of network flows; they keep an
approximate count for all flows, while counter-based methods only keep tracking of top-k frequent
flows. State-of-the-art sketches have gained success in per-flow traffic measurement. However,
most of them introduce high computational cost for CPU to recover the flow sizes. For example,
Sketch learn [11] has to calculate tens of thousands of possibilities when estimating the size of a single
flow. Moreover, all sketches are not error-free, and their measurement accuracy may be affected by
packet rate or flow size distribution [5].
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2.2. Measurement Data Structures

2.2.1. Sketch

Representative examples include Count-Min sketch [13] (sketch-based), hashpipe [9] (top-k
counting), Cuckoo hashing [14], and D-left hashing [15,16]. CM sketch adopts a kind of “collision
embracing” strategy that a sketch count may be written by multiple times, while hashpipe tends to
remove an “old” flowkey to make room for the new flowkey when hash collisions occur. Different
from CM and Hashpipe, Cuckoo and D-left hashing look for an empty position when hash conflicts
occur, rather than removing an “old” flowkey. In other words, Cuckoo and D-left hashing assign
a position for each new flow when there is an empty location available.

2.2.2. Hash Table

Most of researches consider a counter-sharing strategy, i.e., all sketch counters may be used to
store the statistic of multiple flowkeys. Examples can be found in FlowRadar (Bloom filter), CM sketch,
Elastic sketch, etc. The main defect of using this kind of data structure is to determine the size of
a given flow, we have to remove the impact of other flows since they also contribute to the data statistic,
resulting in measurement error. In addition, the measure accuracy may be determined by some facts
such as the size of the sketch counters and the distribution of flows.

2.3. Memory-Friendly Hash Algorithms

It is vital to improve the utilization of memory in use when measuring a great number of flows on
a platform with limited storage. There are some memory-friendly hash methods that can achieve high
space utilization when measuring a high number of flows such as D-left hashing. Here, we take D-left
hashing as an example. As shown in Figure 1, the hash table is split into d equal sections (or sub-tables,
typically d = 2); moreover, each section contains w buckets, each with h slots (d× w× h slots in total).
D-left hashing computes d hash functions on the input data to select a hash bucket, then stores the
data in the bucket with fewer items in it, using a fixed arbitration scheme (select the left bucket which
corresponding to the lower bucket index) if there is a tie. In this way, the workloads of all buckets
tend to be balanced, thus facilitating efficient space utilization. Cuckoo hashing adopts a similar but
more complex idea: it requires changing the position of old data to make room for a new one when
hash collisions occur. In some cases, multiple steps may be required to insert the new data. Obviously,
both D-left hashing and Cuckoo hashing will struggle when there are few empty buckets left.

Hash0 = 3 Hash1 = 4

h=4

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

w=8 

A slot A bucket

Figure 1. The procedure of D-left hashing.

Since Cuckoo has an uncertain number of steps during the insertion, it is infeasible to implement
it on FPGA. In this work, we focus on adopting D-left hashing in our design, aiming to reduce the
memory requirement of our design by improve the memory utilization.
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3. Architectural Design and Implementation

We follow the following principles in designing SAPTM:

• First, SAPTM should be able to exploit the architectural parallelism of FPGA devices. Since FPGA
can provide formidable parallel processing capacity, SAPTM should be able to make good use of
the characteristics of FPGA, thereby allowing it to efficiently accelerate the procedure of per-flow
traffic measurement.

• Second, SAPTM should be able to accurately process all packets at high speed. More specifically,
our design goal is to fulfill the line rate requirement of contemporary high speed networks (over
100 Gbps network bandwidth), which puts forward higher requests to the throughput of SAPTM.

3.1. Architecture Overview

Figure 2 depicts the architecture of SAPTM. It can be seen that the key components of SAPTM
include the NIC module, Packet Header Parser/Deparser (PHP/PHD), Adaptive Flowkey Dropper (AFD),
Hash Array, and the pipelined stages. The NIC module is responsible for reading packets from the
high-speed network. Fed by the NIC module, and PHP undertakes the task of extracting flowkeys
from the input packets. Note that each flow is identified by a flowkey, which can be defined by any
combination of packet fields, for example, 5-tuples (i.e., source/destination IPs, source/destination
ports, and protocol). In contrast, PHD functions by re-packaging flowkeys and their corresponding
counters and then seeding packets to an NIC module. In addition, Hash Arrays comprising d hash
units are used to perform hash computations in parallel.
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Figure 2. Block diagram of SAPTM architecture.

