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Abstract: Background: Automated rhythm detection on echocardiography through artificial intelli-
gence (AI) has yet to be fully realized. We propose an AI model trained to identify atrial fibrillation
(AF) using apical 4-chamber (AP4) cines without requiring electrocardiogram (ECG) data. Methods:
Transthoracic echocardiography studies of consecutive patients ≥ 18 years old at our tertiary care cen-
tre were retrospectively reviewed for AF and sinus rhythm. The study was first interpreted by level
III-trained echocardiography cardiologists as the gold standard for rhythm diagnosis based on ECG
rhythm strip and imaging assessment, which was also verified with a 12-lead ECG around the time of
the study. AP4 cines with three cardiac cycles were then extracted from these studies with the rhythm
strip and Doppler information removed and introduced to the deep learning model ResNet(2+1)D
with an 80:10:10 training–validation–test split ratio. Results: 634 patient studies (1205 cines) were
included. After training, the AI model achieved high accuracy on validation for detection of both AF
and sinus rhythm (mean F1-score = 0.92; AUROC = 0.95). Performance was consistent on the test
dataset (mean F1-score = 0.94, AUROC = 0.98) when using the cardiologist’s assessment of the ECG
rhythm strip as the gold standard, who had access to the full study and external ECG data, while
the AI model did not. Conclusions: AF detection by AI on echocardiography without ECG appears
accurate when compared to an echocardiography cardiologist’s assessment of the ECG rhythm strip
as the gold standard. This has potential clinical implications in point-of-care ultrasound and stroke
risk stratification.

Keywords: artificial intelligence; deep learning; atrial fibrillation; echocardiography

1. Introduction

Atrial fibrillation (AF) is the predominant arrhythmia encountered in clinical practice
with growing prevalence worldwide due to the aging population [1]. Widely recognized
for its increased risk of stroke, AF is also associated with significant cardiovascular mor-
bidity and mortality [2]. Early and accurate diagnosis of this arrhythmia is essential for
timely management. Contemporary guidelines agree on rhythm-based detection through a
standard 12-lead electrocardiogram (ECG) or single-lead ECG tracing ≥ 30 s as the gold
standard for diagnosis of AF [3–5]. Echocardiography, whether using cart-based ultrasound
machines or point-of-care ultrasound (POCUS) devices, is an integral part of the initial
evaluation of a patient with palpitations with or without documented AF/flutter and is
highly valuable for screening for substrates of arrhythmia [6]. These investigations also
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provide excellent opportunities for detection of AF/flutter, as well as imaging substrates
that are known to promote the development of such arrhythmias.

Over the years, the efficiency of AF diagnosis has been accelerated by technological
advances in medicine, including the introduction of artificial intelligence (AI). ECGs have
long since been subjected to early computer-aided interpretation algorithms for more than
50 years, but are now capable of achieving a high diagnostic performance comparable to
that of trained cardiologists in classifying a broad range of distinct arrhythmias through
the implementation of machine learning and use of deep learning neural networks [7].
The versatility of AI has also notably extended to the realm of echocardiography. This
includes improved image acquisition and optimization, automated view classification,
measurements, and finally detection and interpretation of disease [8,9]. AI development
in these areas promises to increase efficiency and decrease operator variability between
sonographers to improve the overall workflow for echocardiography clinicians. Deep
learning algorithms for assessment of left ventricular dysfunction, valvular disease, and
cardiomyopathy have been described in the literature [10]. Despite all these advances,
automated rhythm detection on echocardiography has yet to be fully realized. To our
knowledge, there is only one prior study from our centre featuring Echo-Rhythm Net, a
semi-supervised deep learning-based framework on echocardiography with a diagnostic
accuracy of 73–79% for AF based on training and testing with parasternal long-axis (PLAX)
cines [11]. This technology can be of clinical relevance in point-of-care ultrasound (POCUS)
where rhythm strips are unavailable, which may be used in settings where ECGs are not
immediately accessible.

In this paper, we propose a deep learning AI model trained to identify AF with high
diagnostic accuracy using apical-4-chamber (AP4) cines on echocardiography without the
need for conventional ECG information.

2. Materials and Methods
2.1. Study Overview

Transthoracic echocardiography studies of consecutive patients ≥ 18 years old at our
Canadian tertiary care centre were retrospectively reviewed for cardiac rhythms identified
as AF or sinus rhythm, which were the dominant rhythms in our database (>95%). Analyses
of other types of rhythms and patients with congenital heart disease or cardiac devices
such as pacemakers were excluded. This study was approved by the institutional review
board of the University of British Columbia (H20-00602) and complied with the guidelines
set forth in the Declaration of Helsinki. A waiver of consent was obtained for collection
and use of patient data for this retrospective review. The authors had full access to the data
and have all read and agreed with the contents of the manuscript as written.

