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Abstract: BICGSTAB-FFT method of moment (MM) scheme is proposed to analyze several levels
of planar generic layouts embedded in large multilayer structures when the layout geometries are
modeled by NURBS surfaces. In this scheme, efficient computation of normalized error defined
in iterative bi-conjugate gradient stabilized (BICGSTAB) method for large multilayer structure
analysis problems is implemented. The efficient computation is based on pulse expansion with
dense equi-spaced mesh of generalized rooftop basis functions (BFs) defined on NURBS surfaces
and equivalent periodic problem (EPP) in order to apply fast Fourier transforms (FFT). Moreover,
efficient computation of Green’s functions for multilayer structure is implemented for near and far
field regions. Experimental and numerical validations of whole printed reflect array antennas of
electrical size between 8 and 16 times the vacuum wavelengths are shown. In these validations, CPU
time consumptions of the proposed method are obtained with results between few minutes and half
an hour using a conventional laptop.

Keywords: integral equations; moment methods; multilayered media; reflectarrays

1. Introduction

When whole large electromagnetic devices—such as reflectarrays/transmitarrays [1], leaky wave
antennas [2], and metasurface antennas [3]—are analyzed, efficient electromagnetic analysis tools
of large multilayer structures which host planar generic layouts are required. Known numerical
tools—such as finite element (FE) [4], finite difference time domain (FDTD) [5], and MM [6]—are
suitable to carry out analysis of these multilayer structures. FE and FDTD methods require volumetric
meshes to model the multilayer medium which hosts the layouts. Therefore, a high number of
numerical computations on the volumetric mesh slows down the analysis. In order to avoid volumetric
mesh Green’s functions of multilayer medium is used in MM. In this paper, an efficient iterative version
of MM formulation for the full-wave analysis of large multilayer structures, which hosts several levels
of planar generic layouts, is shown.

In MM an electric field integral equation (EFIEs) is numerically solved to obtain the current
densities induced on the conducting layouts. However, the hypersingular dyadic Green’s functions in
the EFIE approach difficult the obtaining the induced current densities [7]. To avoid these hypersingular
Green’s functions, vector and scalar potential Green’s functions with weakly singular behavior are
more suitable. This last approach is known as mixed potential integral equations (MPIEs) [8]. In
MPIEs, one has to face with the computation of multilayer Green’s functions consisting of Sommerfeld
integrals (SI). Many different techniques have been proposed for speeding up the evaluation of SI.
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One technique uses the so-called discrete complex image method (DCIM) to obtain approximations
of Green’s functions in terms of spherical waves [9–11]. This approximation is accurate when the
source and observation point are close (near field region) but the approximation leads to inaccurate
results when the source and observation points are far (far field region). Therefore, in far field region is
preferable a second technique so called rational function fitting method (RFFM) to approximate the
Green’s functions in terms of cylindrical waves [12–15]. There are recent improved versions of the two
techniques. In [16], the Green’s functions of the multilayer substrate are judiciously interpolated in the
spatial domain in terms Chebyshev polynomials after extracting the spherical wave behavior of the
Green’s functions around the source points (which includes the spherical wave behavior produced by
the images of the source through the closest layers). In [17], very accurate closed-form asymptotic
expressions of the Green’s functions were proposed for the far field region. In our paper, the two
accurate improved techniques are used for computations of Green’s functions in both near and far
field regions.

Once the kernels (Green’s functions) of MPIEs for multilayer medium are available, an expansion
of the unknown current densities is carried out in terms on known BFs weighted by unknown
coefficients. When this expansion and method of weighted residual is applied, a linear system of
equations is obtained. In this linear system of equations, the elements of the coefficient matrix are
obtained in terms of continuous convolutions between the Green’s functions and the BFs.

In order to provide a high-order description of the geometry of layout for complex geometries
of the layout, NURBS surfaces are used [18]. These NURBS surfaces are efficiently written in terms
of piecewise Bézier patches [19,20] using Cox-de Boor transformation algorithm [21]. These Béizer
patches are used as domain where the BFs are defined. Therefore, once accurate description of this
domain is available, generalized subsectional rooftop BFs are defined on pair of adjacent Bézier patches
as it is shown in [18].

Although an efficient and accurate computation of Green’s functions in MPIEs approach, and
NURBS modeling of geometry of the layout improve the MM, CPU time consumption involved in the
direct computation of MM matrix elements is proportional to the size of the matrix. This fact provides
computational complexity which is roughly O (Nb

2) with respect to the number Nb of BFs (i.e., number
of unknowns) [22,23]. This fact leads prohibitive CPU time consumption when the number of BFs is
large, for example when large structures are analyzed.

Iterative methods based on MM are more suitable to analyse large structures. Conjugate
gradient fast Fourier transform (CG-FFT) iterative method was proposed in [24,25]. In this approach,
conventional rooftops are used as BFs defined on a regular equi-spaced mesh. However, in this
approach, the number of unknowns increases as the density of regular mesh increases (this increment
of density is required as for example in analysis of layouts with thin strips). In [26,27], the analysis of
arbitrary geometries is carried out by extending multilevel fast multipole algorithm (MLFMA) [28]
or adaptive integral method (AIM) [29] to a multilayer structure. However, single plane of arbitrary
metallization geometry is only shown due to the difficulty of apply MLFMA using Green functions of
inhomogeneous media. In [30,31], Rao-Wilton-Glisson (RWG) BFs [32] are expanded in terms of pulses
for analysis of multilayered structures using conventional pre-corrected FFT algorithm [33]. However,
this approach provides accurate results when the source and the observation points are far enough.

