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Abstract: Background and Objectives: The development of severe COVID-19 is related to the
preexistence of comorbidities and an inadequate nutritional status. The latter is a critical factor for
the development of infection and the progression of the disease. Notably, optimal nutrition impacts
immune system function, as malnutrition is related to high cytokine levels in the late phase of the
disease, correlating with a poor prognosis. In this sense, omega-3 fatty acids (O3FAs) have anti-
inflammatory properties that may reduce morbidity and mortality from COVID-19 infection. O3FAs
are linked to a better prognosis in COVID-19 patients. Materials and Methods: In this randomized,
double-blind clinical trial, we evaluate the administration of O3FAs to unvaccinated Mexican patients
for two weeks starting after the first two hours of hospitalization. Results: The findings support
the notion that O3FAs (in a dose high enough to satisfy human physiological requirements in a
short time, one capsule of 1.4 g O3FAs daily) exert a comprehensive multi-systemic modulatory
influence, affecting inflammatory and metabolic pathways. Significant perturbations in biomarkers,
including absolute neutrophil count, hematocrit, and platelet indices, underscore the compound’s
anti-inflammatory effect. Concurrently, the intervention modulates pivotal metabolic and hepatic
parameters, attenuating cardiovascular risk profiles and expediting patient convalescence. These
multifarious effects are likely orchestrated through intricate biochemical mechanisms and are subject
to individual variations predicated on metabolic factors. Conclusions: The results of this trial support
the notion that O3FA supplementation has beneficial effects on COVID-19 patients with moderate
presentation by regulating metabolism and limiting inflammation.
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1. Introduction

Coronavirus disease 2019 (COVID-19) is the result of infection by severe acute res-
piratory syndrome coronavirus 2 (SARS-CoV-2) [1]. This disease caused almost seven
million deaths in three years, posing a global health emergency in 2020 [2–6]. COVID-19
symptoms in patients range from nonexistent to severe. Severe complications can overdrive
the host immune system, leading to a “cytokine storm” [7]. Severe infections are related to
comorbidities, such as obesity, diabetes, chronic obstructive pulmonary disease, chronic
heart failure, coronary artery diseases, metabolic syndrome, and hypertension [8]. In this
regard, Galindo-Oseguera et al. identified an increased risk of mortality in the presence
of hypertension and diabetes linked to an exacerbated inflammatory profile in moderate
and severe pneumonia due to COVID-19 in patients attending the High Specialty Regional
Hospital of Ixtapaluca, Mexico (HRAEI), a regional hospital [9]. SARS-CoV-2 infection
causes a pattern of metabolic and clinical manifestations, leading to leukocytopenia, lym-
phopenia, and elevated levels of C-reactive protein (CPR) in patients with the primary form
of COVID-19 [1,10–12].

In addition, malnutrition is linked to an inadequate immune response to viral
infections [10,13,14]. Specifically, in COVID-19, nutritional deficiencies may lead to
increased oxidative stress in the host [10,15]. Therefore, nutritional status is a critical
factor in moderating the susceptibility to and progression of COVID-19 [2,16,17]. In
this regard, omega-3 polyunsaturated fatty acids (O3FAs) are essential components of a
heathy diet. In fact, O3FAs have the potential to reduce COVID-19 susceptibility and
severity [2,18–22]. The metabolites of O3FAs play an essential role in the synthesis of
different inflammatory mediators from the cellular membrane [23], as well as improving
macrophage function [24]. Thus, O3FAs have immunomodulatory effects on viral infec-
tion and tissue damage [2,25–27]. In this way, severe cases of COVID-19 are related to
hyperinflammation [28], while O3FA administration is related to lower risks of requiring
mechanical ventilation and death [29]. Moreover, O3FAs are known for their ability to
downregulate the inflammatory response induced by the innate immune system [2].
In this sense, Hathaway et al. studied how O3FAs from fish oil enhanced the antiviral
response by inducing interferon production, leading to the inhibition of viral replication,
while ameliorating the response of CD8 T cells involved in unintended lung damage and
further deteriorating the clinical outcome [30,31].

