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Abstract: Objective: The objective of this article is to develop a robust method for forecasting the
transition from endemic to epidemic phases in contagious diseases using COVID-19 as a case study.
Methods: Seven indicators are proposed for detecting the endemic/epidemic transition: variation
coefficient, entropy, dominant/subdominant spectral ratio, skewness, kurtosis, dispersion index
and normality index. Then, principal component analysis (PCA) offers a score built from the seven
proposed indicators as the first PCA component, and its forecasting performance is estimated from
its ability to predict the entrance in the epidemic exponential growth phase. Results: This score is
applied to the retro-prediction of endemic/epidemic transitions of COVID-19 outbreak in seven
various countries for which the first PCA component has a good predicting power. Conclusion: This
research offers a valuable tool for early epidemic detection, aiding in effective public health responses.

Keywords: contagious disease; endemic phase; epidemic phase; endemic/epidemic transition
forecasting; COVID-19 wave prediction

1. Introduction
1.1. Problem Statement

This study aims to develop a novel method for predicting transitions between endemic
and epidemic phases in contagious diseases, with a specific focus on COVID-19 dynamics.
To predict qualitative changes in the dynamics of a contagious disease, it is not enough
to have a good mathematical model considering the mechanisms of contagion. It is also
necessary, from the observed data, for example, new daily cases, to be able to predict the
occurrence of a new epidemic wave from a stationary endemic situation as defined by
D. Bernoulli in 1766 [1,2].

Such an objective requires the use of specific predictive statistical tools. To find
a reliable method of prediction of the frontiers between different stationary and non-
stationary phases of a time series is a challenging problem. This objective is close to that
of the stationarity rupture tests studied for about forty years by statisticians. Indeed,
since the seminal work by J. Deshayes and D. Picard on the stationarity rupture in time
series [3,4], many works have dealt with stationarity breaking [5–10], the most recent
using the concept of functional statistics, which considers observed curves of incidence or
mortality as functions to be estimated in parametrized sets of functions [11–17].

1.2. Significance of the Research

There are very few relevant articles that have considered endemic/epidemic transi-
tion forecast, but our approach is different from other approaches in the literature. We
intend to fill the gap; in addition, we seek to present a new method able to forecast the
endemic/epidemic transition, taking as example the COVID-19 outbreak. In literature [18],
some authors exploited the knowledge on the past epidemics, namely at the level of the
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endemic/epidemic transitions (see Figure 1), for making predictions on their occurrence
during the COVID-19 pandemic [18]. In [19], the authors remarked that during the tran-
sition to the endemic phase, vaccination rates have lagged and that developed countries
needed to boost vaccination rates globally.

The constraint of stationarity is crucial as many forecasting models of time series
rely on stationary for performing an easy modeling and obtaining reliable results. The
main characteristic parameters of the empirical distribution of the random variables of a
stationary time series (moments, coefficient of variation, entropy, etc.) remain constant,
the randomness coming often from an additive Gaussian noise. In the event of a break
in stationarity, there may be a sudden transition with a sudden change in the values of
these parameters and the appearance of a non-constant trend. The problem of the existence
of this transition arises with acuity in the case of contagious diseases, which alternate
stationary endemic periods and epidemic peaks with an exponential initial trend, which
must be predicted to prevent the spread of the disease does not give rise to a pandemic.

1.3. Prediction Approaches in the Literature

The prediction of epidemics is one of the major objectives of the mathematical model-
ing of the spread of infectious diseases. It can be achieved by the spatiotemporal continua-
tion of the solutions of the partial differential equations of the chosen continuous model
realized through the extrapolation of a discrete statistical description of the evolution of
the observed variables. The difficulty of predicting the evolution of a pandemic lies in
the adaptive capacities of the infectious agent and the infected and transmitting host. On
the one hand, the genetic mutations of the infectious agent and its contagious power and
pathogenic dangerousness develop highly infectious and low pathogenic variants, often
signaling the natural end of a pandemic. On the other hand, the permanent adaptation
strategy of the individual and collective host defenses makes it possible to anticipate the
effects of changes in the agent’s infectious strategy. In both cases, modeling the dynamics of
mutation and prevention is essential to predict and act in near real-time on the evolution of
a pandemic. We refer to [18–32] for more results and references on the topic of forecasting
the contagious diseases.