In this work, NURBS surfaces are used to take into account a high-order description of the
geometry of planar layouts embedded in a multilayer medium. The surface current densities are
approximated by generalized rooftop defined over pair of adjacent Bézier patches. In [34], NURBS
surfaces and generalized rooftop BFs are also used. In order to speed up the computations of usual
continuous convolution between Green’s functions and BFs, in [34] pulse expansion of the BFs and
EPP approach were proposed. These approaches lead discrete cyclic convolutions instead of the
continuous convolutions. Therefore, fast computation of discrete cyclic convolutions can be carried
out by FFT procedure. However, these approaches were proposed in [34] using NURBS surfaces to
speed up the computation of each row of MM matrix elements for the multilayer periodic structures
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analysis problems (electrical sizes of the periodic cells less λ, being λ, the vacuum wavelength). In
these approaches, discrete cyclic convolutions between Green’s functions and each BF are required
in the computation of each element of the MM matrix in fast way. In [34], the required number of
FFTs is proportional to Nb for the computation of the discrete cyclic convolutions. This fact slows
down the computations and increments the required memory resources. In this work, we rescue these
approaches but, unlike [34], we apply these approaches in iterative MM context to face electromagnetic
analysis of whole large planar multilayer non-periodic structures (electrical sizes of tens of λ). In this
context, discrete cyclic convolutions between total surface current and charge densities and Green’s
functions will be involved instead of discrete cyclic convolutions between Green’s functions and each
BF. Therefore, the required number of FFTs will be significantly reduced leading to faster computations
and reduced memory resources. This fact will lead electromagnetic analysis of whole large planar
multilayer non-periodic structures (electrical sizes of tens of λ).

The paper is organized as follows. Section 2 will shows the iterative method with NURBS
modeling of surfaces for the analysis problem of large multilayered structure with several interfaces
with planar generic layout. Normalized errors are defined to solve the resultant system of linear
equations by an iterative scheme. In this section, an efficient computation of the normalized error
using the pulse expansion and EPP approaches is shown. Section 3 shows results and experimental
validations of three analysis of whole reflectarray antennas as an example of large multilayer structures.
Finally, conclusions are shown in Section 4.

2. Description of the Problem

Figure 1 shows a side view of a multilayer medium which hosts Q interfaces with conducting
planar generic layouts with negligible thickness.

Figure 1. Side view of a multilayer medium which hosts Q interfaces with planar metallizations.
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The conducting planar generic layouts are assumed to be PEC. The multilayer medium consists of
NC dielectric layers of complex permittivity εp = ε0εr,p(1 − jtanδp) and thickness dp (p = 1, . . . , NC). In
the results presented in this paper, the lower limit of the multilayer structure is a ground plane, but free
space can be considered. The Q-interfaces host layout with arbitrary planar geometry. The multilayer
structure of Figure 1 is illuminated by arbitrary electric field distribution. This incident electric field
distribution induces surface current densities Jl(x′,y′) on each metallization surface Sl hosted in the
lth-interface (l = 1, . . . , Q) with planar layouts. According with Figure 1 the surface current densities
Jl(x′,y′) have ‘x’ and ‘y’ components (i.e., z-component is not considered). Time dependence of the
type ejωt is assumed and this dependence will be suppressed throughout. The induced surface current
densities produce an electric field scattered by the multilayer structure shown in Figure 1. In order to
know these induced surface current densities Jl(x′,y′) (l = 1, . . . , Q) the following system of MPIEs has
to be solved [8]

Eexc
t (x, y, z = −hNk) − jω

Q∑
l=1

∫
Sl

G
A
(x− x′, y− y′, z = −hNk , z′ = −hNl)Jl(x′, y′)dx′dy′

−

Q∑
l=1
∇

∫
Sl

GΦ(x− x′, y− y′, z = −hNk , z′ = −hNl)σl(x′, y′)dx′dy′ = 0; (k = 1, . . . , Q)

(1)

where Et
exc(x,y,z = −hNk) is the tangential electric field in the observation point (x,y,z = −hNk) on the

multilayer medium (without layouts). σl is the induced surface charge density on the surface Sl of
the layout hosted in the lth-interface. The induced surface charge densities σl and surface current

densities Jl are related each other by means of the known continuity equation. G
A

is the dyadic Green’s
function for the vector potential and GΦ is the Green’s function for the scalar potential respectively
of the multilayer medium of the Figure 1. In this work, formulation C of [35] is assumed. In this
formulation, the Green’s functions for ‘x’ and ‘y’ components are equal. In this way, since ‘x’ and ‘y’
components of the surface current densities Jl(x′,y′) are only considered, the dyadic Green’s function
can be substituted by the Green’s function GA

xx for the the x-component of the vector potential.
We would like to point out that, in this work, the Green’s function of the multilayer substrate for

the x-component of the vector potential GA
xx and for the scalar potential GΦ are efficiently obtained in

far field region (i.e., when k0ρ > 10 with ρ = [(x − x′)2 + (y − y′)2]1/2 and k0 = 2π/λ being λ the vacuum
wavelength) by quasi-analytic formulation described in [17]. When the observation and source points
are close (i.e., when k0ρ < 10) regularization and judiciously interpolation of the Green’s function
is carried out in similar way to that shown in [16]. In this procedure, the Green’s functions of the
multilayer substrate are judiciously regularized (extracting the singular and quasi-singular behaviors
of the Green’s functions around the source points is carried out) and the resultant regularized functions
are interpolated in the spatial domain in terms Chebyshev polynomials. In order to solve the MPIE
shown in (1), Jl(x′,y′) and σl(x′,y′) are expanded in terms of known BFs Jl,j(x,y) (j = 1, . . . , Nb,l) where
Nb,l is the number of the BFs in lth-interface with layouts

