A Comparative Analysis of NT-proBNP Levels in Pregnant Women and the Impact of SARS-CoV-2 Infection: Influence on Birth Outcome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population/Sample Selection
2.2. RT-PCR SARS-CoV-2 Analysis
2.3. NT-proBNP Analysis
2.4. Inclusion and Exclusion Criteria
2.5. Ethical Considerations
2.6. Statistical Analysis
3. Results
3.1. Demographic Distribution of Patients
3.2. Distribution of Patients According to the Type of Birth
3.3. Comparison of NT-proBNP Levels in Patients
3.4. Evolution of NT-proBNP Levels in COVID-19-Positive Patients
3.5. Distribution of Associated Pathologies
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khan, S.; Peng, L.; Siddique, R.; Nabi, G.; Xue, M.; Liu, J.; Han, G. Impact of COVID-19 infection on pregnancy outcomes and the risk of maternal-to-neonatal intrapartum transmission of COVID-19 during natural birth. Infect. Control Hosp. Epidemiol. 2020, 41, 748–750. [Google Scholar] [CrossRef] [PubMed]
- Metz, T.D.; Clifton, R.G.; Hughes, B.L.; Sandoval, G.J.; Grobman, W.A.; Saade, G.R.; Manuck, T.A.; Longo, M.; Sowles, A.; Clark, K.; et al. Association of SARS-CoV-2 Infection with Serious Maternal Morbidity and Mortality from Obstetric Complications. JAMA 2022, 327, 748–759. [Google Scholar] [CrossRef] [PubMed]
- Jering, K.S.; Claggett, B.L.; Cunningham, J.W.; Rosenthal, N.; Vardeny, O.; Greene, M.F.; Solomon, S.D. Clinical Characteristics and Outcomes of Hospitalized Women Giving Birth with and Without COVID-19. JAMA Intern. Med. 2021, 181, 714–717. [Google Scholar] [CrossRef] [PubMed]
- Allotey, J.; Fernandez, S.; Bonet, M.; Stallings, E.; Yap, M.; Kew, T.; Zhou, D.; Coomar, D.; Sheikh, J.; Lawson, H.; et al. Clinical manifestations, risk factors, and maternal and perinatal outcomes of coronavirus disease 2019 in pregnancy: Living systematic review and meta-analysis. BMJ 2020, 370, m3320. [Google Scholar] [CrossRef] [PubMed]
- Lam, C.M.; Wong, S.F.; Leung, T.N.; Chow, K.M.; Yu, W.C.; Wong, T.Y.; Lai, S.T.; Ho, L.C. A case-controlled study comparing clinical course and outcomes of pregnant and non-pregnant women with severe acute respiratory syndrome. BJOG 2004, 111, 771–774. [Google Scholar] [CrossRef] [PubMed]
- Luxi, N.; Giovanazzi, A.; Capuano, A.; Crisafulli, S.; Cutroneo, P.M.; Fantini, M.P.; Ferrajolo, C.; Moretti, U.; Poluzzi, E.; Raschi, E.; et al. COVID-19 Vaccination in Pregnancy, Paediatrics, Immunocompromised Patients, and Persons with History of Allergy or Prior SARS-CoV-2 Infection: Overview of Current Recommendations and Pre- and Post-Marketing Evidence for Vaccine Efficacy and Safety. Drug Saf. 2021, 44, 1247–1269. [Google Scholar] [CrossRef] [PubMed]
- Vimercati, A.; Greco, P.; Loverro, G.; Lopalco, P.L.; Pansini, V.; Selvaggi, L. Maternal complications after caesarean section in HIV infected women. Eur. J. Obstet. Gynecol. Reprod. Biol. 2000, 90, 73–76. [Google Scholar] [CrossRef] [PubMed]