Thus, it was proposed that increasing O3FA consumption reduces viral entry, ame-
liorates immune function, and diminishes the severity of some COVID-19 complications.
Sun et al. observed that O3FAs are inversely associated with the risk of severe COVID-19.
Specifically, they found that O3FAs and docosahexaenoic acid (DHA) measured in either
plasma or red blood cells were inversely associated with COVID-19 susceptibility and
severity [2]. The administration of these fatty acids is considered a safe and inexpensive
prophylactic treatment approach for high-risk people [32–34]. Although the mechanisms
remain to be elucidated, it is known that O3FAs are widely distributed in the body for
further oxidation, storage, or metabolism [34]. However, they are taken up by neutrophils
to produce inflammation mediators [35,36]. Indeed, O3FAs reduce neutrophil infiltra-
tion, pro-inflammatory mediators, and classical monocytes, and enhance non-classical
monocyte/macrophage recruitment in sepsis [37,38].

Scarce data have been reported about the specific nutrients associated with protective
action in the Mexican population with COVID-19, even if some studies suggest the supply
of food as a protective strategy [39]. Therefore, the present study aimed to evaluate for
first time the effects of O3FA supplementation in unvaccinated Mexican patients with
COVID-19, focusing on biochemical/clinical parameters and inflammation markers in
moderate and severe COVID-19 patients treated at the HRAEI.
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2. Materials and Methods
2.1. Study Design and Population

This study was a double-blind, randomized clinical trial performed from May to July
2021 in moderately ill patients infected with COVID-19 at the HRAEI, Mexico. Capsules
filled with corn oil were used as a placebo (very similar in appearance to those used in
the intervention group with O3FAs), but patients were unaware of their feeding contents.
However, patients and researchers needed to be made aware of the arms of the study.
The results were analyzed by an independent evaluator who was not a member of the
treatment team. The sample size was calculated using a proportion difference formula with
95% accuracy and 80% power, as well as the results of a previous report by Kosmopoulos,
in which an early anti-inflammatory effect among symptomatic outpatients with COVID-19
was observed in 52% of patients supplemented with O3FAs vs. 24% of control patients,
resulting in the determination of the number of patients per group. Recruited patients were
randomized into either the group receiving O3FA supplementation or the control group
through the generation of random numbers, as described in [40].

Patients were recruited from the emergency room of the hospital considering the
following inclusion criteria: aged 18 or older and diagnosed with COVID-19 via a
positive RT-PCR nasopharyngeal swab. Clinical evaluation and the CO-RADS classifi-
cation was used to determine moderate disease (Supplementary Table S1) [41]. Briefly,
participants were included if they exhibited clinical manifestations such as severe and
intermediate pneumonia, fever, fatigue, dry cough, and respiratory distress requiring
hospitalization. Requiring oxygen therapy was also a requisite for inclusion. Moreover,
participants were included if they had at least one underlying comorbidity, such as
diabetes, obesity, or hypertension. Eligibility was further restricted to those indicated
for enteral nutrition.

The exclusion criteria included: (a) patients who were either intubated or at a signifi-
cant risk of imminent intubation; (b) patients with a history of severe hemorrhagic disorders
and those with previous reports of myocardial infarction, acute shock, or comatose states;
(c) patients who consumed O3FAs during the three months prior to the study; (d) patients
with a history of hypersensitivity reactions to fish or its products; and (e) patients who
started a vaccination scheme (as the immune response could induce confusing changes).
Participants who could not complete the study due to mortality or the cessation of the need
for enteral feeding were also excluded.

In the present study, 40 patients infected with any variant of COVID-19 were selected
using the inclusion criteria mentioned above, of whom 23 made up sample one (n1) and
were not supplied with O3FAs. However, sample two (n2) comprised 17 patients who
ingested O3FAs orally for two weeks. Although the sample size was not equal between
groups, a per-protocol analysis was performed to evaluate the impact of supplementation
up to that point, resulting in the identification of significant clinical differences.

