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Abstract: Background/Objective: This study aimed to investigate the effect of exposure to per- and
polyfluoroalkyl substances (PFAS), a class of organic compounds utilized in commercial and industrial
applications, on allostatic load (AL), a measure of chronic stress. PFAS, such as perfluorodecanoic acid
(PFDE), perfluorononanoic acid (PFNA), perfluorooctane sulfonic acid (PFOS), perfluoroundecanoic
acid (PFUA), perfluorooctanoic acid (PFOA), and perfluorohexane sulfonic acid (PFHS), and metals,
such as mercury (Hg), barium (Ba), cadmium (Cd), cobalt (Co), cesium (Cs), molybdenum (Mo), lead
(Pb), antimony (Sb), thallium (TI), tungsten (W), and uranium (U) were investigated. This research
was performed to explore the effects of combined exposure to PFAS and metals on AL, which may
be a disease mediator. Methods: Data from the National Health and Nutrition Examination Survey
(NHANES) from 2007 to 2014 were used to conduct this study on persons aged 20 years and older. A
cumulative index of 10 biomarkers from the cardiovascular, inflammatory, and metabolic systems
was used to calculate AL out of 10. If the overall index was ≥ 3, an individual was considered to
be chronically stressed (in a state of AL). In order to assess the dose-response connections between
mixtures and outcomes and to limit the effects of multicollinearity and other potential interaction
effects between exposures, Bayesian kernel machine regression (BKMR) was used. Results: The most
significant positive trend between mixed PFAS and metal exposure and AL was revealed by combined
exposure to cesium, molybdenum, PFHS, PFNA, and mercury (posterior inclusion probabilities,
PIP = 1, 1, 0.854, 0.824, and 0.807, respectively). Conclusions: Combined exposure to metals and PFAS
increases the likelihood of being in a state of AL.

Keywords: PFAS; metals; allostatic load; BKMR; mixtures

1. Introduction
1.1. Background

The totality of exposures people endure throughout their lives and how those expo-
sures affect health have been referred to as the exposome [1]. Although certain environ-
mental exposures might lead to unfavorable health outcomes, little is understood about
how these factors interact or synergize to affect the stress response system [2]. This is
especially critical to understand when exposure to metals is mixed with exposure to per-
and polyfluoroalkyl substances (PFAS).

The negative consequences of PFAS and mixed metals may be deleterious. They could
have a long-term effect on the impacted populations’ social, educational, and economic
advancement [3,4]. In many environments with high levels of chronic stress, several metals
and PFAS co-exist at moderate to high levels.

Individuals maintain physiological balance through allostasis, which involves adjust-
ing bodily characteristics to meet environmental requirements. Homeostasis describes
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health as a state in which all physiological parameters function within non-changing set-
points. Allostasis, on the other hand, states that there are no setpoints and that the demands
of the moment will determine the normal values of markers. However, the body adjusts to
the higher set point if the impediments persist [5]. When the setpoint is changed, people
are said to be in a state of allostatic load. Allostatic load (AL), an index of persistent
physiological stress, is the biological consequence of stress. AL depends on the assumption
that repetitive activation of the hypothalamic-pituitary-adrenal (HPA) axis affects multiple
organ systems [5–8].

The wear and tear on the body caused by ongoing exposure to stressors can be
measured by AL, which combines markers from systems within the human body to form a
comprehensive biological stress index. An adult’s well-being is negatively impacted by
psychosocial stresses, such as poverty, racial inequality, lack of access to resources, and
water and food insecurity, which may be combined with environmental factors to increase
AL within populations.

At the individual and population levels, real-world human exposure to stressors
is extraordinarily varied and temporally dynamic. Humans are constantly exposed to
intricate chemical combinations of PFAS, metals, and other environmental pollutants [9,10].
Data analytics techniques provide a novel way to analyze the combined risk of various
exposures in order to develop methodologies to properly identify and evaluate their impact
on indices of stress, such as AL, because we do not fully understand the combinational
nature of these exposures [11].