2.2. Echocardiography and ECG Inclusion Criteria

Two-dimensional (2D) echocardiographic imaging consisting of AP4 cine loops with
exactly three cardiac cycles were included. At our centre, these studies were obtained by
certified sonographers and read by level III-trained echocardiography cardiologists on the
same day. The echo cine data were captured using a variety of ultrasound machines from
different manufacturers and models, including GE (Vivid i, Vivid E9, Vivid7, and Vivid
E95; Milwaukee, WI, USA) and Philips (iE33, SONOS, EPIQ 7C; Bothell, WA, USA), with
the majority of the data obtained from the Philips iE33 model. Syngo Dynamics (Siemens
Medical Solutions, Ann Arbor, MI, USA) was the archiving and analysis platform for this
study, and TomTec was used for strain analyses. The gold standard for cardiac rhythm
was the echocardiography cardiologists’ interpretation of the ECG rhythm strip at the
time of echocardiogram, in addition to imaging assessment of the full study including
Doppler. The rhythm was additionally confirmed with an external 12-lead ECG, reviewed
by a staff cardiologist, around the time of each echocardiography study to account for
similar irregular rhythms that may be undifferentiable on the echocardiogram rhythm strip
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alone. When possible, two consecutive ECGs around the time of echocardiography were
examined to acknowledge the possibility of paroxysmal AF.

2.3. AI model Framework, Training Process, and Evaluation

For the base deep learning model, we utilized ResNet(2+1)D, an open-source video-
assessment convolutional residual neural network consisting of 18 deep layers. This model
efficiently learns representations of video data by decomposing 3D convolution into pairs
of 2D and 1D convolutions to extract spatial and temporal features, respectively, which
minimizes overfitting [12] (Figure 1). The final output layer of the network was modified
for two-class classification to identify AF or sinus rhythm as a binary output. Overall,
this model contained around 31 million trainable parameters. The training procedure
was carried out for 100 epochs using the Adam optimizer and weighted cross-entropy
loss, assigning higher weights to less frequent labels to penalize classification errors more
heavily. This approach mitigated the effects of imbalanced AF-sinus distribution in the
dataset. The learning rate (LR) was initialized to 10−3, but it was halved whenever the
performance on the validation set did not improve for 10 epochs. This process continued
until the LR reached a minimum of 10−5.
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Figure 1. Deep learning model schematic diagram.

The 2D AP4 cines for each patient study were extracted from Syngo Dynamics
(VA40)/TomTec (Ultrasound Workspace) software and subsequently processed to remove
the rhythm strip and additional Doppler information. These cines were introduced to the
AI model in an 80:10:10 training–validation–test split ratio with mutually exclusive patients
for deep learning. A total of 80% of studies were used for training of the AI model in
batches of 8 cine clips. Each clip comprised three cardiac cycles extracted from a randomly
selected echo cine and resized to 24 frames, each 112 by 112 pixels. Additionally, to prevent
overfitting, each training batch was augmented by random rotation (−20◦ to 20◦) and
translation (up to 10% in horizontal and vertical directions). A total of 10% of studies were
used as the validation set to identify the optimal configurations for the model and training
procedure. The remaining 10% of studies were used for testing the best configured AI
model to evaluate its generalizability to unseen data and its accuracy in identifying AF
from sinus rhythm.

2.4. Statistical Analysis

Continuous variables of baseline characteristics are reported as the mean ± one standard
deviation and were compared using two-tailed Student’s t-tests. The predictions made by
the AI model when applied to the 2D AP4 cines in terms of identifying AF or sinus rhythm
were compared to the original diagnosis by the echocardiography cardiologist in the dataset.
Precision, recall, F1-scores, and the area under the receiver operating characteristic curve
(AUROC) were calculated to assess the performance of the AI model in accurately diagnos-
ing the rhythm, which were then used to determine the best model configuration and train-
ing hyper-parameters. The F1-score is the harmonic mean of precision and recall and calcu-
lated with the following formula: F1-score = 2 × (Precision × Recall)/(Precision + Recall).
In comparison to calculating for accuracy, the F1-score provides a better assessment
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of the model’s performance when accounting for false positives and false negatives in
imbalanced datasets.

2.5. Qualitative Analysis

We conducted a qualitative analysis of the AI model’s ability to perceive and classify
the rhythm of the input echo cine as either AF or sinus. To assess the model’s sensitivity to
spatio-temporal features, we removed a window of size 10 by 10 pixels across 5 consecutive
frames and measured the change in rhythm prediction. We repeated this occlusion-based
importance estimation for all the spatio-temporal features by sliding this window across
all regions and frames in the given echo cine. Furthermore, we estimated the frame-level
temporal importance by expanding the height and width of the aforementioned window
to match the height and width of the echo cine. This information was then transformed
into heatmaps, which were superimposed on the echo cine and evaluated for their clinical
relevance in rhythm diagnosis.