The pipelined stages are the kernel components of SAPTM and are used to perform the traffic
measurement task. All stages except for Stage1 have an identical structure. Different from other stages,
Stage1 integrates several critical function units that other stages do not have, such as the Flowkey
Tracking Table (FTT), Comparator, and Workload Registers (all of these are marked by red solid boxes).
More importantly, all stages are organized in the form of a 1D systolic array-like architecture. On the
one hand, data (i.e., flowkeys, hash results, and sketch counters) are only delivered in adjacent stages.
On the other hand, the procedures of flowkey insertion/eviction (performed in each stage) and data
delivery between stages are performed in parallel.

In addition, the Workload Registers are globally shared by all stages. The main functionality of all
stages include flowkey insertion (i.e., recording the flowkeys and their sizes on local counters) and
flowkey eviction (i.e., removing the statistics of flowkeys from the current stage and uploading
them for analysis). Multiple data paths are designed in these stages to record the flowkeys or
deliver the flowkeys as well as the hash results, to the next stages. We split the entire D-left hashing
table into all stages equally, and use a group of Workload Register files designed to provide global
workload information for all stages. There are several advantages of using SAPTM for per-flow
traffic measurement: (1) multiple flowkeys can be processed in different stages simultaneously,
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which contributes to a strong parallel processing capacity; (2) both intra- and inter-stage processing
is carried out in pipeline form, which leverages the throughput of packet processing. Compared to
the one-stage counterpart (i.e., using a single stage with a large hash table), our pipelined multi-stage
solution ensures a higher hardware utilization and throughput in processing packets.

Workflow of SAPTM

When a network packet is fetched from the high speed network interface, the NIC module first
buffers the packet’s header into Packet Header FIFO. Note that the payload of the packet is dropped
in the NIC. Then SAPTM reads the extracted flowkey from the Packet Parser. After that, the extracted
flowkey passes through the hash units inside the Hash Array to generate multiple hash results in
parallel. SAPTM fetches the flowkey and the corresponding hash results once they are available,
it then determines the destination stage of the flowkey in the first stage (i.e., Stage1). In each stage,
each flowkey has two possible datapaths: namely, being recorded in the current stage or being passed
to the next stage (Section 3.3). In addition, old flowkeys will be periodically evicted from the resided
slot based on their activeness as well as the load condition of the hash tables (Section 3.4). At the end
of each measurement epoch (a time period for traffic measurement, call epoch), the statistics recorded
in all stages will be evicted and delivered into the preceding stages (if they exist) via the Inter-data
Queue. The Packet Deparser will gather the flowkey and its counter, and send them back to NIC after
packaging them back into network packets (the counter of the flowkey is served as the payload of the
packet). Note that a host CPU which serves as a collector is responsible for gathering the packets.

3.2. Hash Table Deployment among Pipelined Stages

How can the d hash sub-tables be efficiently deployed among the Ns stages? We believe that
a good hash table deployment should make flowkeys hashed to each stage equally. In this way, we can
avoid the unbalanced situation in which some stages are busy processing flowkeys while other stages
are hungry for flowkeys. To address this issue, we propose the following solution: namely, dividing
each hash sub-table (ST) into Ns parts vertically (i.e., different slots for each bucket are placed in the
same stage). In this way, we can obtain d× Ns sub-subtables (SST) of equal size h×w

Ns
. We then assign

the ith sub-subtables (i.e., SSTij, 1 ≤ i ≤ d, 1 ≤ j ≤ Ns) of ST1 ∼ STd to the ith stage. As a result,
each stage contains a re-organized hash table of size d×w

Ns
. To facilitate better understanding, we present

a simple example in which d = 3 in Figure 3. Since each stage is assigned with a hash table of equal
size, each flowkey has an equal possibility to be hashed into any stage, contributing to the balanced
workload between stages.

ST1 ST2 ST3

SST11 SST12 SST1N SST21 SST22 SST2N SST31 SST32 SST33 SST11 SST21 SST21

(SST11,SST21,SST31) -> Stage1

SST12 SST22 SST32

(SST12,SST22,SST32) -> Stage2

Figure 3. An illustrated example for table deployment.