1.4. Methodology and Approach

In this article, we offer a method to estimate the breakdown of endemic stationarity
based on seven parameters whose isolated or joint predictive power is analyzed. These
parameters are the coefficient of variation and the entropy of the empirical measure cal-
culated in a moving window, as well as the ratio between the modules of the dominant
and subdominant eigenvalues of the nonstationary transition matrix, the third and fourth
standardized moments of the empirical distribution (called respectively skewness and
kurtosis), and eventually diversity and normality indices, quantifying the distance of the
empirical distribution to respectively the uniform and the normal distribution.

An epidemic corresponds to an unexpected increase in the number of disease cases
in a specific location. Yellow fever, smallpox, measles, and polio are prime examples of
epidemics. An epidemic disease does not necessarily have to be contagious. The rapid
increase in obesity is also considered as an epidemic: worldwide obesity has indeed nearly
tripled between 1975 and 2016 and has been considered by WHO as a pandemic since
1997 [33].

A pandemic is characterized by exponential growth of the disease, when it concerns a
continent of the entire world. This means the growth rate skyrockets, and each day cases
grow in number more rapidly than the day prior. In being declared a pandemic, the virus
has nothing to do with virology, population immunity, or disease severity. It means a virus
covers a wide area, affecting several countries and populations [34]. A common example
we experienced recently is the COVID-19 worldwide pandemic with a high contagiousness
of the virus.
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An endemic disease designates a disease constantly present within a population, at a
usual level of prevalence and in a stable state. An epidemic can turn into an endemic in one
or both of the following cases: (i) loss of virulence of the pathogen; (ii) gradual elevation of
specific antibodies in the affected population through repeated infections (which confers
natural immunity) or regular vaccinations decided by public health authorities as a means
of mitigation (antibody artificial induction). This decreases the population’s susceptibility
to infection and the severity of infection in the individuals. This refers to a decrease in the
pathogenicity of the infectious agent, which could make it either less infectious, or less
lethal, or both [19], making the infection clinically stable and less apparent. Over time, the
infectious agent usually mutates and circulates at lower, more manageable levels due to the
occurrence of a variant more contagious, but less pathogenic. Then, a pandemic evolves
into an endemic disease, the common example being influenza.
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Figure 1. COVID-19 outbreak. Daily new cases in the world (after [35,36]).

1.5. Overview of Epidemic/Endemic Transition: Example of Influenza

RNA viruses of influenza belong to the genus Orthomyxoviridae, and the first serious
influenza pandemic occurred in 1918, infecting about one third of the entire world’s popu-
lation until 1921 and killing patients in the range of 24.7–39.3 million [37]. Its dynamics
has been well documented in some precise areas like New York City [38]. After its disap-
pearance during the year 1921 in New Caledonia, the influenza virus mutated, resulting in
descendant strains still circulating and infecting millions of patients and killing globally
between 294,000 and 518,000 deaths every winter [39,40]. Influenza has become a sporadic
disease, that is, a disease with epidemics occurring when a new virus strain appears into
the population causing an antigenic drift [41], and between these epidemics, the virus
continues to circulate between individuals in an endemic fashion, causing an infection to
become clinically less apparent, making influenza a classic example of an endemic disease.

1.6. Organization of the Article

In the following, we introduce in Section 2 the criteria used to define the breakdown
of stationarity of the random variable equal to the daily new cases of a contagious disease.
Section 3 presents the results of an application concerning the COVID-19 outbreak. These
results are discussed in Section 4, followed by some perspectives in Section 5 devoted
to Conclusion.

2. Materials and Methods
2.1. Data Description

We considered COVID-19 daily empirical cases data in Japan, Nigeria, Cameroon,
France, USA, and India. We chose countries in which either the level of economy (more
or less developed) or the quality of detection (by more or less systematic PCR) or the
vaccination policy (more or less generalized) or the dynamics of appearance of variants
(more or less rapid) were different in order to obtain a representative sample of the different
possible histories of the disease. Three countries are developed countries while others
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are developing countries. Three countries are among the seven most populated countries
in the world, while others have between 30 and 70 million inhabitants. Two variants of
SARS-CoV-2 were originated from India (Delta) and USA (Epsilon), which makes data sets
interesting to gain insight in the dynamics of COVID-19 outbreak.