Jl(x′, y′) =
Nb,l∑
j=1

cl, j,Jl, j(x′, y′); σl, j(x′, y′) = −
1
jω
∇′Jl, j(x′, y′); (l = 1, . . . , Q) (2)

The coefficients cl,j (j = 1, . . . , Nb,l; l = 1, . . . , Q) shown in Equation (2) are unknowns to be
determined. In this paper, the surfaces of planar generic layout are modeled by NURBS surfaces.
The NURBS are efficiently written in terms of piecewise Bézier patches as it is described in [18].
Subsectional BFs ‘generalized rooftop’ functions are used as BFs Jl,j(x,y) (j = 1, . . . , Nb,l; l = 1, . . . , Q).
These subsectional BFs (see Figure 2) are defined on two adjacent Bézier patches. Therefore, these BFs
are capability to take into account a high-order description of the geometry of the layout.
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Figure 2. Y-component of jth generalized rooftop BF defined on two adjacent Bézier patches of the
discretized layout hosted in the lth-interface with metallizations, and y-component kth-razor blade and
isoparametric curved line Ck,i which joins the center points of two adjacent Bézier patches of the of the
discretized layout hosted in the kth-interface with metallizations.

Method of weighted residual is carried out to solve the system of MPIEs given in (1) using
‘razor-blade’ as weighting function (WF). The ‘razor-blade’ functions are WFs with unity value defined
over the isoparametric curved lines Ck,i (i = 1, . . . , Nb,k, k = 1, . . . , Q) in the kth-interface with layouts.
Each curved line join the centers of the pair of adjacent Bézier patches which discretizes the planar
layout surface hosted in kth-interface with metallizations (see Figure 2). In this way, when (2) is
introduced in (1) and ‘razor-blade’ functions are used as WFs, the resultant system of equations for the
unknown coefficients cl,j (j = 1, . . . , Nb,l; l = 1, . . . , Q) is obtained

Vsc
k,i(c 1,1, . . . , c1,Nb,1 , . . . , cQ,1, . . . , cQ,Nb,Q

)
= Vexc

k,i ;

(i = 1, . . . , Nb,k; k = 1, . . . , Q; Nb =
Q∑

l=1
Nb,l)

(3)

where the coefficients Vk,i
exc of the system of linear equations can be computed by the next line integral

Vexc
k,i =

∫
Ck,i

Eexc
t (x, y, z = −hNk)·dr (4)

The unknowns cl,j (j = 1, . . . , Nb,l; l = 1, . . . , Q) are explicitly shown in (3) through the dependence
of Vk,i

sc. This dependence is linear since linear dependence of the surface current densities with
respect to the unknown coefficients cl,j (j = 1, . . . , Nb,l; l = 1, . . . , Q) is assumed in (2). The coefficients
Vk,i

sc can be break down in inductive, Vk,i
ind, and capacitive, Vk,i

cap, contributions Vk.i
sc = Vk,i

ind +

Vk,i
cap. The inductive contribution Vk,i

ind is given in terms of the line integrals along the way Ck,i of

the bi-dimensional convolutions between dyadic Green’s function G
A

of the vector potential and the
expansion of the surface density current in terms of BFs given in (2) as it is shown in (5). Note that in
(5) contributions of all interfaces with metallizations are taken into account (i.e., summation from l = 1
to l = Q appears in (5)). The bi-dimensional convolutions involve the integration of singular behavior
of the integrand introduced by the dyadic Green’s function when the observation point (x,y,z = −hNk)
and source point (x′,y′,z′ = −hNl) are close.

Vind
k,i = jω

Q∑
l=1

∫
Ci,k


∫
Sl

G
A
(x− x′, y− y′, z = −hNk , z′ = −hNl)


Nb,l∑
j=1

cl, jJl, j(x′, y′)

dx′dy′

·dr (5)
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On the other hand, the capacitive contribution, Vk,i
cap, is given by the summation of line integrals

of the gradient of the bi-dimensional convolution between Green’s function GΦ for scalar potential and
the expansion surface density charge in terms of BFs given in (2) for all interfaces with metallizations
as it is shown in (6). Since the capacitive contribution involves line integrals whose integrands are
exact differentials, these line integrals can be analytically expressed as differences of bi-dimensional
convolutions as it is shown in (6). In (6), the observation points (x+

k,i, y+
k,i, −hNk ) and (x−k,i, y−k,i,

−hNk ) are the centers of the pair of adjacent Bézier patches associated to ith-razor blade WF (i.e., the
extremes points of the line Ck,i in Figure 2).