3.3. Flowkey Insertion

Figure 4 shows the procedure of flowkey insertion in Stage1. Note that Stage1 has the most
complex datapaths compared with other stages. Here, we only detail the data paths in Stage1:

Data path 1: an incoming flowkey will trigger the issue of a query to FC. If the flowkey matches
a cache line (see the example flowkey of 192.168.1.25), the counter address previously stored in the
cache line will be fetched, after which a “read-update-write” operation is carried out to the counter
indexed by the address. At this point, the flowkey is successfully inserted into the current stage, and no
information needs to be delivered to the next stage. If the flowkey does not match any cache line in FC,
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we regard the flowkey as belonging to a new flow for this stage (it may belong to an old flow recorded
in other stages or a brand new flow for all stages), then it will be sent to data path 2.

Data path 2: the flowkey triggers the further issue of a query to FTT (by comparing the exact
value of the flowkey). Once a match is found, the “cnt” filed of the matched table entry will be updated
by adding one (see the example flowkey of 192.168.1.33). After that, the flowkey and hash results will
be directly delivered to the next stage. If the flowkey fails to match any table entry in FTT, meaning
that the flowkey belongs to a new flow for all stages, then it would go to data path 3.

Data path 3: when the flowkey appears in this data path, it is required to detect whether there
exist data hazards in stages. Therefore, d independent lookup queries are issued to Flowkey Tracking
Table (using the d hash results). If there exists a query that successfully responded, the ’cnt’ file of the
matched table entries will be read and sent to the Comparator. In the meantime, Comparator also read
the workloads of buckets according to the d hash results. In this way, the Comparator identifies the
bucket address with the lowest workload among the d candidate buckets (i.e., BAddrl = 0x40 in the
example), which is used to determine which stage that this flowkey should be recorded in. For the
case in which BAdddrl matches the assigned address space of the current stage, we need to find a new
location to store the flowkey and assign a new counter for it. In the meantime we add a new cache line
containing its information in FC, and update the corresponding Workload Register. However, if it is
determined to be recorded in the latter stage, it is required to add a new table entry in FTT (shown in
purple dotted box) to record the flowkey (along with BAddrl). Finally, in a similar way to data path 2,
the flowkey is sent to the next stage along with the hash results.

Distinguishing between new and old flows. A critical issue during flowkey insertion involves
determining whether an incoming flowkey belongs to an old or new flow. FlowRadar [3] utilized
a Bloom filter [17] to distinguish between new and old flows. However, a Bloom filter requires multiple
memory accesses for each flowkey, which is not hardware-friendly as this could introduce significant
memory access overhead. Moreover, motivated by the classical concept of a Cache, we introduce
a data structure named Flowkey Cache (FC), which can help us detect whether a flowkey is old or
new by storing the recently processed flowkeys as well as their corresponding counter addresses. If
a flowkey matches the content in a cache line of FC, we would regard the flowkey as belonging to an
old flow that has been recorded in the current stage. Otherwise we would regard it as a new flowkey.
Compared to the Bloom filter, using FC requires only one memory access to determine whether the
incoming flowkey belongs to an old flow, which contributes to a lower memory access overhead.
However, it is unfeasible to design an FC of large size due to the memory limit of FPGA. However,
reducing the size of FC could have a negative impact on its hit ratio. To address this issue, we introduce
a notation, namely average packet distance (APD), which is defined as the average distance between
every two adjacent packets in a flow. We present a simple example to explain APD in Figure 5 for
better understanding. We carry out experiments on evaluating the APD of flows from CAIDA [18]
(2018). As depicted in Figure 6, elephant flows tend to have a much smaller APD than most of the
mice flows. This observation motivates us in that if we store the mice flows in the FC, the hit ratio of
FC will be much higher. Therefore, we opt to keep as many as the active elephant (with a low APD)
flows in the FC. We can record the activeness of all flows stored in FC, and remove them if they are not
matched by any flowkeys during a time threshold. Note that the time threshold is set according to the
general value of APD of large flows.