We used the daily case count to analyze the differences in disease spread and peaks
among these countries. For all the countries considered, daily numbers of confirmed cases,
deaths, and full vaccinated data were extracted from public databases Worldometer [35]
and Our World in Data [36] from January 2020 to July 2022.

Figure 2 shows the real time of daily new and cumulative cases of COVID-19 for Japan,
showing that since the initial stage of the epidemic, there were obvious differences between
epidemic peaks. In this regard, we provide some explanations and insight to describe the
observed phenomena in our analysis.
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2.2. Stationarity Breakdown Criteria

The transition between the stationary endemic state of a contagious disease and an
epidemic wave is studied by calculating three parameters in a moving window around
the frontier on which we suspect that this transition occurred. These three parameters are
the coefficient of variation, the entropy of the empirical distribution of the new cases of
the disease daily observed, considered as random variable N, and the ratio between the
absolute values of the dominant and subdominant eigenvalues of the transition matrix
ruling the growth of N.

2.2.1. Coefficient of Variation (CV)

The coefficient of variation of a random integer variable N valued in {n1, . . ., nd} is
defined as the ratio of the standard deviation σ(N) to the mean E(N) of the empirical
distribution of N, i.e., the set of weights pi = Proba({N = ni}) of the histogram:

pi =
Card({N = ni})

d
. (1)

Then, the classical formulas for the first moments (expectation E(N) and standard
deviation σ(N)) and the coefficient of variation CV of the empirical distribution {pi}i=1,d are
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E(N) = ∑d
i=1 Ni pi, E

(
N2
)
= ∑d

i=1 Ni
2 pi, σ(N) =

[
E
(

N2
)
− E(N)2

] 1
2 , CV =

σ(N)

E(N)
. (2)

2.2.2. Empirical Entropy

The entropy E of the empirical distribution {pi}i=1,d is defined as follows:

E = −∑d
i=1 pilog pi. (3)

The entropy E is maximal, equal to Log(d), when the empirical distribution is uniform,
i.e., when all is equals 1/d, and E is minimal, equals 0, when only one pi equals 1.

2.2.3. Spectral Subdominant/Dominant Ratio

The Demongeot–Magal discrete equation of infectious dynamics is defined in [42]:

S(t) = S(0) −∑i=1,t−1 N(i), (4)

where S(t) and N(t) are the numbers of susceptibles and infectious cases at day t. The
transition matrix satisfies the Fröbenius theory; then, it has in its spectrum a real positive
dominant eigenvalue λ1 and two complex conjugates as subdominant eigenvalues of
absolute value |λ2|. Then, the spectral subdominant/dominant ratio R is defined as follows:

R = |λ2|/λ1. (5)

2.2.4. Skewness

The skewness (Skew) of the empirical distribution {pi}i=1,d of the random variable N is
defined as its third standardized moment:

Skew = ∑d
i=1

(
Ni − E(N)

σ

)3
pi. (6)

2.2.5. Kurtosis

The kurtosis (Kurt) of the empirical distribution {pi}i=1,d of the random variable N is
defined as its fourth standardized moment:

Kurt = ∑d
i=1

(
Ni − E(N)

σ

)4
pi. (7)

2.2.6. Index of Dispersion

The index of dispersion (ID) is defined by the following formula:

ID = σ2(N)/E(N). (8)

ID equals 0 for a constant random variable N and 1 for a Poisson variable.

2.2.7. Normality Index

The normality index KStest is defined as the fitting criterion of the Kolmogorov–
Smirnov test of adequation to the normal distribution, with E(N) and σ(N) as, respectively,
expectation and standard deviation of the empirical distribution of N.