1.2. Human Exposure Pathways to PFAS and Metals

According to the Agency for Toxic Substances and Disease Registry at the Centers
for Disease Control and Prevention (CDC), metals such as cadmium (Cd), arsenic (As),
lead (Pb), and mercury (Hg) are among the top 10 most toxic substances. Most people
are exposed to metals through ingestion (through water and food), inhalation (through
cigarette smoke or industrial products), or skin contact (through paint or soil) [12]. For
example, As comes in two forms: the inorganic form is highly toxic, while the organic form
is not. Most people are exposed to inorganic As, which is found in soil and groundwater,
through drinking water, often from unregulated private wells. Most people are exposed to
organic arsenic, which is found in fish and shellfish, through ingestion [13]. In the United
States, people of different races, ethnicities, and socioeconomic backgrounds experience
widely varying degrees of exposure. For example, non-Hispanic blacks have higher Pb
exposure than non-Hispanic whites [14].

Humans most commonly absorb toxic PFAS through their diets [15]. Inhalation of air
or dust containing PFAS particles is another route of exposure. Over the past decade, there
has been extensive research on the dangers of PFAS exposure for people’s health. The CDC,
for example, has set limits on PFAS concentrations in drinking water (70 ppt for PFOA
and PFOS).

PFAS spreads through many sites, including landfills and sites where PFAS has been
processed. E-waste sites, for example, leach PFAS into groundwater, soil, and air, while
wastewater treatment plants (WWTPs) release PFAS-laden effluent into rivers, lakes, and
farms [16]. PFAS from treated or untreated effluent enters sewers, rivers, lakes, and
oceans through aquatic ecosystems, making water the ultimate repository of PFAS in the
environment [2].

Pregnant and parturient women, elderly people, children, and neonates are the most
vulnerable to PFAS exposure, which can cause thyroid, lung, kidney, reproductive organ,
metabolic, brain, and behavior disorders, obesity, type 2 diabetes, proteinuria, hematuria,
immunosuppression, and adverse pregnancy outcomes [17].
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1.3. Bayesian Kernel Machine Regression (BKMR): A Mechanism for Monitoring Multiple
Environmental Exposures

Bobb et al. introduced Bayesian kernel machine regression (BKMR) for analyzing
mixtures within the R statistical program [18]. By using the (bkmr) package for the R pro-
gramming language, BKMR was created to estimate the health effects of pollutant mixtures
and is used for toxicological, epidemiological, and other applications. It does this by using
procedures from Gaussian predictive methods or hierarchical variable selection [18,19].
The estimation of health outcomes of the mixtures under kernel function is modeled on the
exposure variables by adjusting for potential covariates or cofounder factors [20]. These
procedures can address the possible collinearity of the mixtures’ components and test the
exposures’ overall health effects [21].

Ultimately, BKMR modeling is a technique that (1) models the exposures and out-
comes comprehensively, (2) evaluates the components of chemicals independently of the
independent–dependent function, (3) evaluates the effects of mixtures of chemicals, and
(4) distinguishes the necessary chemical mixtures for any dataset that is simulated [19,21].
BKMR is also used to solve the challenges encountered when evaluating the health impacts
of chemical mixtures (i.e., PFAS and metals). In epidemiological and toxicological studies,
BKMR helps solve problems such as collinearity and strong correlations between expo-
sures [22]. BKMR uses variable selection that produces and estimates posterior inclusion
probabilities (PIPs) values, which measure the values of variable importance for each
exposure in a mixture [18,20].

This study using BKMR hypothesizes that exposure to metals and PFAS is associated
with high levels of AL. PFAS and metals were chosen due to the unique opportunity to
assess combined exposures to organic and inorganic contaminants, the extensive research
on both groups of contaminants with National Health and Nutrition Examination Survey
(NHANES) data, and the vast historical and emerging research related to these contami-
nants. To test this hypothesis, data from the NHANES were used to identify the factors
most critical in combined exposures to PFAS and metals.