Vcap
k,i =

Q∑
l=1

∫Sl

[
GΦ(x+k,i − x′, y+k,i − y′, z = −hNk , z′ = −hNl)

−GΦ(x−k,i − x′, y−k,i − y′, z = −hNk , z′ = −hNl)
] Nb,l∑

j=1
cl, jσl, j(x′, y′)

dx′dy′


(6)

Again the bi-dimensional convolutions involve the integration of singular behavior of the integrand
introduced by the Green’s function when the observation point (x,y,z = −hNk) and source point (x′,y′,z′

= −hNl) are close.
The system of linear equations given in (3) can be addressed by computing the coefficient matrix

(i.e., MM matrix) of the system of linear equations and solving the unknown coefficients cl,j (j = 1, . . . ,
Nb,l; l = 1, . . . , Q) by direct inversion of the MM matrix. However, this way shows several drawbacks
when the number of unknowns, Nb, is very large. First, the CPU time consumption for computing
the coefficient matrix of the system of equations is proportional to the size of the coefficient matrix
of the system of equations [22,23] (i.e., the computational complexity of CPU time consumption as a
function of the number of unknown Nb is roughly O(Nb

2)). Therefore, the CPU time consumption
can be prohibitive for large number of unknowns, Nb. Second, this approach requires save all the
terms of MM matrix in computer memory. Third, once the MM matrix is available, the computation of
the inverse matrix of large size can show ill conditioned problems [36–38]. This paper is focused on
the analysis of large multilayer structures which hosts resonant layouts with respect to the working
wavelength as, for example the analysis of whole printed reflectarray antennas. Therefore, tens of
thousands of unknowns, Nb, are expected. Iterative methods to solve the system of linear equations
given in (3) for large values of unknowns, Nb, is suitable to face the problem. In this way, a normalized
error is defined as

ξ =
|Vexc

−Vsc
|

|Vexc
|

(7)

where,

Vexc =
(
Vexc

1,1 , . . . , Vexc
1,Nb,1

, . . . , Vexc
Q,1, . . . , Vexc

Q,Nb,Q

)
Vsc =

(
Vsc

1,1, . . . , Vsc
1,Nb,1

, . . . , Vsc
Q,1, . . . , Vsc

Q,Nb,Q

) (8)

Note that the normalized error, ξ, shown in (7) is zero if Vexc = Vsc, and ξ = 1 if Vsc = 0. In
order to reduce the normalized error, an iterative method is applied. The iterative method computes
iteratively the coefficients cl,j (j = 1, . . . , Nb,l; l = 1, . . . , Q) which reduce the normalized error, ξ,
until threshold, ξth, is reached. In this work, BICGSTAB method [39] is implemented as the iterative
method. The BICGSTAB approach requires several computations of Vsc in each iteration. In this way,
several computations of inductive, Vk,i

ind, and capacitive, Vk,i
cap, contributions with (i = 1, . . . , Nb,k;

k = 1, . . . , Q) are required in each iteration. The direct computation of the inductive and capacitive
contributions by (5) and (6) show several drawbacks. First, when the observation point is changed (for
example, samples used in the quadrature rule for the computation of the line integrals along Ck,i in
(5) and the extremes points of the line Ck,i in (6)) the computations of bi-dimensional convolutions
between Green’s functions and surface current or charge densities have to be repeated. Second, the
bi-dimensional convolutions involved in (5) and (6) require the integrations of singular behavior of
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the integrands introduced by the Green’s functions when the observation point (x,y,z = −hNk) and
source point (x′,y′,z′ = −hNl) are close. These integrations require specialized quadrature rules [40,41]
and/or sophisticated mathematic handling [16,42] to be efficiently computed. Therefore, an efficient
computation procedure of the inductive and capacitive contributions is required.

In [34], the authors show an efficient computation procedure of the inductive and capacitive
contributions based on pulse expansion and EPP which involve FFT algorithm applied on discrete
functions for periodic multilayer analysis problems. In this work, we implement a similar procedure
applied to non-periodic structures. In our case, the following discrete functions of (2Nx + 2) × (2Ny +

2) elements for the surface current and charge densities hosted in the lth-interface with metallizations
are proposed as

Jd
l,x/y[m′, n′] =

Nb,l∑
j=1

cl, j Jl, j,x/y(xm′, yn′) (9)

σd
l [m′, n′] =

Nb,l∑
j=1

cl, jσl, j(xm′, yn′) (10)

where 0 < m′ < Nx, 0 < n′ < Ny, xm′ = x0 + m′∆x, yn′ = y0 + n′∆y and ∆x = 2Lx/(2Nx + 1), ∆y = 2Ly/(2Ny

+ 1) being Lx and Ly are the maximum lengths of the whole multilayer structure in x- and y-directions.
The points (xm′ , yn′) are equi-spaced mesh points of a very dense mesh (i.e., the values of Nx and Ny

are high values as the values of ∆x and ∆y are low values). Zero padding of the discrete functions is
carried out when m′ > Nx, n′ > Ny. The following proposed discrete functions of (2Nx + 2) × (2Ny + 2)
elements which involve multilayer Green’s functions are

Gd,A
k,l [m−m′, n− n′] =

m′∆x+ ∆x
2∫

m′∆x− ∆x
2

n′∆y+ ∆y
2∫

n′∆y− ∆y
2

GA
xx(xm − x′, yn − y′, z = −hNk , z′ = −hNl)dx′dy′ (11)