The intervention group received one capsule of 1.4 g O3FAs daily (GNC triple-strength
fish oil), containing 316 mg of eicosapentaenoic acid (EPA) and 381 mg of DHA, added to
their initial treatment. This dose was considered in accordance with the dietary recommen-
dations of over 50 organizations described in the Global Recommendations for EPA and
DHA Intake (500 mg/person/day) and the U.S. Department of Health and Human Services
and the U.S. Department of Agriculture 2015–2020 [42,43]. O3FAs were administered to the
case group (n2), and the placebo was administered to the control group (n1) by a physician
for two weeks, starting after the first two hours of hospitalization.

2.2. Data Collection

After collecting written consent forms, data were systematically gathered from elec-
tronic medical records. Demographic and clinical variables were meticulously extracted
from these records, including age, prior medical conditions, medical history, blood pressure
metrics, serum lipid profiles, random blood glucose levels, and respiratory status.
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In order to rigorously assess both biochemical and pathological markers, an ex-
haustive battery of diagnostic assays was performed, which included the evaluation
of arterial blood gas metrics, such as oxygen saturation (O2 Sat) and arterial pH, as
well as renal function indices encompassing blood urea nitrogen (BUN), creatinine (Cr),
and urinary output volume. Glycemic profiles, mean arterial pressure, and a complete
hematological panel—comprising differential leukocyte counts (neutrophils, lympho-
cytes, and monocytes)—were also scrutinized. Supplementary parameters, including
the Glasgow Coma Scale, hemoglobin concentration, platelet count, and activated par-
tial thromboplastin time, were likewise subjected to rigorous analysis. Serum albumin
concentrations and hematocrit levels were quantified as ancillary markers. These mul-
tifaceted evaluations were conducted at baseline and after the 14-day interventional
period. All assays were performed in strict compliance with institutional protocols,
utilizing standardized reagent kits, and the institution’s laboratory division meticulously
collated the resultant data.

2.3. Statistical Analysis

Descriptive statistics were employed to determine the nominal characteristics of the
patients. To identify whether the differences between “before” and “after” for each variable
had a normal distribution, the Shapiro–Wilk normality test for continuous variables was
used, with a significance level of 5%. Since the data came from paired or related samples,
this procedure was conducted prior to the analysis of the information collected from the
laboratory. Then, a hypothesis was formulated according to the test statistics; the differ-
ences in sample means were compared with the t-Student statistic (with normality in the
differences), and the non-parametric Wilcoxon test (without normality in the differences)
was used to determine whether the differences between the medians were equal to or dif-
ferent from zero. p-values less than 0.05 were considered statistically significant. Statistical
analyses were performed using IBM SPSS software (version 25, 2017, Armonk, NY, USA:
IBM Corp.).

3. Results
3.1. Demographic Results

The average age of the patients in group n1 was 52.1 years, ranging from 26 to 81, and
the average hospital stay was 10 days, ranging from 2 to 38 days. Meanwhile, the average
age of the patients in group n2 was 48.8 years, ranging from 25 to 82. The mean duration of
hospitalization was 5 days, ranging from a minimum of 2 days to a maximum of 8 days for
patients requiring the most extensive medical care. All patients were from State of Mexico,
Mexico City, and the metropolitan region (including states in the center of the country). No
demographic differences were notable between the two groups, neither in the comorbidity
nor in the severity of included patients (Supplementary Table S1).

3.2. Effects of O3FA Supplementation on Measured Markers

O3FA supplementation led to a significant reduction in leukocyte counts, particularly
neutrophils, and a decrease in hematocrit levels, as depicted in Figure 1. The homog-
enization of the inflammatory response post-O3FA supplementation, as evidenced by
the reduced variability in the absolute neutrophil count and hematocrit levels (Figure 1),
suggests a modulatory effect on neutrophil function.