2. Materials and Methods
2.1. Study Cohort and Design

Data from the NHANES 2007–2014 of adults aged 20 years and over were utilized in
this investigation. This dataset is a representative sample of non-institutionalized people
residing in all 50 U.S. states and the District of Columbia. The U.S. Centers for Disease
Control and Prevention (CDC) collected the data, which are available in two-year cycles
and include multi-year, stratified, multi-stage, and clustered samples. The population of
the United States is represented by the statistics for four cycles within 2007–2014.

Selected individuals in the NHANES underwent a physical examination and an
interview. The participants’ blood was extracted, and samples were sent to a laboratory
for evaluation.

On the NHANES website of the CDC, additional descriptions and information about
the study, as well as the steps and processes involved in data collection, are provided.

The association between the various PFAS/metals concentrations and AL levels was
examined using weighted data in order to produce sample estimates, which reflect how
many people in the U.S. population one individual represents.

2.2. PFAS and Metals Measurements

There were two examination sessions each day. Exams in the morning, afternoon, or
evening were randomly assigned to participants. After fasting for nine hours, participants
were instructed to consume 75 g of dextrose (10 oz. of glucose solution) within 10 min after
the initial blood draw. After the first blood draw was taken, a second blood sample was
taken [23].
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2.2.1. PFAS Quantification

At the mobile examination center (MEC), the CDC gathered blood samples for lab-
oratory analysis to evaluate serum for PFAS. Polypropylene or polyethylene containers
were used to store the serum samples. The vials were subsequently shipped to several
laboratories across the country. Sample analysis was performed at every survey location
under the same conditions, owing to the controlled environments at separate facilities.

In order to concentrate the analytes (PFAS) in a solid-phase extraction column, one
aliquot of 50 mL of serum was injected into a commercial column switching system after
being diluted with formic acid.

High-performance liquid chromatography was used to separate the analytes from one
another and the other serum constituents.

A negative-ion Turbo Ion Spray (TIS) ionization source was utilized for detection and
quantification (DOQ). Tandem mass spectrometry was used to change liquid-phase ions
into gas-phase ions, utilizing a variation of the electrospray ionization source.

These PFAS can be quickly detected in human serum using this technique, with
detection limits in the low parts per billion (ppb or ng/mL) range [24].

An imputed value was placed in the analyte results field for analytes with analytic
results below the lower limit of detection; 0.10/square root of 2 = 0.07 was the lower limit
of detection divided by the square root of 2. Thus, the LOD for each PFAS was 0.10 or 0.07.

2.2.2. Metals Quantification

Inductively coupled mass spectrometry (ICP-MS) measured metals in diluted whole
blood. ICP-MS is a validated technique for analyzing metals in biological media.

All data set metal analytes had the same detection limits. An imputed fill value
was placed in the analyte results field for analytes below the lower limit of detection
using the equation: lower limit of detection divided by the square root of 2 [23].The NHANES
Laboratory Procedures Manual describes specimen collection and processing in detail [24].
The National Center for Environmental Health (NCEH) of the CDC’s Division of Laboratory
Sciences performed metal assays on whole blood samples for the NHANES 2007–2014.
Blood metals were identified and quantified using the inductively coupled plasma mass
spectrometry method No. ITB0001A.

2.3. Determining Allostatic Load Levels

This study’s AL was determined using physiological evaluations of 10 health indi-
cators or biomarkers. The biomarkers included systolic blood pressure (SBP), diastolic
blood pressure (DBP), total cholesterol (TC), high-density lipoprotein (HDL) cholesterol,
glycosylated hemoglobin (HbA1c), albumin (Alb), triglycerides (TG), body mass index
(BMI), creatinine clearance (CLCR), and C-reactive protein (CRP). Measures of AL were
determined by calculating the cutoffs for various biomarkers based on their distribu-
tion within the database. All biomarkers were transformed into quartiles based on the
data distribution. The top 25% of the distribution for each marker was designated as
high risk for (1) C-reactive protein (CRP), (2) triglycerides (TG), (3) total cholesterol (TC),
(4) systolic blood pressure (SBP), (5) diastolic blood pressure (DBP), (6) body mass index,
and (7) glycosylated hemoglobin. For the other markers where high risk is determined
by lower values, the bottom 25% of the distribution was used. These markers included
(1) urinary albumin (Alb), (2) creatinine clearance (CLCR), and (3) high-density lipoprotein
(HDL) cholesterol. High risk for each marker was assigned a value of 1, with low risk
assigned a value of 0 to obtain a total AL index out of 10. An AL value greater than 3/10
was considered elevated, as indicated by the prior work of the team and others [2,25–27].