Gd,Φ
k,l [m−m′, n− n′] =

m′∆x+ ∆x
2∫

m′∆x− ∆x
2

n′∆y+ ∆y
2∫

n′∆y− ∆y
2

GΦ(xm − x′, yn − y′, z = −hNk , z′ = −hNl)dx′dy′ (12)

where 0 < m − m′ < Nx, 0 < n − n′ < Ny. In the remaining domain of the discrete variables m − m′ and
n − n′ symmetric reproduction is carried out as

Gd,A/Φ
k,l [m−m′, n− n′] =


Gd,A/Φ

k,l [2Nx + 2− (m−m′), n− n′] if Nx < m−m′; n− n′ < Ny

Gd,A/Φ
k,l [m−m′, 2Ny + 2− (n− n′)] if Ny < n− n′; m−m′ < Nx

Gd,A/Φ
k,l [2Nx + 2− (m−m′), 2Ny + 2− (n− n′)] if Nx < m−m′; Ny < n− n′

(13)

In a similar way to this shown in [34], the EPP and pulse expansion of BFs lead discrete cyclic
convolutions between the discrete functions defined in Equations (9)–(12) instead of continuous
convolutions between Green’s functions and BFs which appear in (5) and (6). These discrete cyclic
convolutions can be computed in an efficient way by FFT procedure as it is shown in [34]. This approach
provides an efficient technique to compute the continuous convolutions which appear in Equations (5)
and (6) when the observation points are the equi-spaced mesh points. Since the equi-spaced mesh are a
very dense mesh, the continuous convolutions shown in Equations (5) and (6) can be evaluated in any
observation points of the (x,y) of the kth-interface of multilayer structure under study by conventional
bilinear interpolation [43] from the values of the elements of the resultant discrete cyclic convolutions.
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3. Numerical Results

In this section, we will show results of four analysis of whole printed reflectarray antennas: (1)
shaped beam reflectarray made of three coplanar parallel dipoles; (2) dual polarized broadband focused
reflectarray made of two orthogonal sets of three parallel dipoles; (3) circular polarized focused beam
reflectarray made of rotated split rings; and (4) focused beam reflectarray made of two sets of four
parallel dipoles with small rotations.

3.1. Shaped Beam Reflectarray Made of Three Coplanar Parallel Dipoles

Figure 3 shows the shaped beam reflectarray which is considered in this work. This reflectarray
was designed in [44] to provide sectored-cosecant squared beam at 10.4 GHz. The reflectarray is made
of elements based on three coplanar parallel resonant dipoles. The reflectarray is circular and consists
of 489 elements arranged in a 25 × 25 grid with cell size 16.5 mm × 16.5 mm (i.e., the electrical size of
the reflectarray is Lx × Ly = 14.3λ × 14.3λ at 10.4 GHz). The elements are printed on an Arlon (εr,2 =

3.38, tanδ2 = 0.005) layer 0.508 mm thick placed on top of Rohacell (εr,1 = 1.12, tanδ1 = 0.002) layer
3 mm thick. Therefore, according with Figure 1, NC = 2 and Q = 1. The phase center of the feed is
assumed to be located at the point of coordinates (xF, yF, zF) = (−175, 0, 390) (mm) with respect to the
center of the reflectarray (see Figure 3). The feed points to the center of the reflectarray. The radiation
pattern of the feed is modeled as a function cos10(θ) which provides an illumination level −11 dB below
the maximum at the edges of the reflectarray. NURBS model of the planar geometry of the elements
has been made. These NURBS surfaces are efficiently written in terms of 11,736 Bézier patches and
10,269 generalized rooftops are used in the approximation of the surface current densities induced in
the elements of the reflectarray (i.e., the number of unknowns is Nb = 10,269).

Figure 3. Shaped beam reflectarray made of three coplanar parallel dipoles.

Figure 4 shows equi-spaced mesh points x = xm, y = yn, z = −h2 0 < m < Nx, 0 < n < Ny which are
inside of the reflectarray surface Lx × Ly = 412.5 mm × 412.5 mm. These points are used to evaluate the
discrete functions defined in Equations (9)–(13). Values of Nx = Ny = 2047 are considered in Figure 4.
The blue points stand for the outer equi-spaced mesh points to layout while the red points stand for
the inner equi-spaced mesh points to layout.

Figure 5 shows the normalized values of the magnitude of discrete function G1,1
d,Φ[m − m′,n

− n′] for the EPP according with (12) and (13). These results are shown to visualize the appearance
of G1,1

d,Φ[m − m′,n − n′] when symmetric reproduction of (13) is implemented. Similar results are
obtained for G1,1

d,A[m − m′,n − n′]. We would like to point out that the total consumption of CPU
time to compute all values of G1,1

d,A[m − m′,n − n′] and G1,1
d,Φ[m − m′,n − n′] for (2Nx + 2) × (2Ny +

2) = 4096 × 4096 is 208 s while that, 54 s are required for (2Nx + 2) × (2Ny + 2) = 2048 × 2048. These
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pre-processing are obtained in a laptop computer with processor Intel Core i7-6700HQ, 2.6 GHz of
clock frequency with 32 GB of RAM.

Figure 4. Equi-spaced mesh points x = xm, y = yn, z = −h2 0 < m < Nx, 0 < n < Ny that are inside of the
reflectarray surface Lx × Ly = 412.5 mm × 412.5 mm. The values of Nx = Ny = 2047 are considered.