- Floridia, M.; Mastroiacovo, P.; Tamburrini, E.; Tibaldi, C.; Todros, T.; Crepaldi, A.; Sansone, M.; Fiscon, M.; Liuzzi, G.; Guerra, B.; et al. Birth defects in a national cohort of pregnant women with HIV infection in Italy, 2001–2011. BJOG 2013, 120, 1466–1476. [Google Scholar] [CrossRef]
- Aghaeepour, N.; Ganio, E.A.; Mcilwain, D.; Tsai, A.S.; Tingle, M.; Van Gassen, S.; Gaudilliere, D.K.; Baca, Q.; McNeil, L.; Okada, R.; et al. An immune clock of human pregnancy. Sci. Immunol. 2017, 2, eaan2946. [Google Scholar] [CrossRef]
- Kay, A.W.; Fukuyama, J.; Aziz, N.; Dekker, C.L.; Mackey, S.; Swan, G.E.; Davis, M.M.; Holmes, S.; Blish, C.A. Enhanced natural killer-cell and T-cell responses to influenza A virus during pregnancy. Proc. Natl. Acad. Sci. USA 2014, 111, 14506–14511. [Google Scholar] [CrossRef]
- Le Gars, M.; Kay, A.W.; Bayless, N.L.; Aziz, N.; Dekker, C.L.; Swan, G.E.; Davis, M.M.; Blish, C.A. Increased Proinflammatory Responses of Monocytes and Plasmacytoid Dendritic Cells to Influenza A Virus Infection During Pregnancy. J. Infect. Dis. 2016, 214, 1666–1671. [Google Scholar] [CrossRef] [PubMed]
- Maisel, A.S.; Krishnaswamy, P.; Nowak, R.M.; McCord, J.; Hollander, J.E.; Duc, P.; Omland, T.; Storrow, A.B.; Abraham, W.T.; Wu, A.H.; et al. Rapid Measurement of B-Type Natriuretic Peptide in the Emergency Diagnosis of Heart Failure. N. Engl. J. Med. 2002, 347, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Januzzi, J.L.; Camargo, C.A.; Anwaruddin, S.; Baggish, A.L.; Chen, A.A.; Krauser, D.G.; Tung, R.; Cameron, R.; Nagurney, J.T.; Chae, C.U.; et al. The N-terminal Pro-BNP Investigation of Dyspnea in the Emergency department (PRIDE) study. Am. J. Cardiol. 2005, 95, 948–954. [Google Scholar] [CrossRef] [PubMed]
- Troughton, R.W.; Frampton, C.M.; Yandle, T.G.; Espine, E.A.; Nicholls, M.G.; Richards, A.M. Treatment of heart failure guided by plasma aminoterminal brain natriuretic peptide (N-BNP) concentrations. Lancet 2000, 355, 1126–1130. [Google Scholar] [CrossRef] [PubMed]
- Potter, L.R.; Yoder, A.R.; Flora, D.R.; Antos, L.K.; Dickey, D.M. Natriuretic peptides: Their structures, receptors, physiologic functions and therapeutic applications. In Handbook of Experimental Pharmacology; cGMP: Generators, Effectors and Therapeutic Implications; Schmidt, H.H.H.W., Hofmann, F., Stasch, J.-P., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 191, pp. 341–366. ISBN 9783540689607. [Google Scholar]
- Takimoto, E.; Kass, D.A. Role of Oxidative Stress in Cardiac Hypertrophy and Remodeling. Hypertension 2007, 49, 241–248. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef] [PubMed]
- Galvani, M.; Ferrini, D.; Ottani, F. Natriuretic peptides for risk stratification of patients with acute coronary syndromes. Eur. J. Heart Fail. 2004, 6, 327–333. [Google Scholar] [CrossRef]
- Bai, Y.-L.; Hu, B.-L.; Wen, H.-C.; Zhang, Y.-L.; Zhu, J.-J. Prognostic value of plasma brain natriuretic peptide value for patientswith sepsis: A meta-analysis. J. Crit. Care 2018, 48, 145–152. [Google Scholar] [CrossRef]