2.3. Principal Component Analysis

The principal component analysis (PCA) is an exploratory data analysis technique
which uses real data, for example, q variables for each individual of a population of size n
(e.g., the observed COVID-19 new cases and deaths in the French population) [42–44]. Let
us consider the q n-dimensional vectors yj made from these observations and calculate the
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combinations of the yj’s, which are orthogonal and have a variance decreasing with i. They
constitute a matrix denoted as Y and defined as follows:

∀i = 1, n, ∑q
j=1 yjiaji = Yai or < yi, ai >= Yai (9)

and var(Yai) = ai
TZai,

with var(Ya1) ≥ var(Ya2) ≥ . . . ≥ var(Yan),

where ai is a vector commonly called the ith eigenvector and Z is the covariance matrix
associated with the real data. The n linear combinations Yai are called principal components
(PCs) and the elements of the eigenvectors aj are called PCs scores, which are values each
among the n individuals score on PCs [43]. The first principal component Ya1 offers the
most information in the principal component analysis.

2.4. Construction of a Score

In practice, the prediction power of each of the breakdown parameters is different from
the others and can be measured in a retro-analysis by calculating the regression coefficients
between the daily new cases N(j) observed at day j and the parameters calculated on
a temporal moving window of two weeks ending on day j. We can then either retain
the parameter with the greatest predictive power or define a breakdown score equal, in
a multiple polynomial regression of the daily number of cases observed on the break
parameters, to the combination of parameters producing the minimum error. A way to
obtain this score is also to use the first principal component of principal component analysis
(PCA), which explains, in general, a sufficient percentage of the variance of the new case
empirical distribution.

2.5. Choice of the Countries

The choice of the studied countries has been guided by the search on three continents
(Africa, Asia and Europe) of countries presenting complementary profiles to be compared
in terms of values of mean Temperature (T), Elevation (E), Density (D), Age Median (M),
R0, date of start and exponential slope of the first and second waves of new cases of
COVID-19, and percentage of the GDP dedicated to health expenditure. These countries
are selected as follows: for Africa, Cameroon and Nigeria; for Asia, Japan and India; for
Europe, France and UK; and for North America, USA. Values of mean Temperature (T),
Elevation (E), Density (D), Age Median (M), R0, date of start and exponential slope of the
first and second waves of new cases of COVID-19, and percentage of the GDP dedicated to
health expenditure are applied (cf. Table A1 in Appendix A).

3. Results
3.1. Indicators of Transition
3.1.1. Coefficient of Variation (CV) during COVID-19 Outbreak

CV alone is not a reliable predictor of epidemic waves due to varying trends among
countries and waves. Figure 3 shows such variation of the coefficient of variation at the
frontier between endemic and epidemic stages, but the sense of this variation varies largely
between the waves in the same country and between countries. For example, CV decreases
during first endemic/epidemic transition in the USA and India, but though in France it also
decreases before the third wave, it increases during the fourth one (Figure 3 and Table 1).
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Figure 5. Co-evolution of CV and Entropy during France third (left) and USA first (right) waves.

At the start of the first wave in the USA (Figure 5), we calculate the entropy E the
value of which is equal to

−
6

∑
i=1

pilog pi = p1log p1 + p2log p2 + p3log p3 + p4log p4 + p5log p5 + p6log p6 = 0.686.

3.1.3. Spectral Dominant/Subdominant Ratio in COVID-19 Outbreak

R alone cannot represent a reliable endemic–epidemic transition predictor. In Table 2,
we see that the values of the spectral ratio R increase during epidemic phases in France and
Japan, but differences are very small and not significant.

Table 2. Absolute value of dominant and first subdominant eigenvalues, and spectral ratio
R = |λ2|/λ1.

France λ1 |λ2| R=|λ2|/λ1

Period 1: Epidemic phase
27 February–17 May 2020 1.028886 1.015612 0.987106

Period 2: Endemic phase
17 May–17 July 2020 1.002432 1.002580 1.00015

Period 3: Epidemic phase
15 September–26 November 2020 1.003880 0.981878 0.978083

Period 4: Endemic phase
26 November–20 December 2020 1.019847 1.021709 1.00183

Period 5: Epidemic phase
20 December–25 February 2021 1.005828 0.991934 0.986186
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Table 2. Cont.