Figure 5. Values of Log10|G1,1
d,Φ[m − m′,n − n′]/G1,1,max

d,Φ |given by (12) and (13). The results are
obtained at 10.4 GHz. Similar results are obtained for G1,1

d,A[m − m′,n − n′].

Once continuous convolutions between Green’s functions and BFs which appear in (5) and (6)
are computed, the inductive, V1,i

ind, and capacitive, V1,i
cap, (i = 1, . . . , Nb,1) contributions can be

available for the BICGSTAB iterative method. In this way BICGSTAB iterative method is implemented
to computes iteratively the coefficients c1,j (j = 1, . . . , Nb,1) which reduce the normalized error ξ given
in (7) and (8) until threshold ξth = 0.01 is reached. Figure 6 shows the normalized error ξ with respect
to the index of iterations to reach the threshold ξth = 0.01. Results are shown for two equi-spaced
mesh: mesh with (2Nx + 2) × (2Ny + 2) = 4096 × 4096 and mesh with (2Nx + 2) × (2Ny + 2) = 2048
× 2048. Note that less number of iterations is required to reach the threshold ξth = 0.01 when (2Nx

+ 2) × (2Ny + 2) = 4096 × 4096 than when (2Nx + 2) × (2Ny + 2) = 2048 × 2048. Since increasing of
the density of the equi-spaced mesh produces a more accurate pulse approximation, these results are
expected. We would like to point out that a maximum of 2.219 GB RAM memory and 28 s are required
when the normalized error ξ has to be evaluated with (2Nx + 2) × (2Ny + 2) = 4096 × 4096 while that,
a maximum of 570 MB RAM memory and 8 s are required when the normalized error ξ has to be
evaluated with (2Nx + 2) × (2Ny + 2) = 2048 × 2048. Therefore, total CPU consumption of 364 s are
required for all iterations when (2Nx + 2) × (2Ny + 2) = 4096 × 4096 while that, 136 s are required when
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(2Nx + 2) × (2Ny + 2) = 2048 × 2048. These results are obtained in a laptop computer with processor
Intel Core i7-6700HQ, 2.6 GHz of clock frequency with 32 GB of RAM.

Figure 6. Normalized error ξ with respect to the index of iterations to reach the threshold ξth = 0.01.
Results are shown for two equi-spaced mesh: mesh with (2Nx + 2) × (2Ny + 2) = 4096 × 4096 and mesh
with (2Nx + 2) × (2Ny + 2) = 2048 × 2048. Figure 7 shows numerical radiation patterns in elevation
plane and azimuth plane at 10.4 GHz obtained by the proposed method for 4096 × 4096 and 2048 ×
2048 equi-spaced mesh. These results are compared with results obtained by local periodicity approach
and measurements shown in [44]. We can see that agreements between the results obtained with
the proposed method and measurements are into the tolerance errors of the layout building and the
material dielectric dispersion.

3.2. Dual Polarized Broadband Focused Beam Reflectarray Made of Two Orthogonal Sets of Three
Parallel Dipoles

In order to show the analysis capability of the proposed method for multilayer structure with
several interfaces which host metallizations, dual polarized broadband focused beam reflectarray
designed at 11.95 GHz in [45] has been analyzed by the proposed method. This reflectarray is made of
elements based on two stacked orthogonal sets of three parallel dipoles (see Figure 1 in [45] for details).
The reflectarray was designed in [45] to generate a pencil beam pointing at the values of the angular
spherical coordinates θbeam = 16.9◦ ϕbeam = 0◦ with respect to the system coordinate system located
at the center of reflectarray (see Figure 3). The reflectarray is circular and consists of 861 elements
arranged in a 33 × 33 grid with cell size 12 mm × 12 mm (i.e., the electrical size of the reflectarray is Lx

× Ly = 15.7λ × 15.7λ at 11.95 GHz in this case). The elements are printed on a thin Diclad 880 (εr,2 =

2.17, tanδ2 = 0.0009) layer of 0.127 mm thick. A Diclad 880 layer (εr,1 = εr,2, tanδ1 = tanδ2) 3.175 mm
thick is used as separator with the ground plane. Therefore, according with Figure 1, NC = 2, Q = 2, N2

= 2, and N1 = 1. The phase center of the feed is assumed to be located at the point of coordinates (xF, yF,
zF) = (−193, 0, 635) (mm) with respect to the center of the reflectarray (see Figure 3). The feed points to
the center of the reflectarray. The radiation pattern of the feed is modeled as a function cos26(θ) which
provides an illumination level −11 dB below the maximum at the edges of the reflectarray. In this case,
36,162 generalized rooftop are used in the approximation of the surface density currents induced in the
elements of the reflectarray (i.e., the number of unknowns is Nb = 11,222). Figure 8 shows numerical
radiation patterns in elevation plane for X and Y polarization at 11.95 GHz obtained by the proposed
method with (2Nx + 2) × (2Ny + 2) = 4096 × 4096. These results are compared with results obtained by
local periodicity approach and measurements shown in [45]. We can see that agreements between the
results obtained with the proposed method and measurements are slightly better than the agreements
between the results obtained by local periodicity approach and measurements.



Electronics 2020, 9, 1476 11 of 17

Figure 7. Radiation patterns in elevation plane (a) and azimuth plane (b) for a shaped beam reflectarray
antenna based on elements with three parallel dipoles at 10.4 GHz designed in [44]. The numerical
results obtained with the proposed method for 4096 × 4096 and 2048 × 2048 equi-spaced mesh are
compared with local periodicity approach and measurements shown in [44].