Regarding metabolism markers (Figure 2), the post-treatment lipid profile exhibited
nuanced alterations with implications for cardiovascular health. A significant increase in
high-density lipoprotein (HDL) cholesterol, with a correlation with the decrease in total
cholesterol/HDL and LDL/HDL ratios, was observed after O3FA treatment compared
to the control group (Figure 2). In contrast, low-density lipoprotein (LDL) and very-
low-density lipoprotein (VLDL) cholesterol levels showed significant reductions, with the
former displaying a positively skewed distribution, indicating a potentially more significant
impact on individuals with elevated baseline VLDL and LDL levels. Triglyceride levels
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also demonstrated a noteworthy decline, a finding of substantial clinical relevance given
the role of triglycerides as a cardiovascular risk marker.
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Figure 1. Blood biometry cell counts pre- and post-treatment. Markers of infection, inflammation,
and tissue damage. Gray boxes represent untreated patients (n1), while blue boxes represent patients
supplemented with O3FAs (n2); the left (blank) shows individuals pre-treatment, and the right
(filled) shows individuals post-treatment. *,#,% p < 0.05 against the group indicated in the extremes
of the horizontal bars: * p < 0.05 between before and after the study period in the untreated group;
% p < 0.05 between before and after the study period in the supplemented group; # p < 0.05 between
the final state of both the treated and untreated groups. Abbreviation: BUN/CR = Blood Ureic
Nitrogen/Creatinine ratio.

Concomitantly, there were marked reductions in glucose, creatinine, and BUN levels,
indicative of a broader metabolic modulation. Most notably, the observed decreases in the
LDL/HDL and total cholesterol/HDL ratios carry clinical significance. Elevated ratios are
conventionally viewed as risk factors for cardiovascular diseases associated with severe
COVID-19 outcomes.
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Glutamate-pyruvate transaminase (GPT) showed increased variability coupled with 
a narrowed interquartile range, alluding to a complex influence on this enzyme (Figure 
3). Concurrently, glutamic oxaloacetic transaminase (GOT) exhibited a decline character-
ized by a positively skewed distribution, suggesting a potential asymmetric therapeutic 
benefit. Alkaline phosphatase showed greater data dispersion, necessitating further ex-
ploration of its mechanistic underpinnings.  

Figure 2. Markers of general metabolism. Gray boxes represent untreated patients (n1), while
blue boxes represent patients supplemented with O3FAs (n2); the left (blank) shows individuals pre-
treatment, and the right (filled) shows individuals post-treatment. *,#,% p < 0.05 against the group indi-
cated in the extremes of the horizontal bars. HDL = High-Density Lipoproteins, LDL = Low-Density
Lipoproteins, VLDL = Very Low-Density Lipoproteins.

Glutamate-pyruvate transaminase (GPT) showed increased variability coupled with a
narrowed interquartile range, alluding to a complex influence on this enzyme (Figure 3).
Concurrently, glutamic oxaloacetic transaminase (GOT) exhibited a decline characterized
by a positively skewed distribution, suggesting a potential asymmetric therapeutic benefit.
Alkaline phosphatase showed greater data dispersion, necessitating further exploration of
its mechanistic underpinnings.

Finally, both direct and indirect bilirubin levels demonstrated reduced variability, un-
derscoring stabilization in hepatic excretory function. Additionally, it should be mentioned
that lactate dehydrogenase (LDH) has been used as a marker of cellular damage and is ele-
vated in severe COVID-19 cases. The administration of O3FAs, specifically EPA and DHA,
has been observed to attenuate the levels of these biomarkers significantly. This reduction
suggests a systemic modulation of both the inflammatory and coagulative responses, po-
tentially mediated through the inhibition of pro-inflammatory eicosanoids and alterations
in inflammation-related gene expression profiles. The observed asymmetric distribution in
the reduction in LDH levels post-O3FA administration adds a layer of complexity, implying
a non-linear dose–response relationship and suggesting that therapeutic efficacy may be
more pronounced in specific subpopulations, such as those with initially elevated LDH
levels or those at a more advanced stage of the disease.
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# p < 0.05 against the group indicated in the extremes of the horizontal bars.

4. Discussion

Our study elucidates the multifaceted impact of O3FA supplementation on systemic
inflammation, coagulation, and metabolic modulation in unvaccinated COVID-19 pa-
tients [44]. The identification of O3FA-administration effects on factors that increase or
limit the risk of developing severe forms of COVID-19 is particularly noteworthy [45].