2.4. Data Analysis

We used BKMR with the hierarchical variable selection method due to highly cor-
related variables and collinearity in the datasets. We utilized the BKMR model in the R
program using the R package (bkmr) to simulate the dataset. In this study, the model
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evaluated the impacts of mixtures or multipollutant exposures (e.g., PFAS and metals such
as cadmium, cobalt, cesium, molybdenum, lead, etc.) by comparing the implementation of
statistical and characteristics methods using the (kmbayes) function.

BKMR Modeling for Binary Outcomes

Combining data sources from various samples, including probability and nonproba-
bility samples, is appropriate when using Bayesian inference. The use of Bayesian inference
has various benefits. It first enables the estimation of complicated models and the quantifi-
cation of uncertainty measurements.

The likelihood function can be used to analyze sample units based on probability.
As the probability sample size grows, it is primarily set up to give these units priority

in the posterior calculations. Third, it enables posterior estimates to be more effective
and efficient than estimates obtained from tiny probability-only samples, with less uncer-
tainty [19,28].

We implemented kernel machine regression (KMR) for binary outcomes, as follows:

Φ − 1(P(Yi = 1)) = h(zi1, . . . , ziM) + βxi, I = 1, . . . , n

where h is a flexible function of the predictor variables zi1, ..., ziM, x is a vector of covariates
(β is the corresponding vector of coefficients), and h is the cumulative distribution function
(CDF) for the standard normal distribution. The outcome Yi is a binary (0/1) variable.
Predictors z were the exposure variables, and h(.) was the exposure-response function.
A kernel machine representation was used to model the function h in order to capture
complex, non-additive, non-linear exposure-response interactions.

The outcome variable in this study was AL. AL index values ≥ 3 were considered high
risk, with values < 3 considered low risk. Those who were high risk were assigned a 1 in the
dataset, while those who were low risk were assigned a 0. Binary outcomes were performed
by applying the BKMR package using the probit model for convenience of computation
and to overcome some of the issues that may arise in the dataset, such as collinearity under
Bayesian inference [29]. Posterior inclusion probabilities (PIPs), which offer a gauge of
the variable importance of each exposure, were extracted and plotted. All models were
adjusted for sex, age, smoking, physical activity, ethnicity, occupation, income, alcohol
consumption, education, birthplace, and time in the U.S. The analysis within this study
was conducted using R software, version 4.1.2 (R Foundation for Statistical Computing,
Vienna, Austria). A flow chart containing all the steps performed in the analysis can be
found in Figure 1 below.

Figure 1. Flow chart for methodology.
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3. Results

Table 1 below provides the posterior inclusion probabilities (PIPs), which measure the
percentage of the data that backs the inclusion of exposure or variable in the model. In
other words, it quantifies the variable significance to be included within the model. The
exposures to be included in the model were PFNA, PFUA, PFOA, PFHS, mercury, cesium,
and molybdenum.

Table 1. Posterior inclusion probability (PIP) and comparison of four models (BKMR, Oracle, Linear,
and True) of overall health effects on the response variable (AL) by exposures.