Figure 8. Cont.
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Figure 8. Radiation patterns in elevation plane for X-polarization (a) and Y-polarization (b) for a
focused beam reflectarray antenna based on two stacked orthogonal sets of three parallel dipoles at
11.95 GHz designed in [45]. The numerical results obtained with the proposed method for 4096 × 4096
equi-spaced mesh are compared with a local periodicity approach and measurements shown in [45].

The results obtained by the proposed method have required 22 iterations. This number of
iterations is higher than the number of iterations required in previous subsection. This is expected
since the number of unknowns, 36,162, of the linear system of equations is larger than the number of
unknowns used in the previous subsection. In this case, a maximum of 6.496 GB RAM memory and 87
s are required when the normalized error ξ has to be evaluated (total CPU time consumption of 1914 s).
These results are obtained in a laptop computer with processor Intel Core i7-6700HQ, 2.6 GHz of clock
frequency with 32 GB of RAM.

3.3. Circular Polarized Focused Beam Reflectarray Made of Rotated Split Rings

In order to show the analysis capability of the proposed method for curved layout printed in
multilayer structures, a circular polarized focused beam reflectarray design has been carried out at 12
GHz to generate at pencil beam pointing at the values of the angular spherical coordinates θbeam =

19◦ ϕbeam = 0◦ with respect to the system coordinate system located at the center of reflectarray (see
Figure 9a). The reflectarray is circular and consists of 489 elements arranged in a 25 × 25 grid with cell
size 8 × 8 mm2 (i.e., the electrical size of the reflectarray is Lx × Ly = 8λ × 8λ at 12 GHz in this case).
The reflectarray is made of elements based on split-ring. The split rings are printed on single layer
Roger Duroid 5880 (εr,1 = 2.2, tanδ1 = 0.0009) 2.311 mm thick. Therefore, according with Figure 1, NC
= 1 and Q = 1. The width, inner, and outer radius of split rings have been fixed at 0.5, 2.75, and 3.25
mm respectively. The reflectarray design has been carried out under local periodicity assumption
and variable rotation technique (VRT) [46]. The VRT ensures that the phases of copolar reflection
coefficients for circular polarization are twice of rotation angles when the phases of copolar reflection
coefficients for linear polarization are shifted 180◦. In this way, the design is carried out in three steps:
first, the phase of the reflection coefficients for right handed circular polarization (RHCP) is computed
in each element of the reflectarray to focus the beam at 12 GHz in the desired direction by Equation (3.3)
of [1]. Second, the rotation angle of each element is computed as the half of computed phase. Third,
the arc lengths of each split ring of each rotated element is adjusted to satisfy that 180◦ of difference
of phase is obtained between the copolar reflection coefficients for linear polarizations at 12 GHz. In
the design procedure, an efficient numerical tool of analysis of multilayer periodic structure based on
NURBS surfaces described in [42] has been used in the local periodicity approach. The whole designed
reflectarray has been analyzed at 12 GHz by the proposed method using 11,222 generalized rooftops in
the approximation of the surface density currents induced in the elements of the reflectarray (i.e., the



Electronics 2020, 9, 1476 13 of 17

number of unknowns is Nb = 36,162). In this analysis the radiation pattern of the feed is modeled as
a function cos10(θ) for RHCP which provides an illumination level −11 dB below the maximum at
the edges of the reflectarray. The feed points to the center of the reflectarray and its center phase is
assumed to be located at the point of coordinates (xF, yF, zF) = (−63.9, 0, 185.5) (mm) with respect to the
center of the reflectarray (see Figure 9a). Figure 9b shows numerical radiation patterns in elevation
plane for RHCP at 12 GHz obtained by the proposed method with (2Nx + 2) × (2Ny + 2) = 4096 × 4096
and by local periodicity approach. We can see that there are acceptable agreements between both sets
of numerical results. We would like to point out that only 7 iterations and roughly 4.5 min of total
CPU time consumption have been required in the whole reflectarray analysis by the proposed method.
These results are obtained in a laptop computer with processor Intel Core i7-6700HQ, 2.6 GHz of clock
frequency with 32 GB of RAM.

Figure 9. (a) Circular polarized focused beam reflectarray of rotated split rings. (b) Radiation patterns
in elevation plane for right handed circular polarization at 12 GHz. Numerical results obtained with
the proposed method for 4096 × 4096 equi-spaced mesh and local periodicity approach are shown.

3.4. Focused Beam Reflectarray Made of Two Sets of Four Parallel Dipoles with Small Rotations

In order to show validation with commercial software, the focused beam reflectarray designed at
11.95 GHz in [47] has been analyzed by the proposed method. This reflectarray is made of elements
based on two orthogonal sets of four parallel dipoles displaced each other a half of period (see Figure 2
in [47] for details). Each set of parallel dipoles is rotated a small angle with respect to the central dipole
of the set in order to reduce cross-polar radiation. The reflectarray was designed in [47] to generate
a pencil beam pointing at the values of the angular spherical coordinates θbeam = 16.9◦ ϕbeam = 0◦