Data hazard during flowkey insertion. As shown in Figure 7, consider a situation in which f0 is
still being processed in Stage2, and it is decided that it will be hashed to the bucket in Stage3, given that
the workload of the bucket at 0x9 is higher than that of the bucket at 0x19. However, one of the two
hash values of the next flowkey f1 (0x7 and 0x19) is identical to that of f0 (i.e., 0x19). At this point,
since the workload of the bucket at address 0x19 has not yet been updated by f0, an incorrect decision
may be made to pass f1 to Stage3 given that the workload at 0x19 is lower than 0x7. This issue is very
similar to that of the data hazard in the CPU pipeline. To address this issue, we design a data structure,
named Flowkey Tracking Table (FTT) in Stage1, used to record the statistics of the flowkeys that have
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passed through but have not been recorded in Stage1. Each table entry includes three fields: flowkey,
target bucket address (i.e., hash result), and record time. When a flowkey matches a table entry of FTT,
the ’record time’ field will be read to help compare the workloads of the hashed buckets of the flowkey.
In this way, the current comparison result will be accurate. Note that once a flowkey recorded in FTT
is successfully recorded in a stage, the stage will inform Stage2 intermediately to remove the flowkey
from FTT.
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Figure 4. Procedure of flowkey insertion.
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Figure 5. Illustration of packet distances of network flows.
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Figure 6. Evaluation results of package distances of flows in real-world traces.
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Stage2 Stage3Stage1

f0f1
0x7 0x190x9

Bucket Workload
0x7 4
0x9 5
0x19 3

Figure 7. Data hazard during flowkey insertion.

3.4. Flowkey Eviction

As shown in Figure 8, flowkey eviction—i.e., removing old flows to make room for new flows in
the hash table, is a critical problem in per-flow traffic measurement. We have investigated some classical
methods to address this issue. NetFlow [7] stores the time at which a flow is last seen and periodically
scans the entire hash table to check the inactive time of each flow. If a flow is inactive for a period that
exceeds the inactive timeout, NetFlow removes the flow and exports its counts. The main drawback of
this method is that it is infeasible to scan the entire hash table, which could result in untenable memory
access overhead. In addition, it is difficult to determine a suitable inactive timeout. Some sketch-based
methods tend to keep elephant flows in the hash table while removing the mice flows. However,
the principles to distinguish between elephant and mice flows may vary substantially between traces.
If all flows are comparable in size, this method may decrease in effectiveness. Accordingly, in this
paper, we propose a simple but efficient flow eviction strategy: namely, taking the workload condition
of buckets as well as the activeness of flows into consideration.

0 1 2 3 4 5 6 7

Candidate flowkeys 
from addresses 

0x1, 0x5 and 0x6

x

Flowkey

xxxx

xxxx
xxxx

Valid

x

x
Worklaod 

threshold = 6

A flowkey 
insertion happen

192.168.1.16 1

hit

Candidate Removing Table

Disable the matched 
table entry

->0
->0

->0
->0

Activeness Threshold 
reaches

Hash Table

Randomly Seclected
Slots (flowkeys)

Figure 8. Procedure of flowkey eviction.

We propose a conservative removal strategy to avoid removing active elephant flows. To be more
specific, we start to remove flowkeys only if (1) there are buckets in which workloads reach the alert
threshold; (2) the candidate flowkeys in the buckets that meet the first condition are further determined
to be inactive, i.e., they are not accessed within a certain time limit. Only if both of these conditions
are met, will we start the flowkey eviction procedure. It should be noted here that the candidate
flowkeys that meet condition (1) are randomly selected; while this may result in the mistaken selection
of active flowkeys in the next few cycles, the second condition will prevent this mistake. Since we do
not track the activeness of all flows in the hash table, the candidate flowkeys are randomly selected.
These flowkeys are then stored into a data structure named Candidate Eviction Table (CET). Note that
the Candidate Eviction Table is designed to be placed in each stage; in this way each stage can remove
flowkeys independently. We continue to track the activeness of the candidate flowkeys. If the slot
corresponding to the flowkey is accessed during the activeness threshold, we remove the flowkey,
and update the workload of the corresponding bucket simultaneously; otherwise, all flowkeys in CET
will be removed once the activeness threshold is reached. Figure 4 depicts the procedure of flowkey
eviction in detail. It is important to note that the evicted flows as well as their counters are sent back
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to the collector (i.e., the host CPU) rather than being dropped, which ensures the high accuracy of
our design.