The observation findings in the present study are broadly consistent with those in
previous observational studies, in which O3FAs were found to be inversely associated with
the risk of severe COVID-19 when comparing patients to individuals with an unknown
COVID-19 status [45–47]. However, this is the first time in an unvaccinated Mexican
population, which showed highly incidence of severe cases and mortality.

This study delineates the multifarious ramifications of O3FA supplementation on the im-
munological and metabolic landscape in COVID-19 patients with a population-recommended
dose aimed to satisfy human physiological requirements in a short time [45–50]. The data
substantiate the nuanced modulation of key inflammatory and coagulative markers. In fact,
data in Figure 1 can be interpreted as a systemic attenuation of the inflammatory response,
a critical factor given the role of cytokine storms and acute inflammation in COVID-19
morbidity and mortality. Concurrently, the metabolic perturbations induced by O3FA
supplementation result in lipidomic realignments and enzymatic variabilities, with notable
implications for health. These findings corroborate the extant literature and augment our
understanding of the mechanistic underpinnings of O3FA-mediated modulations in the
context of a viral pandemic [45,50–52].

Regarding inflammation and complication factors, the administration of O3FAs led
to a notable decrease in neutrophil counts, possibly indicative of a systemic downregu-
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lation of the NLRP3 inflammasome. This effect is likely mediated through biochemical
pathways that inhibit pro-inflammatory eicosanoid synthesis, alter gene expression related
to inflammatory mediators, and modify cell membrane characteristics affecting signal
transduction. It could mitigate the cytokine storm frequently observed in severe COVID-19
cases, related to disseminated intravascular coagulation, acute respiratory distress syn-
drome, multiple organ dysfunction syndrome, and death [46]. Hemoglobin levels also
exhibited a significant decrease post-O3FA supplementation, which could be attributed to
the anti-inflammatory properties of O3FAs affecting erythropoiesis [47,51]. Additionally,
well-established biomarkers, such as procalcitonin, D-dimer, and the BUN/CR ratio, were
attenuated post-O3FA administration, signifying a systemic modulation of both inflamma-
tory and coagulative responses [48–51]. It should be seen that D-dimer and procalcitonin
serve as well-established biomarkers for infections, systemic inflammation, and coagulation
events, and their elevated levels, as well as an elevated BUN/CR ratio, have been correlated
with worse outcomes in COVID-19 patients [48,51].

The data also revealed intriguing distributional characteristics in lymphocyte and
platelet counts, suggesting a systemic anti-inflammatory effect and potential antithrom-
botic properties [52]. The negative skewness in lymphocyte and platelet counts post-
supplementation implies a concentration of data points on the higher and lower ends of the
respective scales, signifying not only a systemic anti-inflammatory effect but also potential
antithrombotic properties, given the role of platelets in coagulation and thrombosis.

The high variability in platelet counts pre-O3FA supplementation limits us to sug-
gesting a heterogeneous response. This is possibly attributable to individual metabolic,
absorptive, or kinetics factors affecting fatty acid utilization and platelet formation.

From a clinical standpoint, these findings could translate into expedited patient recov-
ery and reduced morbidity, potentially mitigating complications, such as thromboembolic
events and acute respiratory distress syndrome (ARDS).

The role of O3FAs in modulating inflammation, cellular membrane fluidity, and
macrophage function is particularly rich and nuanced [45,48]. They can also reduce the
risk of SARS-CoV-2 infection by suppressing and inhibiting the progression of viral infec-
tions [45] and the development of critical symptoms [47].

The administration of O3FAs, specifically EPA and DHA, has elucidated attractive
immunomodulatory effects, including those that enhance the response to viral infec-
tions [19,36,45,46]. The observed leukopenia, particularly the significant decrease in neu-
trophil counts, may indicate a systemic downregulation of the NLRP3 inflammasome, a
cytosolic complex pivotal in initiating the inflammatory cascade, attenuating the release
of pro-inflammatory cytokines, such as IL-1β and IL-18, thereby mitigating the cytokine
storm frequently observed in severe COVID-19 cases [29]. The role of O3FAs in modulat-
ing Toll-like receptor (TLR) signaling pathways, which are integral to innate immunity,
also warrants further investigation [45]. Furthermore, eicosanoids derived from EPA as
resolvins, maresins, lipoxins, and protectins, inhibit leukocyte infiltration to the site of
inflammation and stimulate macrophages and neutrophils to resolve inflammation, thereby
averting prolonged symptomatology [45].