with respect to the system coordinate system located at the center of reflectarray (see Figure 10a). The
reflectarray is square and consists of in a 20 × 20 grid with cell size 12 mm × 12 mm (i.e., the electrical
size of the reflectarray is Lx × Ly = 9.5λ × 9.5λ at 11.95 GHz in this case). The elements are printed on
a Diclad 880 (εr,2 = 2.17, tanδ2 = 0.0009) layer of 1.5 mm thick. An Arlon AD255C layer (εr,1 = 2.55,
tanδ1 = 0.0014) 2.363 mm thick is used as separator with the ground plane. Therefore, according with
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Figure 1, NC = 2, Q = 2, N2 = 2 and N1 = 1. The phase center of the feed is assumed to be located at
the point of coordinates (xF, yF, zF) = (−85.3, 0, 281) (mm) with respect to the center of the reflectarray
(see Figure 10a). The feed points to the center of the reflectarray. The radiation pattern of the feed is
modeled as a function cos10(θ) which provides an illumination level −11 dB below the maximum at
the edges of the reflectarray. In this case, 23,548 generalized rooftop are used in the approximation of
the surface density currents induced in the elements of the reflectarray (i.e., the number of unknowns
is Nb = 23,548). Figure 10b shows numerical co-polar and cross-polar radiation patterns in azimuth
plane for X and at 11.95 GHz obtained by the proposed method with (2Nx + 2) × (2Ny + 2) = 4096 ×
4096. These results are compared with results obtained by full-wave simulation of the whole antenna
with CST shown in Figure 5b of [47]. According with [47], a real feed horn was also modeled using CST
instead of cos10(θ) function. We can see acceptable agreements between the co-polar radiation patterns
obtained with the proposed method and results provided by CST in [47]. However, the cross-polar
radiation levels obtained by CST is higher than the cross-polar radiation obtained by the proposed
method. This is expected since the full-wave model of the feed horn was carried out by CST. Unlike
cos10(θ) model, the CST model of feed horn takes into account cross-polar components provided by
its own feed horn. The results obtained by the proposed method have 42 required iterations. In this
case, a maximum of 6.511 GB RAM memory and 90 s are required when the normalized error ξ has to
be evaluated. CPU time consumption of 63 min has been required for the iterative process to reach
the threshold ξth = 0.01. These results are obtained in a laptop computer with processor Intel Core
i7-6700HQ, 2.6 GHz GHz of clock frequency, with 32 GB of RAM. According with [47], the analysis of
the whole antenna provided by CST took 8 h in a computer with two Intel Xeon Processors (six cores
per processor), 2.1 GHz of clock frequency, and 128 GB of RAM. Note that the CPU time consumption
by the proposed method is roughly eight times faster than the CPU time consumption taken by CST
using a laptop with lower performances than the computer used in [47].

Figure 10. (a) Focused beam reflectarray made of two sets of four parallel dipoles with small rotations.
(b) Co-polar and cross-polar radiation patterns in azimuth plane for X-polarization at 11.95 GHz.
Numerical results obtained with the proposed method for 4096 × 4096 equi-spaced mesh and CST
results given in [47] are shown.
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4. Conclusions

In this work, NURBS surfaces, pulse expansion, and EPP approaches have been implemented
for the efficient computation of normalized error defined in iterative BICGSTAB-FFT-MM scheme
for whole large multilayer structure analysis problems with several levels with planar metallizations.
Moreover, in this scheme, efficient computation of Green’s functions for multilayer structure has been
also implemented for near and far field region.

As validation of the proposed analysis technique, two types of printed reflectarray antennas
described in the literature have been analyzed: single layer shaped beam reflectarray made of cell
based on three coplanar parallel dipoles (electrical size of 14.3λ × 14.3λ) and a two-stacked-layer
broadband dual polarized reflectarray made of cells based on two orthogonal sets of three parallel
dipoles (electrical size of 15.7λ × 15.7λ). The numerical results obtained with the proposed method
have been compared with experimental and numerical results provided by local periodicity approach
in the literature. In both comparisons, agreements between the results obtained with the proposed
method and measurements are acceptable considering the error margin in the antenna layout building
and the dispersion of the dielectric constant values. The total CPU time consumption provided by the
proposed method in the analysis is from a few minutes (for reflectarray analysis of electrical size of
14.3λ × 14.3λ and 10,629 unknowns) to half an hour (for reflectarray analysis of electrical size of 15.7λ
× 15.7λ and 36,162 unknowns) in a laptop computer with processor Intel Core i7-6700HQ, 2.6 GHz of
clock frequency with 32 GB of RAM. In order to show the capability of the proposed method for analysis
of curved layout printed in multilayer structures, a circular polarized focused beam reflectarray design
has been carried out using rotated split rings as reflectarray element (electrical size of 8λ × 8λ and
11,222 unknowns). The reflectarray has been designed and analyzed by the local periodicity approach.
The results provided by this last approach have been compared with the results the proposed method.
An acceptable agreement has been obtained between both numerical results. In the whole reflectarray
full-wave analysis by the proposed method, only 4.5 min of CPU time was required.

Finally, focused beam reflectarray made of two sets of four parallel dipoles with small rotations
has been analyzed (electrical size of 9.5λ × 9.5λ and 23,548 unknowns). The results provided by
the proposed method have been compared with CST results provided in the literature. Acceptable
agreements have been obtained. The CPU time consumption taken by the proposed method is roughly
eight times faster than the CPU time consumption taken by CST using a laptop with lower performances
than the computer used in the literature to analyze the whole antenna with CST software.
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