- Sawada, Y.; Suda, M.; Yokoyama, H.; Kanda, T.; Sakamaki, T.; Tanaka, S.; Nagai, R.; Abe, S.; Takeuchi, T. Stretch-induced Hypertrophic Growth of Cardiocytes and Processing of Brain-type Natriuretic Peptide Are Controlled by Proprotein-processing Endoprotease Furin. J. Biol. Chem. 1997, 272, 20545–20554. [Google Scholar] [CrossRef]
- Favre, G.; Pomar, L.; Qi, X.; Nielsen-Saines, K.; Musso, D.; Baud, D. Guidelines for pregnant women with suspected SARS-CoV-2 infection. Lancet Infect. Dis. 2020, 20, 652–653. [Google Scholar] [CrossRef]
- Ribeiro, H.F.; De Barros Carvalho, M.D.; Pelloso, F.C.; Santos, L.D.; De Andrade Pereira Silva, M.; Stevanato, K.P.; Borghesan, D.H.P.; Romani, I.; Marques, V.D.; de Freitas, K.M.S.; et al. Ma-ternal Risk Factors Associated with Negative COVID-19 Outcomes and Their Relation to Socioeconomic Indicators in Brazil. Healthcare 2023, 11, 2072. [Google Scholar] [CrossRef] [PubMed]
- Aslam, J.; Masroor, M.; Mehmood, Q.-U.; Arshad, M.; Jabeen, S.; Mushtaq, M.A. Maternal Mortality with SARS-CoV-2 during its 4th Wave in Pakistan: The Vaccine Paradox and Pregnancy. J. Coll. Physicians Surg. Pak. 2022, 32, 119–121. [Google Scholar] [CrossRef] [PubMed]
- Torres-Torres, J.; Martinez-Portilla, R.J.; Espino-Y-Sosa, S.; Estrada-Gutierrez, G.; Solis-Paredes, J.M.; Villafan-Bernal, J.R.; Medina-Jimenez, V.; Rodriguez-Morales, A.J.; Rojas-Zepeda, L.; Poon, L.C. Comorbidity, poverty and social vulnerability as risk factors for mortality in pregnant women with confirmed SARS-CoV-2 infection: Analysis of 13 062 positive pregnancies including 176 maternal deaths in Mexico. Ultrasound Obstet. Gynecol. 2021, 59, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Narang, K.; Enninga, E.A.L.; Gunaratne, M.D.S.K.; Ibirogba, E.R.; Trad, A.T.A.; Elrefaei, A.; Theiler, R.N.; Ruano, R.; Szymanski, L.M.; Chakraborty, R.; et al. SARS-CoV-2 Infection and COVID-19 During Pregnancy: A Multidisciplinary Review. Mayo Clin. Proc. 2020, 95, 1750–1765. [Google Scholar] [CrossRef] [PubMed]
- La Verde, M.; Riemma, G.; Torella, M.; Cianci, S.; Savoia, F.; Licciardi, F.; Scida, S.; Morlando, M.; Colacurci, N.; De Franciscis, P. Maternal death related to COVID-19: A sys-tematic review and meta-analysis focused on maternal co-morbidities and clinical characteristics. Int. J. Gynecol. Obstet. 2021, 154, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Karimi, L.; Makvandi, S.; Vahedian-Azimi, A.; Sathyapalan, T.; Sahebkar, A. Effect of COVID-19 on Mortality of Pregnant and Postpartum Women: A Systematic Review and Meta-Analysis. J. Pregnancy 2021, 2021, 8870129. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.-Y.; Ma, Y.-T.; Zhang, J.-Y.; Xie, X. COVID-19 and the cardiovascular system. Nat. Rev. Cardiol. 2020, 17, 259–260. [Google Scholar] [CrossRef]
- Clerkin, K.J.; Fried, J.A.; Raikhelkar, J.; Sayer, G.; Griffin, J.M.; Masoumi, A.; Jain, S.S.; Burkhoff, D.; Kumaraiah, D.; Rabbani, L.; et al. COVID-19 and Cardiovascular Disease. Circulation 2020, 141, 1648–1655. [Google Scholar] [CrossRef]
- Almeida, F.; Pavan, M.; Rodrigues, C. The haemodynamic, renal excretory and hormonal changes induced by resting in the left lateral position in normal pregnant women during late gestation: Resting in the left lateral position during late pregnancy. BJOG Int. J. Obstet. Gynaecol. 2009, 116, 1749–1754. [Google Scholar] [CrossRef]