The post-supplementation homogenization of inflammatory markers, such as the
absolute neutrophil count and hematocrit levels, underscores a nuanced modulatory effect
on neutrophil function [52].

Even hemoglobin, a quintessential biomarker for oxygen transport, exhibited a notable
decrease post-O3FA supplementation. This finding could be interpreted through multiple
lenses. Firstly, O3FAs are known for their anti-inflammatory properties, and inflammation
modulates erythropoiesis, producing new erythrocytes. Reducing inflammation could
decrease the levels of erythropoietin, a hormone that stimulates erythropoiesis, thereby
affecting hemoglobin concentrations. Secondly, O3FAs have been shown to modulate
lipid membranes and could affect the integrity and function of red blood cell membranes,
influencing hemoglobin levels [45].
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Metabolically, significant alterations were observed in lipid profiles and other metabolic
markers. O3FAs have been reported to enhance endothelial function and microcirculation,
thereby optimizing blood flow and tissue perfusion. Significant elevations were observed
in HDL cholesterol, while reductions were noted in LDL and VLDL cholesterol levels.
Marked reductions were also observed in metabolic markers, such as glucose, creatinine,
and BUN, indicative of broader metabolic modulation [53].

Thus, lipid profiles exhibited nuanced alterations with implications for cardiovas-
cular health, including a significant elevation in HDL cholesterol and reductions in LDL
and VLDL cholesterol levels. The observed decreases in the LDL/HDL and total choles-
terol/HDL ratios not only suggest a cardio-protective effect but also contribute to an overall
improvement in the patient’s clinical status [43,44].

O3FAs have been reported to enhance endothelial function and microcirculation,
optimizing blood flow and tissue perfusion to prevent the progression of hypoxia and
organ dysfunction. They modulate vasodilatory and vasoconstrictive responses, thereby
enhancing microvascular function [32,48].

The attenuation of well-established biomarkers, such as procalcitonin, D-dimer, and
LDH, post-O3FA administration signifies a systemic modulation of inflammatory and
coagulative responses. The asymmetric distribution in reducing LDH levels adds a layer
of complexity, suggesting a non-linear dose–response relationship and indicating that
therapeutic efficacy may be more pronounced in specific subpopulations [32,48].

Concurrently, there were marked reductions in metabolic markers, such as glucose,
creatinine, and BUN, indicative of broader metabolic modulation. Enzymatic markers such
as GPT and GOT exhibited complex variability and distributional characteristics, necessi-
tating further mechanistic exploration. Additionally, the significant elevation in albumin
levels and total protein may imply improvements in nutritional status or hepatic function,
corroborated by stabilized bilirubin levels [45]. Adequate albumin levels appear to be key
since albumin displays antioxidant properties, such as scavenging oxygen free radicals, and
the COVID-19 patients with higher albumin levels on admission were associated with a
better overall prognosis [54]. However, further approaches should be carried out to confirm
or discard these possibilities.

In summary, the administration of O3FAs demonstrated profound modulatory effects
on both immunological and metabolic parameters. These multifaceted changes could
collectively influence systemic inflammatory responses, cellular signaling mechanisms, and
overall organ functionality [45]. Further studies are needed to confirm these findings and
explore the dose–response relationship [50].

Moreover, the effects of omega-3 supplementation after 14 days were observed in
inflammatory parameters related to immunity. This trial supports the hypothesis that O3FA
supplementation with a modest dose of at least near 1 g/day of EPA + DHA has significant
benefits, consistent with those reported in other pathologies, and it also positively affected
the survival rate of ill patients with COVID-19 [49]. This could be explained, as some studies
have shown that participants with lower intake or baseline levels of O3FA, such as the
Mexican population, are prone to having more impactful results after supplementation [50].