Japan λ1 |λ2| |λ2|/λ1

Period 1: Epidemic phase
20 February–27 May 2020 1.028575 1.022287 0.993887

Period 2: Endemic phase
27 May–13 June 2020 1.002512 0.773729 0.771790

Period 3: Epidemic phase
13 June–10 September 2020 1.020337 1.014091 0.993879

Period 4: Endemic phase
10 September–18 October 2020 1.005970 0.989558 0.983686

Period 5: Epidemic phase
18 October–5 December 2020 1.039391 1.040991 1.001539

3.2. Forecasting in COVID-19 Outbreak with a Reliable Score

Because the three first possible indicators of the endemic–epidemic transition have
no prediction power, we keep the breakdown parameters calculated from the empirical
distribution of the daily new cases, namely the coefficient of variation, the entropy, the
third and fourth standardized moments (skewness and kurtosis), the uniformity index and
normality index, all calculated on same moving window respecting the following rules:

• Choice of the same length of moving window as for the CV calculation (14 days);
• Use of the same time step as for moving the window (1 day);
• Movement of the window from the start to the end of the COVID-19 outbreak observed

between January 2020 and July 2022.

In Figure 6, we can observe the evolution of all the six breakdown parameters in
Japan, and in Figure 7A, we can observe that of only the first component of principal
component analysis (PCA) performed with these parameters, which summarizes their
predictive power globally. We can conclude that among the breakdown parameters, the
only good predictor for epidemic waves is the first PCA component because its variations
anticipate epidemic peaks.
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In Figure 7, we can observe the evolution of only the first component of the PCA
in seven different countries: Japan, Nigeria, Cameroon, France, UK, USA and India. We
eliminated entropy and empirical moments because they have a restricted predictive power
and the ID index because its predictive power is about same as that of PCA. We can observe
that the minima of the PCA curves (blue) approximately correspond to the peaks of new
cases curves (green) for the first four countries, but when endemic periods are long, PCA
peaks are better predictors. It is the case for the UK, the USA and India, which contrasts
with expectations.

4. Discussion
4.1. The ID Index as Predictor

The minima of the first PCA component curves correspond to the maxima of the ID
index curves. Hence, ID index can be also a good predictor of COVID-19 epidemic peaks
(Figure 8).

Diseases 2023, 11, x FOR PEER REVIEW 11 of 20 
 

 

Figure 7. First Principal Component (blue) as predictor of COVID-19 Daily new case waves (green) 
in various countries: Japan (A), Nigeria (B), Cameroon (C), France (D), UK (E), USA (F) and India 
(G). The x-axis represents the time in days and the y-axis the PCA principal component. The red 
arrows correspond to local maxima of the first principal component. 

In Figure 7, we can observe the evolution of only the first component of the PCA in 
seven different countries: Japan, Nigeria, Cameroon, France, UK, USA and India. We elim-
inated entropy and empirical moments because they have a restricted predictive power 
and the ID index because its predictive power is about same as that of PCA. We can ob-
serve that the minima of the PCA curves (blue) approximately correspond to the peaks of 
new cases curves (green) for the first four countries, but when endemic periods are long, 
PCA peaks are better predictors. It is the case for the UK, the USA and India, which con-
trasts with expectations. 

4. Discussion 
4.1. The ID Index as Predictor 

The minima of the first PCA component curves correspond to the maxima of the ID 
index curves. Hence, ID index can be also a good predictor of COVID-19 epidemic peaks 
(Figure 8).  

 

Figure 8. ID index (in blue) as predictor of the epidemic waves for Japan COVID-19 outbreak, with 
Daily new cases superimposed (in green). The x-axis represents the time in days. The red arrows 
correspond to local maxima of the first principal component. 

In the case of Japan, the precision of the forecasting character of both the first PCA 
principal component PCA1 and of the ID index can be easily explained by the fact that ID 
index often has the main weight in the linear combination expressing PCA1 on the break-
down coefficients, as calculated for the first moving window in Japan during early Janu-
ary 2020, where the breaking coefficients are calculated for the first moving windows of 
two weeks in Table 3: PCA1 = 8.86760799 10-2 Kurt + 1.73156383 10-2 E + 1.25157924 10-2 Skew 
+ 2.49657969 10-2 CV + 9.95518350 10-1 ID + 1.05368220 10-5 KS.  

Table 3. Values of the breakdown coefficients during the first two weeks moving windows W(i) (i = 
0 to 4) for Japan during early January 2020. 