3.5. Implementation Details

Figure 9 shows the architecture of a hash unit. From the above, it can be seen that this architecture
comprises multipliers, adders, and some simple logics (i.e., shift and xor units). In addition, Seed0∼Seed2
are pre-populated constant data. Moreover, to ensure that the data paths in the hash unit are fully
pipelined, we place registers between each pair of computation units.

The functionality of Flowkey Cache, Flowkey Tracking Table, and Candidate Eviction Table is similar
to ternary content addressable memory (TCAM). To simplify the design, we use Flip-Flops (FFs) on
FPGA to implement these modules. However, implementing FC would demand tens of thousands of
FFs if we store the entire flowkeys (about 104 bit), which could fail to meet the time closure. To address
this issue, we only store some partial bits of each flowkey in FC. Once a flowkey matches a cache
line in FC, it is required to fetch the entire flowkey from the storage for flowkeys according to the
address recorded in the matched cache line. Since the sizes of FTT and CET are much smaller than
FC, we directly store the entire flowkeys in both of them.

MUL ADD

>>
Data[7:0]

MUL ADD

>>
Data[7:0]

Seed0

XOR

Seed1Seed1

Hash 
result

(flowkey)

Seed2

Rigister Rigister

Figure 9. Architecture of a hash unit.

4. Performance Modeling

In this section, we introduce a performance model to help us evaluate the performance of SAPTM.
The parameters used in this section are listed in Table 1.

Table 1. Parameter definitions.

Definitions Parameters

Number of stages Ns

Latency of hash computation Lha

Latency of Flow Cache lookup Ll f c

Latency of writing Flow Cache Lw f c

Latency of writing Flowkey Tracking Table Lw f t

Latency of updating Flowkey Tracking Table Lu f t

Latency of Flowkey Tracking Table lookup Ll f t

Latency of updating flowkey counter Lu f r

Latency of writing storage for flowkey and counter Lw f r

Latency of updating Workload Registers Luwr

Latency of Comparator Lcp

Latency of writing Data queue Ldq

We first evaluate the throughput of the Stage1 in SAPTM. Note that the performance of SAPTM
is determined by that of Stage1. From Section 3.3, we know that Data path 3 in Stage1 is the most
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critical path, given that the data paths in the other stages are simpler. For a flowkey that enters this
data path, it must have À failed the FC lookup, Á failed the FTT lookup (by comparing flowkey),
and Â compared the workloads of corresponding hash addresses. This is alternatively followed by
two groups of operations: group1 involves Ã writing FC, Ä writing storage for flowkeys and counters,
and Å updating Workload Registers; group 2 involves Æ writing FTT and Ç writing Data Queue. It is
important to note that the following flowkey can not enter Stage0 until Ã or Ä has been completed.
Since FC, FTT are implemented using independent memory units, À and Á can thus be done in parallel;
however, the operations in group1 and group2 can be done until Â finishes. As a result, the latency
(in cycles) of Data path 3 in Stage1 can be calculated as follows:

Ls1_dp3 = max{Ll f c, d× Ll f t}+ Lcp

+max{Lw f c, Lw f r, Luwl , Lw f t, Ldq}.
(1)

Moreover, the throughput (the total traffic volume processed per second, which can be transformed
into a packet rate if the average packet size in known) of SAPTM can be determined as follows :

TPSAPTM = Size f lowkey ∗
Ls1_dp3

f req
, (2)

where Size f lowkey denotes the size of each flowkey (in MB), and f req (in MHz) is the working frequency
of SAPTM.

We further model the processing latency of flowkeys processed in other stages, which can be
calculated as follows:

Lsn_dp = Lhash + Ll f c + max{Lu f r, Lw f c, Lw f r, Ldq}, (3)

where Lhash denotes the latency of the Hash Array. We will next formulate the average processing
latency of a single flowkey, as follows:

Lavg = Lhash + Ls1_dp3 +
1

Ns
× Lsnd p × (1 + 2 + ... + (Ns − 1))

= Lhash + Ls1_dp3 +
Ns∗Lsn_dp

2 .
(4)

In Equation (4), we assume that each flowkey can be recorded in any stage with equal probability
(i.e., 1

Ns
). The following can be concluded from Equations (1) and (4): namely, that (i) a small d is

beneficial for improving the throughput of SAPTM, and (ii) it seems that a large Ns will have a negative
impact on Lavg. However, given a fixed memory budget, increasing Ns will decrease the memory
allocation in each stage; this means that L f c could be reduced accordingly, which is beneficial for
improving throughput of SAPTM. Therefore, the selection of Ns is critical for the throughput of
SAPTM.