Given the high public health concerns related to the COVID-19 pandemic, modifiable
risk factors for developing severe and critical complications, particularly nutritionally based
O3FAs, were considered for their potential mechanisms underlying multiple actions [11].

The present study had some limitations. Samples were taken from patients in the
center of the country, while diversity in the measured variables could be higher when
using a multicentric approach. Despite the sample size being calculated with an acceptable
power for the study, the results must be confirmed in more extensive studies due to
small samples could increase the risk of fails in randomization processes. Although the
differences found in this study suggest a superior effect of the intervention, only one O3FA
dosage was studied, so the dose–response efficacy of the supplement was not analyzed,
and the monitoring of some active compounds from diet intake as confounding factors
was not carried out. Another limitation of this study is its short duration and the lack
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of standardized medical treatment. Furthermore, somatometry and biochemical markers
linked to prognosis in COVID-19, such as body mass index, inflammatory cytokines (C-
reactive protein (CRP)), and specific cytokines (interleukin-6 and interleukin-10, suggested
as relevant biomarkers in predictive models of hospitalized COVID-19 patients [43,44]),
were not measured mainly due to limited resources. Also, additional approaches are
required to evaluate the effects of O3FA in vaccinated patients, including specific responses
to diverse vaccines and vaccination schemes.

When comparing our findings with those of previous studies, it was found that the
role of O3FAs in modulating inflammation and metabolic parameters (often measured
and reported in an independent manner) was consistent with that observed in earlier
research. Previous studies have shown that O3FAs were inversely associated with the risk
of COVID-19 when comparing patients to individuals without COVID-19 [13]. Our study
supports the hypothesis that O3FA supplementation positively affects the survival rate of
ill patients with COVID-19 [50].

Given the high public health concerns related to the COVID-19 pandemic, identifying
modifiable risk factors for developing severe and critical complications is crucial. In this
context, O3FAs offer a nutritionally based option for their potential mechanisms underlying
multiple actions. In this sense, previous studies in Mexico have indicated the leading
risk factors for mortality in middle-aged COVID-19 patients: male, hypertension, drug
addiction, and alcoholism [9,51,52]. However, scarce data support the beneficial effects of
specific drugs or supplements in Mexican COVID-19 patients, triggering misconduct in
drug availability, marketing, and application [53].

5. Conclusions

The administration of O3FAs, specifically EPA and DHA, in the context of COVID-19
has illuminated new avenues for therapeutic intervention, transcending the traditional
boundaries of nutritional supplementation.

Our results support the well-known immunosuppressive effects of O3FAs, while the
nuanced alterations in leukocyte counts are solely in short supply. The downregulation
of neutrophils and the concomitant elevation of lymphocytes may signify a shift from
innate to adaptive immunity. Furthermore, the observed improvements in lipid profiles
and liver function tests suggest that O3FAs may exert a synergistic effect, modulating
inflammatory responses and key metabolic indexes, raising the possibility of using O3FAs
as part of a multi-pronged therapeutic strategy, targeting not only the virus but also the
host’s metabolic and immune responses.

The data obtained in this study not only enrich our understanding of these fatty
acids with multifaceted roles but also challenge us to reevaluate the existing paradigms in
immunology and metabolic regulation by fatty acids. In addition, these data support the
positive effects of O3FA supplementation in unvaccinated Mexican patients, as expected
with multiple studies supporting biological effects related to potential benefits in COVID-19
treatment. The findings of this study have far-reaching clinical implications. Advanced
analytical techniques, such as proteomics, metabolomics, and transcriptomics, could offer a
more granular understanding of the molecular mechanisms.

Likewise, further research employing rigorous methodologies, such as randomized
controlled trials and multi-omics analyses, is imperative for elucidating the underlying
biochemical and biomolecular mechanisms. This could pave the way for targeted thera-
peutic interventions and personalized medicine approaches in managing COVID-19, its
complications, and other inflammatory diseases [46].

Supplementary Materials: The following supporting information can be downloaded at: https:
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