 

The values of the breakdown variable ID remain small during the COVID-19 evolu-
tion, but their relative variations ∆ID(i) = [ID(i + 1) − ID(i)]/ID(i) are important (Table 3), 
which explains the relatively important weight of ID in PCA1. The minima of PCA1 and 
maxima of ID are systematically preceding the epidemic peaks (except for India), and the 
change in nature in the empirical distribution (the loss of stationarity) of the new cases is 

i Kurtosis Entropy Skew CV ID KStest ∆ID 
0 -0.06 1.1 1.39 1.99 -0.07 0.00092 0.57 
1 -1.1 1.39 0.95 1.64 -0.11 0.00092 0.40 
2 -1.64 1.61 0.60 1.39 -0.16 0.00092 0.32 
3 -1.92 1.79 0.29 1.20 -0.21 0.00092 0.28 
4 -2.0 1.95 0 1.04 -0.27 0.00092  

Days 
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In the case of Japan, the precision of the forecasting character of both the first PCA
principal component PCA1 and of the ID index can be easily explained by the fact that
ID index often has the main weight in the linear combination expressing PCA1 on the
breakdown coefficients, as calculated for the first moving window in Japan during early
January 2020, where the breaking coefficients are calculated for the first moving windows
of two weeks in Table 3: PCA1 = 8.86760799 10-2 Kurt + 1.73156383 10-2 E + 1.25157924 10-2

Skew + 2.49657969 10-2 CV + 9.95518350 10-1 ID + 1.05368220 10-5 KS.

Table 3. Values of the breakdown coefficients during the first two weeks moving windows W(i)
(i = 0 to 4) for Japan during early January 2020.

i Kurtosis Entropy Skew CV ID KStest ∆ID

0 −0.06 1.1 1.39 1.99 −0.07 0.00092 0.57

1 −1.1 1.39 0.95 1.64 −0.11 0.00092 0.40

2 −1.64 1.61 0.60 1.39 −0.16 0.00092 0.32

3 −1.92 1.79 0.29 1.20 −0.21 0.00092 0.28

4 −2.0 1.95 0 1.04 −0.27 0.00092

The values of the breakdown variable ID remain small during the COVID-19 evolution,
but their relative variations ∆ID(i) = [ID(i + 1) − ID(i)]/ID(i) are important (Table 3), which
explains the relatively important weight of ID in PCA1. The minima of PCA1 and maxima
of ID are systematically preceding the epidemic peaks (except for India), and the change
in nature in the empirical distribution (the loss of stationarity) of the new cases is easily
understandable. The index of dispersion ID is indeed the logarithm of the ratio between
second and first moments of the empirical distribution of new cases and its variations
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reflect the loss of stationarity before an exponential growth of the new cases, which is
the main characteristics of the early dynamics of an epidemic peak. We observe the same
predictive behavior for the breakdown parameters and PCA1, calculated from death data.

4.2. The Influence of Vaccination on the Daily New Cases and Deaths Curves

Figures 9–11 show the influence of vaccinations on new cases and deaths curves.
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and daily new cases (in green) before (left) and after (right) vaccination with percentage of fully Figure 10. (A) Influence of vaccination on waves of Nigeria COVID-19 outbreak, with PCA1 (in blue)
and daily new cases (in green) before (left) and after (right) vaccination with percentage of fully
vaccinated people superimposed (in black); (B) PCA1 and ID for new cases and deaths before and
after vaccination (percentage of fully vaccinated superimposed); (C) PCA1 for deaths before (left)
and after (right) vaccination (fully vaccinated superimposed); (D) same as (A) and (C) for Cameroon
with new cases (left) and deaths (right) superimposed (in green) with fully vaccinated superimposed
(in black). The x-axis represents the time (in months). The red arrows correspond to local maxima of
the first principal component.
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We see in Figures 9–12 the following three main features:

- The first PCA component (PCA1) anticipates systematically the new case and death
waves, the latter ones occurring some weeks (between two and four) after the new
case waves;

- ID waves occur in opposition of phases with PCA1, but also predicts the new case and
death waves well;

- This anticipation remains true after vaccination, except for the end of the vaccination
campaign which shows the beginning of a decorrelation between PCA1 and new case
last waves.