Overall Effects

Models

BKMR 1 Oracle 2 Linear 3 TRUE 4

0.680 −0.539 −0.572 −0.843

Individual effect

Models

variable # variable PIP 5 BKMR Oracle Linear TRUE

1 PFDE 0.700 0.068 0.153 −0.693 −1.784
2 PFNA 0.824 0.023 0.239 0.124 0.264
3 PFOS 0.651 0.087 −0.131 0.032 0.059
4 PFUA 0.795 0.019 0.098 0.235 −0.324
5 PFOA 0.754 0.033 0.955 0.015 −0.021
6 PFHS 0.854 0.115 −0.169 −0.037 −0.068
7 Mercury 0.807 0.022 −0.278 −0.084 −0.144
8 Barium 0.719 0.014 0.427 0.033 0.054
9 Cadmium 0.727 0.390 0.356 0.114 0.199

10 Cobalt 0.706 0.022 −0.038 −0.169 −0.273
11 Cesium 1.000 0.350 0.101 0.003 0.008
12 Molybdenum 1.000 0.238 −0.386 0.004 0.006
13 Lead 0.674 0.035 0.736 −0.008 −0.036
14 Antimony 0.701 0.203 −0.258 0.343 0.543
15 Thallium 0.749 0.044 −0.163 0.419 0.663
16 Tungsten 0.762 0.012 −0.195 −0.349 −0.689
17 Uranium 0.723 0.016 −0.413 4.204 7.213

Note: 1 Bayesian kernel machine regression (BKMR); 2 Oracle model that uses glm (generalized linear model);
3 Linear model; 4 True model using all variables with no adjustment; 5 PIP (posterior inclusion probability), which
quantifies the importance of the variable in variable selection.

Figure 2 shows the association between the response variable and each individual
exposure included in the model, which is known as the univariate relationship. The other
exposures were fixed at their median values, and the covariates were fixed as constant. This
figure shows that the association of some variables is not significant or has no association
with the outcome. In other words, Figure 2 below shows the univariate independent-
response association (each individual independent and dependent—AL association) by
fixing the remaining exposures to their median, with the covariates being constant. The
associations in Figure 2 present the relationship of exposures with responses when the
model is adjusted for covariates (sex, age, smoking, physical activity, ethnicity, occupation,
income, alcohol consumption, education, birthplace, and time in the U.S.). For instance,
exposure to PFNA, PFUA, PFOA, PFHS, mercury, cesium, thallium, tungsten, and uranium
are associated with AL, with some of these contaminants having sharper inclines, indicating
different levels of exposure. Uphill on the graphs represents a higher level of exposure, and
downhill shows lower levels of exposure. In other words, concentration values increase
and decrease depending on the amount of exposure.

In Table 2, the PIPs with the highest values are explored using critical sociodemo-
graphic and behavioral variables. The six highest PIPs were molybdenum, cesium, mercury,
PFNA, PFOA, and PFHS.
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Figure 2. Univariate exposure-response functions and 95% confidence intervals for each metal and
PFAS exposure, with others fixed at the median.

Table 2. Metals (molybdenum, cesium, and mercury) and PFAS (PFNA, PFOA, and PFHS) means by
critical study variables.

Metals and PFAS

Variable Molybdenum Cesium Mercury PFNA PFOA PFHS

Activities Mean

1 day 57.80 5.08 0.59 0.14 0.98 0.80
2 days 76.70 4.72 0.62 0.13 0.89 0.77
3 days 55.70 5.05 0.57 0.13 0.85 0.70
4 days 45.30 5.20 1.33 0.12 0.84 0.72
5 days 60.40 4.26 0.57 0.13 0.90 0.79
6 days 40.10 3.56 0.44 0.13 1.00 0.82
7 days 57.40 3.60 0.63 0.14 0.86 0.67
Smoke

yes 51.70 4.95 0.56 0.13 0.93 0.78
no 61.00 5.03 0.64 0.14 0.81 0.67
AL

high 67.54 5.35 0.60 0.13 0.83 0.73
low 49.45 4.73 0.61 0.13 0.88 0.71

Ethnicity
Mexican 59.10 5.07 0.58 0.09 0.78 0.59

Black 57.70 4.78 0.66 0.14 0.84 0.72
White 50.20 4.89 0.54 0.12 0.97 0.82

Hispanic 61.80 5.19 0.43 0.11 0.80 0.59
Other and

Asian 65.90 5.37 0.60 0.26 0.65 0.60

Sex
Female 54.30 4.76 0.63 0.12 0.76 0.56
Male 59.90 5.23 0.58 0.14 0.97 0.88

Table 3 explores mean AL levels by ethnicity and age group. This was performed to
give context to the results. The results indicated that both ethnicity and age are significantly
related to AL.
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Table 3. AL means for ethnicities by age group.