- Clark, S.L.; Cotton, D.B.; Lee, W.; Bishop, C.; Hill, T.; Southwick, J.; Pivarnik, J.; Spillman, T.; DeVore, G.R.; Phelan, J.; et al. Central hemodynamic assessment of normal term pregnancy. Am. J. Obstet. Gynecol. 1989, 161, 1439–1442. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Wu, D.; Chen, H.; Yan, W.; Yang, D.; Chen, G.; Ma, K.; Xu, D.; Yu, H.; Wang, H.; et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: Retrospective study. BMJ 2020, 368, m1091. [Google Scholar] [CrossRef] [PubMed]
- Caro-Codón, J.; Rey, J.R.; Buño, A.; Iniesta, A.M.; Rosillo, S.O.; Castrejon-Castrejon, S.; Rodriguez-Sotelo, L.; Martinez, L.A.; Marco, I.; Merino, C.; et al. Characterization of NT-proBNP in a large cohort of COVID-19 patients. Eur. J. Heart Fail. 2021, 23, 456–464. [Google Scholar] [CrossRef]
- Gao, L.; Jiang, D.; Wen, X.S.; Cheng, X.C.; Sun, M.; He, B.; You, L.N.; Lei, P.; Tan, X.W.; Qin, S.; et al. Prognostic value of NT-proBNP in patients with severe COVID-19. Respir. Res. 2020, 21, 83. [Google Scholar] [CrossRef]
- Inciardi, R.M.; Adamo, M.; Lupi, L.; Cani, D.S.; Di Pasquale, M.; Tomasoni, D.; Italia, L.; Zaccone, G.; Tedino, C.; Fabbricatore, D.; et al. Characteristics and outcomes of patients hospitalized for COVID-19 and cardiac disease in Northern Italy. Eur. Heart J. 2020, 41, 1821–1829. [Google Scholar] [CrossRef]
Group 1 (n = 83) | Group 2 (n = 77) | p Value | |
---|---|---|---|
Age | |||
Under 25 years old | 23 patients (27.71%) | 23 patients (29.87%) | 0.763 |
NT-proBNP level (pg/dL) Mean ± SD | 102.9 ± 104.4 | 425.1 ± 268.1 | <0.0001 |
Between 25 and 34 years old | 46 patients (55.42%) | 42 patients (54.54%) | 0.912 |
NT-proBNP level (pg/dL) Mean ± SD | 117.3 ± 124.3 | 498.4 ± 536.3 | <0.0001 |
Over 35 years old | 14 patients (16.86%) | 12 patients (15.58%) | 0.822 |
NT-proBNP level (pg/dL) Mean ± SD | 79.36 ± 8.889 | 407.8 ± 225.8 | <0.0001 |
Level of education | |||
No education | 13 patients (15.66%) | 11 patients (14.28%) | 0.804 |
NT-proBNP level (pg/dL) Mean ± SD | 83.38 ± 9.683 | 456.5 ± 171.5 | <0.0001 |
Primary education | 21 patients (25.30%) | 25 patients (32.46%) | 0.300 |
NT-proBNP level (pg/dL) Mean ± SD | 224.5 ± 323.3 | 533.1 ± 203.8 | 0.0003 |
High school | 32 patients (38.55%) | 20 patients (25.97%) | 0.09 |
NT-proBNP level (pg/dL) Mean ± SD | 218.6 ± 294.4 | 482.4 ± 154.9 | 0.0006 |
Higher education | 17 patients (20.48%) | 21 patients (27.27%) | 0.296 |
NT-proBNP level (pg/dL) Mean ± SD | 162.8 ± 200.6 | 489.8 ± 154.7 | <0.0001 |
Occupation | |||
No occupation | 23 patients (27.71%) | 14 patients (18.18%) | 0.154 |
NT-proBNP level (pg/dL) Mean ± SD | 142.3 ± 174.7 | 596.3 ± 237.3 | <0.0001 |
Student | 21 patients (25.30%) | 14 patients (18.18%) | 0.276 |
NT-proBNP level (pg/dL) Mean ± SD | 147.7 ± 182.3 | 453.1 ± 158.9 | <0.0001 |
Employed | 39 patients (46.98%) | 49 patients (63.63%) | 0.0166 |
NT-proBNP level (pg/dL) Mean ± SD | 133.6 ± 154.4 | 502.5 ± 149.8 | <0.0001 |