5. Evaluations

5.1. Experimental Setup

Benchmarks. The workloads used to test the performance of SAPTM come from a one-hour
backbone trace collected in 2018 from CAIDA [18] (location: New York, time: 2018/05/17), and we
randomly select a one-minute trace for testing, which contains 26,391,238 packets and 1,361,853 flows.
According to our study, there are 2,445,768 times of simultaneous occurrences of multiple packets in
the selected trace, and the maximum number of concurrent packets is 14.

Implementation platform. We implement our design on an Xilinx VCU118 FPGA board,
which integrates a high-capacity VU9P FPGA and two 64 GB DDR4. The physical host (i.e., the collector)
has a six-core Intel Xeon E5-2620 v3 CPU (2.40 Hz) and 128 GB RAM. Note that the host CPU connects
to the FPGA platform with the help of an Intel ethernet adapter (XL710-QDA2, 40 GbE NIC).
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Software counterpart. To compare the performance of SAPTM with software solution, we carried
out experiments on evaluating five state-of-the-art sketch-based solutions, including Deltoid [19],
UnivMon [10] (UM), Reversible Sketch [20] (RS), FlowRadar [3] (FR), and SketchVisor [6] (SV). We deploy
the selected sketch-based solutions on a testbed composed of three hosts. Similarly, each host is equipped
with a 40 GbE NIC. We run the data planes of the sketch-based solutions in one host, and the control
plane in the remaining hosts. The control plane functions by periodically collecting the measurement
results from multiple hosts and merges them to provide network-wide measurement results, while the
data plane mainly performs the measurement tasks and returns the local measurement results to the
control plane.

Design parameters. We set a fixed storage budget in SAPTM for all experiments, i.e., w = 4096,
h = 8, and d = 2. In addition, the sizes of flowkeys and counters are also fixed to 13 bytes and
4 bytes, respectively.

5.2. Experimental Results

Resource Utilization. Table 2 reports the resource utilization (placement and routing results) of
implementing SAPTM on VU9P with different Ns. It can be seen that the overall resource utilization
of our design is very low (partly because we use a high-capacity FPGA to implement our design),
which contributes to its high working frequency of SAPTM. In addition, SAPTM consumes over
10% of BRAMs (36Kb) as reported, which can be explained by the fact that most of the consumed
memory is used to store flowkeys and counters. In addition, it can also be seen that the consumption
of FFs (mainly used for implementing FC) maintains at a low level as we increase Ns from 4 to 64.
This is because we reduce the number of cache lines of FC in each stage along with the increase of Ns,
for example, we set 256 cache lines in FC for Ns = 4, while the number of cache lines is reduced to 16
when Ns = 64. DSPs are only used to implement the hash units, therefore only 1% of the available
DSPs are consumed. Table 3 shows the actual value of parameters in our implementations.

Table 2. Resource utilization.

Resources Ns BRAMs DSPs LUTs FFs

utilization

4 255 (12%) 68 (1%) 124K (5.7%) 110K (4.6%)

8 265 (12%) 68 (1%) 127K (5.9%) 138K (5.8%)

16 285 (13%) 68 (1%) 135K (6.3%) 160K (5.5%)

32 325 (15%) 68 (1%) 142K (6.6%) 188K (6.8%)

64 405 (19%) 68 (1%) 150K (6.9%) 202K (8.5%)

Table 3. Actual value of parameters in our implementations.

Parameters Cycles

Lu f c, Lu f f t, Lw f c, Lw f t, Lw f r, Lcp, Ldq 1

Ll f c, Ll f t 1

Lu f r, Luwr 2

Space utilization. To illustrate that SAPTM can maintain good space utilization of D-left hashing,
we also implement the D-left hashing algorithm on the host CPU for comparison. Note that the
means and variances of the workloads (occupied slots) in all stages are used as the evaluation metrics.
In the experiment, we set Ns = 8, and the numbers of tested packets and flows are 48,579 and 10,000,
respectively. It can be seen from Figure 10 that our FPGA implementation can achieve comparable
workload means (represented by columns) and variances (represented by lines) to the host CPU,
which confirms the effectiveness of our design.
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Figure 10. Comparisons of workload distributions of d-left hashing implemented on CPU and FPGA.