Age Groups

20 to 39 40 to 59 60 and older

Ethnicity AL mean

Mexican 2.9 3.49 3.58

Black 3.32 3.92 3.83

White 2.66 3.26 3.37

Hispanic 2.69 3.47 3.64

Other and Asian 2.63 3.08 3.13

Table 4 explores the correlation between all the critical environmental exposures in
this study. The results demonstrate that the strongest correlation exists between cesium
and mercury.

Table 4. Correlation between metals and PFAS variables.

Metals and PFAS

PFNA PFOA PFHS Cesium Molybdenum Mercury

PFNA 1.000 0.124 0.028 0.042 −0.006 0.064
PFOA 0.124 1.000 0.327 0.003 0.032 −0.032
PFHS 0.028 0.327 1.000 0.029 −0.013 −0.069

Cesium 0.042 0.003 0.029 1.000 0.320 0.438
Molybdenum −0.006 0.032 −0.013 0.320 1.000 0.221

Mercury 0.064 −0.032 −0.069 0.438 0.221 1.000

4. Discussion

The main PFAS have extensive half-lives in humans and are physiologically and
biologically persistent. The gap in the body of knowledge on the impact of environmental
pollutants on stress and health is partly filled by attempting to understand the relationship
between the cumulative physiological burden of stress (AL) and PFAS and metals [30].
This is especially true because stressors are constantly present in people’s lives, and the
cumulative effect on health is apparent when resilience is lacking [30,31].

BKMR provides a way to address the potential multicollinearity among numerous
PFAS and metal exposures, which cannot be resolved using traditional regression modeling.
Based on a comprehensive analysis of the NHANES 2007–2014 data, we assessed the
relationships between metal and PFAS exposures and AL among a nationally representative
sample of adults. The study’s findings supported the main hypothesis, which stated that
exposure to a combination of PFAS and metals is strongly linked to AL. This expands prior
work by the team, which found that metals and PFAS are associated with AL using simpler
modeling techniques [2,30].

In this study, combined exposure analyses of PFAS and metals showed a significant
positive association between mixed PFAS and metal exposure and AL, to which cesium, molyb-
denum, PFHS, PFNA, and mercury contributed the most (PIP = 1, 1, 0.854, 0.824, and 0.807,
respectively). In addition, the correlation between selected metals and PFAS (Table 4), with
some negatively and others positively associated, suggests that the relationships between
these factors are varied and require dynamic modeling techniques to capture the combined
relationship appropriately. In the BKMR model, a substantial positive association between
combined metal and PFAS exposure and AL existed for PFNA, PFUA, PFHS, thallium,
and tungsten.

The univariate relationship between AL and each exposure in the model is depicted
in Figure 2. All other exposures and covariates were held constant at their respective
median values. The results demonstrated which variables, in combination, were not
significantly associated with AL. These models were adjusted for confounding factors,
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and the associations between exposures and responses became clear. Exposures to PFNA,
PFUA, PFOA, PFHS, mercury, cesium, thallium, tungsten, and uranium, to name a few, are
all associated with AL; some of the graphs had steeper slopes than others, reflecting the
fact that there were varying degrees of association between variables.

The molecular processes or toxicological pathways that underlie the relationships
between human exposure to PFAS and metals and AL are not fully understood. The means
by which exposure to PFAS and metals brings forth adverse health outcomes may be via
AL. Simply put, AL may be the mediator between exposure to multiple contaminants
and adverse health outcomes [2,32], such as heart disease, high blood pressure, metabolic
syndrome, obesity, and arthritis [33].