These features have to be confirmed in future works. Suggested directions could be:

(i) to develop a parametric model that considers all the variables and parameters neces-
sary for modeling the endemic/epidemic transition;

(ii) to test the predictive power of the breakdown parameters used in the present ar-
ticle on other variables linked to the COVID-19 outbreak as the number of deaths,
hospitalizations and ICU sojourns;

(iii) to examine past outbreaks concerning other infectious diseases like Influenza H1N1
in 1977 or Ebola in Sierra Leone during the years of 2014 and 2015 and in Democratic
Republic of Congo in 1995, and test for these infectious diseases the retro-predictive
power of PCA1.
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5. Conclusions

We examined the predictive power of seven parameters related to the empirical
distribution of new COVID-19 cases in six countries (Japan, Nigeria, Cameroon, France,
USA, and India), which constitutes an improvement of our previous work on COVID-19
outbreak in [44–47] using different approaches. Only six parameters showed an ability
to predict epidemic peaks, all being related to the empirical distribution of new cases:
kurtosis, entropy, skewness, coefficient of variation, index of dispersion and the fitting
criterion of the Kolmogorov–Smirnov normal adequation test. The calculation of the first
component of principal component analysis (PCA) based on these six parameters showed
that its principal component PCA1 has a good forecasting power in all the above-mentioned
countries, except the USA and India, whose endemic phases showed only weak variations
of the moments of the empirical distribution of the Daily new cases. Hence, for the USA and
India, a minimum of the ID variable was impossible to individualize inside the endemic
background noise. The future efforts in the direction of this research are vital for a future
pandemic or emerging infectious disease preparation, because we believe that the research
presented in this article could be relevant for new infectious case forecasting in order to
deploy proper intervention and resources (as vaccination policies [48]) to fight the epidemic
spread and, in a way, guide policy-making for public health.
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Appendix A

Table A1. Values of mean Temperature (T), Elevation (E), Density (D), Age Median (M), R0, date of
start and exponential slope of the first and second waves of new cases of COVID-19, and percentage
of the GDP dedicated to health expenditure.

Country T (◦C) E (m) D
(h/km2)

AM
(years)

1st wave R0
/Date start

1st Wave
Exponential

Slope

2nd Wave
R0/Date

Start

2nd Wave
Exponential

Slope

GDP %
Health

2020

Africa
Algeria 22.5 800 18 28.1 2.19/20–03 0.1594 0.86/07–04 0.0316 6.32

Cameroon 31 667 56 17.7 2.56/03–04 0.0338 1.64/07–07 0.0085 3.77
Djibouti 28.0 430 47 23.9 2.31/07–04 0.489 2.47/07–05 0.5 2.01
Guinea 25.7 472 50 18.9 1.5/04–04 0.0744 1.36/28–06 0.01 4.04

Mauritius 22.4 209 620 35.3 5.4/25–03 0.02 9.32/02–06 0.03 5.83
Morocco 17.1 909 80 29.3 2.05/21–03 0.1161 0.84/21–05 0.0687 5.31
Nigeria 26.8 30 229 18.4 1.96/29–03 0.0672 1.25/02–05 0.0258 3.38
Senegal 27.85 69 82 18.8 2.02/12–04 0.1003 1.24/17–05 0.0238 3.98

South Africa 22.5 1034 49.1 27.6 2.48/07–03 0.257 1.15/06–05 0.0303 6.25
Sudan 26.9 568 22 19.9 1.97/20–04 0.0193 1.19/09–06 0.0407 4.51
Tunisia 19.2 246 186 31.6 1.34/15–03 0.01 2.64/24–06 0.142 7.29

Asia
Bangladesh 25.0 85 1175 26.7 3.67/05–04 0.0399 0.92/01–08 0.01 2.34

India 27.4 160 470 32.4 2.43/22–04 0.0331 0.91/15–11 0.01 3.54
Iran 24 1305 51 30.3 3.61/04–03 0.2641 1/01–05 0.0438 8.66
Iraq 14.03 312 90 20.0 1.81/14–03 0.1184 0.96/18–07 0.0410 5.1

Israel 19.2 508 417 29.9 2.86/05–03 0.005 1.33/19–05 0.0339 7.52
Japan 11.15 438 333 47.3 1.91/25–02 0.0872 1.21/21–06 0.0260 10.95