Studies on Ns. We conduct experiments to evaluate the performance of SAPTM under different
Ns, note that we use throughput (Gbps) as the performance metric. In order to increase the performance
of SAPTM, we connect the output of the last stage to the first stage, which is beneficial for placement
and routing of SAPTM on FPGA. As shown in Figure 11, SAPTM reaches the highest throughput and
frequency when Ns = 32. After that, SAPTM suffers from performance reduction as Ns increases.
First, when Ns < 32, the performance improvement comes from the decrease of the size of FC in each
stage. Second, the reason for performance reduction after Ns = 32 is that all stages (except Stage1) have
direct connections to Stage1 for accessing the Workload Registers and updating FTT, thus increasing
Ns would introduce long wires, which could lower the working frequency and thus throughput
of SAPTM.
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Figure 11. Throughput and working frequency of SAPTM with different Ns.

Comparisons with state-of-the-art. We compare the performance of SAPTM with five state-of-the-art
sketch-based solutions mentioned above. We consider two metrics: (i) CPU overhead (in seconds),
i.e., the entire latency for per-flow traffic measurement (including flow recovering), which is measured in
the host CPU (control plane) ; (ii) effective throughput (in Gbps), which can be calculated by Equation (5).
We think all solutions (including ours) only process the packet header rather than the entire packet,
thus we use effective throughput rather than throughput (as shown in Equation (6)) as the performance
metric. Note that the average packet size of the tested trace is 910 bytes, and the size of packet headers is
20 bytes. In our experiments, SAPTM integrates 32 stages, and it is clocked at 358 MHz.
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E f f ective Throughput =
size o f packet header× number o f packets

processing time
(5)

Thoughput =
average size o f packets× number o f packets

processing time
(6)

Figures 12 and 13 show the results. It can be seen that SAPTM achieves significant improvement in
terms of CPU overhead and throughput over all the sketch-based solutions. More specifically, Figure 13
shows that SAPTM can achieve a performance gain of 14.1x–70.5x (relative to SketchVisor and Detoid,
respectively) over the sketch-based solutions, and the average performance improvement over all
the tested sketch-based solutions is 32x, demonstrating the effectiveness of our solution. The reasons
SAPTM shows higher performance than the selected sketch-based solutions include: (1) by analyzing
the breakdown of the CPU overhead in each sketch-based solution, we find that hash computation
bottlenecks the performance of some solutions. For example, FlowRadar incurs more than 63% of CPU
cycles on hash computations. However, our solution integrates customized logic for accelerating hash
computation (see Section 3.5), thereby we can achieve higher performance than the software solutions;
(2) in addition, we further observe that some sketch-based solutions perform complex operations
on the flows, for example, Deltoid has to update its extra counters to encode flow headers, which is
a time consuming procedure. In our solution, SAPTM only performs simpler operations on the flow;
(3) moreover, in most of the sketch-based solutions, a sketch counter would be used to record the
statistics of multiple flows, therefore the procedure of flow recovering is more complex than ours.

In addition, SAPTM can achieve 100% accuracy in per-flow traffic measurement (which is much
higher than the sketch-based solutions) since SAPTM counts for each flow independently, which is
different from the sketch-based solutions. In addition, SAPTM would not drop flows but deliver the
statistics of all the recorded flows to the host, which ensures the high accuracy of SAPTM. In summary,
SAPTM shows a higher throughput and higher accuracy for per-flow traffic measurement than
state-of-the-art solutions.
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6. Conclusions

This work proposed SAPTM, a novel architecture for per-flow traffic measurement on FPGA.
To better utilize the expensive on-chip memory of FPGA, we adopt the classic D-left hashing in SAPTM.
Efficient strategies are proposed to improve the space utilization via efficient flow insertion and
eviction. It is evident from the experimental results on real-world traces that SAPTM can outperform
software counterparts in throughput by a factor of 14.1x–70.5x without any accuracy loss, showing
a good prospect for the architecture design for large-scale network traffic measurement in the future.
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