Living environment | |||
Urban | 43 patients (51.80%) | 29 patients (37.66%) | 0.0434 |
NT-proBNP level (pg/dL) Mean ± SD | 141.5 ± 166.9 | 580.3 ± 196.2 | <0.0001 |
Rural | 40 patients (48.19%) | 48 patients (62.33%) | 0.0426 |
NT-proBNP level (pg/dL) Mean ± SD | 143.6 ± 172.9 | 583.7 ± 482.7 | <0.0001 |
Birth Method | Group 1 (n = 83) | Group 2 (n = 77) | p Value |
---|---|---|---|
Cesarean section | 25 patients (30.12%) | 57 patients (74.02%) | <0.001 |
NT-proBNP level (pg/dL) Mean ± SD | 174.8 ± 213.1 | 555.2 ± 461.7 | 0.0002 |
Natural birth | 58 patients (69.87%) | 20 patients (25.97%) | <0.001 |
NT-proBNP level (pg/dL) Mean ± SD | 149.8 ± 180.0 | 574.9 ± 204.1 | <0.001 |
Group 1 (n = 83) | Group 2 (n = 77) | |
---|---|---|
Minimum | 68.00 | 49.00 |
25% Percentile | 76.00 | 275.5 |
Median | 87.00 | 459.0 |
75% Percentile | 139.0 | 597.0 |
Mean | 1721 | 3238 |
Std. Deviation | 308.6 | 418.2 |
p-value | <0.0001 |
Timepoint | Total Patients | Reduced Levels | Elevated Levels |
---|---|---|---|
6 months postpartum | 77 (100%) | 58 (75.32%) | 19 (24.67%) |
12 months postpartum (from elevated group at 6 months) | 19 (24.67%) | 16 (20.77%) | 3 * (3.89%) |
Associated Pathologies | Group 1 (n = 83) | Group 2 (n = 77) | p-Value |
---|---|---|---|
Hypothyroidism | 4 (4.81%) | 2 (2.59%) | 0.4602 |
Obstructive sleep apnea | 2 (2.40%) | 1 (1.29%) | 0.605 |
Thrombophilia | 12 (14.45%) | 9 (11.68%) | 0.572 |
Bronchial asthma | 1 (1.20%) | 0 (0%) | <0.001 |
Chronic viral infections | 3 (3.61%) | 5 (6.49%) | 0.40 |
Autoimmune diseases | 3 (3.61%) | 1 (1.29%) | 0.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marta, C.-I.; Craina, M.; Nitu, R.; Maghiari, A.L.; Abu-Awwad, S.-A.; Boscu, L.; Diaconu, M.; Dumitru, C.; Dahma, G.; Yasar, I.-I.; et al. A Comparative Analysis of NT-proBNP Levels in Pregnant Women and the Impact of SARS-CoV-2 Infection: Influence on Birth Outcome. Diseases 2024, 12, 10. https://doi.org/10.3390/diseases12010010
Marta C-I, Craina M, Nitu R, Maghiari AL, Abu-Awwad S-A, Boscu L, Diaconu M, Dumitru C, Dahma G, Yasar I-I, et al. A Comparative Analysis of NT-proBNP Levels in Pregnant Women and the Impact of SARS-CoV-2 Infection: Influence on Birth Outcome. Diseases. 2024; 12(1):10. https://doi.org/10.3390/diseases12010010
Chicago/Turabian StyleMarta, Carmen-Ioana, Marius Craina, Razvan Nitu, Anca Laura Maghiari, Simona-Alina Abu-Awwad, Lioara Boscu, Mircea Diaconu, Catalin Dumitru, George Dahma, Ionela-Iasmina Yasar, and et al. 2024. "A Comparative Analysis of NT-proBNP Levels in Pregnant Women and the Impact of SARS-CoV-2 Infection: Influence on Birth Outcome" Diseases 12, no. 1: 10. https://doi.org/10.3390/diseases12010010
APA StyleMarta, C. -I., Craina, M., Nitu, R., Maghiari, A. L., Abu-Awwad, S. -A., Boscu, L., Diaconu, M., Dumitru, C., Dahma, G., Yasar, I. -I., & Babes, K. (2024). A Comparative Analysis of NT-proBNP Levels in Pregnant Women and the Impact of SARS-CoV-2 Infection: Influence on Birth Outcome. Diseases, 12(1), 10. https://doi.org/10.3390/diseases12010010