Table 2 shows that the mean levels of the contaminants of interest varied by ethnicity;
for example, Asians had high mean levels of molybdenum, cesium, and PFUA, with values
of 65.9, 537, and 0.26, respectively. Blacks had higher mean mercury levels, and Whites
had higher PFOA and PFHS levels than the other groups. These varied exposure levels
by ethnicity speak to the variability of the contaminants of interest and the dynamism of
exposure in various environments.

Within our results, compared to those of the White, Asian, and Hispanic ethnicities,
non-Hispanic Blacks had greater rates of high AL. Tables 2 and 3 demonstrate that across all
age groups, high stressors in addition to lower levels of resilient behavior, such as physical
activity, exist. This may play a role in adverse health outcomes driven by AL.

Understanding the social implications of AL may help explain some of the results of
this study. For instance, many ethnic groups in the U.S. experience prejudice, face poor wage
employment disproportionately, and are susceptible to chronic stress [34]. In the context of
multiple environmental exposures, these factors may play a role in promoting AL. When
this is intertwined with inadequate healthcare, the health burden on communities exposed
to combinations of exposures and health outcomes is vast [34]. Non-Hispanic Whites in the
US often have lower levels of AL than minority ethnic groups, as demonstrated in Table 3,
across all age groups [35]. This may partly explain the lower disease burden within this
group compared to the other groups.

Age is a critical variable in AL levels, with younger people typically having lower AL
levels than older persons [36]. Our results, as shown in Table 3, confirm this. Continuous
stressor exposure over the course of a lifetime can promote inflammation and oxidative
stress, which can lead to physiological impairment and promote disease [37]. Among
these is cardiovascular disease, the leading killer in the U.S. and in the world [38]. As
people become older, their biological sensitivities to chronic stress vary, and the body’s
physiological response system also changes naturally. As a result, biological regulation
may deteriorate over time, which may result in an unhealthy physical state. This scenario
has the potential to cause mortality over time, especially in elderly people [35].

The literature on AL by sex varies. Some research has shown that AL levels are often
lower in men who hold professional positions, such as managers and directors. On the
contrary, Rogers et al. reported that men with higher levels of education are likely to
have higher AL [39]. According to several studies, women who obtained higher levels of
education and simultaneously held professional jobs as managers had a higher prevalence
of AL [40]. People who experience continual stress due to issues such as unemployment
and poverty are more likely to engage in excessive drinking, smoking, and eating, which
leads to obesity, poor sleep, and, of course, increased AL [41]; our results in Tables 2 and 3
support this.

According to a study by Petrovic et al., drinking, smoking, and eating too much
sodium were all associated with a higher risk of developing AL. Meanwhile, physical
activity and a vegetarian diet were linked to a reduction in AL [40]; our results in Table 2
support these findings.

Very few laboratory studies have examined combined exposure to PFAS and metals.
Therefore, future experimental and human investigations are required to further corroborate
our findings and to investigate the probable mechanism for the health impacts of PFAS and
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metal exposure on AL, given the dearth of laboratory data and the cross-sectional design
of our study. The limitation of this design means that temporality cannot be inferred. A
longitudinal study would offer better insight into these exposures and health outcomes.

5. Conclusions

PFAS and other toxicants, such as metals, interact in the human body to produce AL.
The mixture of PFAS and metals is critical to understand, as they may, in combination, bring
forth adverse health outcomes via AL. When PFAS are found in the body alongside metals,
our results indicate that their combined toxicity needs to be considered, with cesium,
molybdenum, mercury, PFHS, and PFNA especially being of concern. More research
is required into this matter. Research into the levels of exposure to multiple pollutants
required to bring about AL must be explored if we are to gain an understanding of the real-
world mixture concentrations that bring forth disease. This is of paramount significance for
at-risk communities because their members lack the resources to effectively manage stress
and/or avoid exposure to environmental contaminants.
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