Pakistan 20.20 900 274 23.8 1.90/15–03 0.1301 1.02/01–09 0.0113 3.20
Turkey 11.1 1132 106 30.9 4.32/11–03 0.0120 0.81/02–06 0.0473 4.12
Europa
Albania 11.4 708 100 32.9 1.61/23–03 0.0309 0.99/18–05 0.0825 5.26
Austria 6.35 910 106 44.0 2.93/08–03 0.2825 1.05/07–06 0.0545 10.33
Belgium 9.55 181 378 41.4 8.28/06–03 0.1963 0.88/16–06 0.0257 10.32

Bosnia/Her. 9.85 500 69 42.1 1.70/21–03 0.1671 0.97/05–06 0.0667 8.90
Bulgaria 10.55 472 64 42.7 1.97/19–03 0.0927 0.78/13–04 0.0049 7.35
Croatia 10.9 331 187 43 3.95/18–03 0.093 0.72/12–06 0.01 6.83

Denmark 7.5 34 349 42.2 1.60/05–03 0.01 0.90/07–07 0.0539 10.07
France 10.7 375 123 41.4 2.68/29–02 0.2898 1/24–06 0.01 11.26
Finland 1.7 134 16 42.5 1.66/12–03 0.0711 1.04/26–07 0.0891 9.02
Greece 15.4 498 210 44.5 1.72/11–03 0.0759 1.05/24–06 0.01 7.72
Georgia 5.8 1432 54 38.1 2.19/30–03 0.0346 0.76/02–06 0.1471 7.11

Germany 8.5 263 233 47.1 2.84/29–02 0.2624 0.98/10–06 0.005 11.43
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Table A1. Cont.

Country T (◦C) E (m) D
(h/km2)

AM
(years)

1st wave R0
/Date start

1st Wave
Exponential

Slope

2nd Wave
R0/Date

Start

2nd Wave
Exponential

Slope

GDP %
Health

2020

Hungary 9.75 143 272 42.3 2.25/21–03 0.0586 0.77/01–07 0.01 6.7
Luxemburg 8.65 325 237 39.3 1.99/16–03 0.4841 0.83/01–06 0.0271 5.29

Malta 19.2 1 1567 41.8 4.46/23–03 0.0712 1.29/19–04 0.0536 8.96
Moldova 9.45 139 79 36.7 2.03/22–03 0.1716 0.83/31–04 0.0217 6.6

N Macedonia 9.8 741 81 37.9 1.84/21–03 0.0858 0.87/03–05 0.028 6.58
Netherlands 9.25 30 421 42.6 2.4/05–03 0.2485 0.92/07–07 0.0002 9.97

Norway 1.5 460 17 39.2 2.4/09–03 0.2716 1.14/19–07 0.1725 10.05
Poland 7.85 173 123 40.7 2.17/14–03 0.1562 0.99/05–04 0.0094 6.33

Romania 8.8 414 81 41.1 2.26/14–03 0.1596 0.91/31–05 0.0498 5.56
Serbia 10.55 473 89 42.6 2.13/19–03 0.1919 0.79/01–06 0.0123 8.54

Slovenia 8.9 492 266 44.5 1.78/17–03 0.1301 1.08/12–06 0.01 8.3
Spain 13.3 660 93 42.7 3.85/25–02 0.335 1.16/29–06 0.0846 8.98

Sweden 2.1 320 23 41.2 2.10/05–03 0.2572 1.05/24–05 0.0768 10.9
Switzerland 5.5 1350 208 42.4 2.86/04–03 0.2388 0.95/08–06 0.0664 11.88

UK 8.45 162 280 40.5 2.89/04–03 0.2223 1.25/02–07 0.0416 10
Ukraine 8.3 175 70 40.6 2.16/24–03 0.1615 0.89/25–05 0.048 7.72
North

America
Canada −5.35 487 4 42.2 2.95/10–03 0.2432 1.05/01–07 0.0153 10.79

Cuba 25.2 108 102 41.5 2.23/27–03 0.0706 1.30/17–05 0.0517 11.19
Dominican
Republic 24.55 424 34 38.1 2.09/20–03 0.1403 1.10/01–06 0.0151 5.73

USA 8.55 760 34 38.1 3.85/02–03 0.2882 0.99/07–06 0.0119 16.89
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