3. Results
3.1. AI Training and Validation

A total of 634 patient echocardiographic studies (1205 cines) met the inclusion criteria
(Figure 2).
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The training dataset consisted of 288 studies (645 cines) for AF and 216 studies
(328 cines) for sinus rhythm. The studies with AF had higher heart rates than those with
sinus rhythm (84 ± 20 vs. 80 ± 19 bpm, p = 0.001), but there was no significant difference
in the cine frame count (90 ± 34 vs. 90 ± 39 frames, p = 0.96) or duration (2.2 ± 0.5 vs.
2.2 ± 0.6 s, p = 0.69) of the three cardiac cycles used for the actual training process for AF
and sinus rhythm, respectively. After training, the AI model achieved a mean F1-score of
0.92 and AUROC of 0.95 for rhythm detection on validation of 65 studies (115 cines), with
individual F1-scores of 0.93 for AF and 0.91 for sinus rhythm (Figure 3).
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3.2. Test Performance and Comparison to Echocardiography Cardiologist

When our trained AI model was subjected to 65 unseen studies (117 cines) of AF
and sinus rhythm, it achieved F1-scores of 0.94 and 0.93 accordingly for an overall mean
F1-score of 0.94 and AUROC of 0.98. Of the four cases where the AI model had predicted
the incorrect rhythm, three were misdiagnosed as sinus rhythm and one was misdiagnosed
as AF. However, further review of 12-lead ECGs for the case predicted as AF by the AI
model reveal that the patient actually had paroxysmal AF as there were historical ECGs of
the patient in AF, although they were in sinus rhythm at the time of the echocardiogram
and thus had been labelled as such.
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3.3. Qualitative Results with Occlusion-Based Importance Estimation

As shown in Figure 4 (and Supplemental Video S1), the frame-level analysis identi-
fied frames that captured the opening and closing of the atrioventricular valves as most
important, as the exclusion of these frames from the input cine significantly reduced the
accuracy of rhythm detection. This was further supported by the pixel-level analysis, which
highlighted the regions closer to the tricuspid and mitral valves the most during periods
of valve activity, with a particular emphasis on irregularities with their annular motion.
Overall, these analyses demonstrated which anatomical regions and cardiac cycle phases
the model focused on for predicting the rhythm of the given echo cine.
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tance to violet being of least importance on analysis of cines in atrial fibrillation compared to sinus
rhythm. Top left is a frame-by-frame analysis with a summary of frame importance on the top right.
Bottom images are pixel analysis of select frames of high importance, showing attentiveness of the
deep learning model to differences in atrial structure and function with a high focus on irregularities
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4. Discussion

To the best of our knowledge, this study is the first to confirm the accuracy of AF
detection by AI using only echo images without accompanying rhythm strips or ECG. Our
key findings are as follows: (1) the incorporation of an AI model in echocardiography is
feasible for automated rhythm detection; (2) our trained AI model can identify AF with
high, clinically acceptable accuracy and (3) differentiate from sinus rhythm on 2D AP4
cines without concurrent ECG or even Doppler information. Moreover, the AI model was
shown to have consistent performance in these areas when compared to a level III-trained
echocardiography cardiologists’ interpretation, the latter of which had access to the ECG
rhythm strip and full study including Doppler information in addition to an external
12-lead ECG. The analysis of the cases where the AI model had predicted the incorrect
rhythm suggests that some cases may be paroxysmal AF, whereby the AI model is detecting
either anatomical or functional visual information consistent with AF that is not represented
electrically on a standard 12-lead ECG or associated rhythm strip on echocardiography.
These findings have immense implications as many thousands of echocardiography studies
are performed daily on both cart-based and POCUS machines. The implementation of this
AI AF detection feature will immediately accelerate our ability and accuracy for detection
of AF worldwide.
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We believe that this work is the first to integrate AI into echocardiography for the
purpose of automated rhythm detection. We had previously used a semi-supervised deep
learning-based framework called Echo-Rhythm Net to detect AF on 2D PLAX cines, with
reported accuracy of 73–79% on the testing set [11]. Our present AI model using 2D AP4
cines appears to outperform our own prior model using Echo-Rhythm Net. We hypothesize
two possible reasons for this observation: (1) Echo-Rhythm Net utilized a more complex
convolutional neural network which could result in overfitting and make it more difficult
for the AI model to perform accurately with unseen data; (2) the different echocardiographic
views used for training, which was AP4 in this present study versus PLAX in Echo-Rhythm
Net, may have been a factor as well, as changes in left atrial (LA) volume, function, and
strain associated with AF can provide prognostic information [6,12,13]. A combination of
apical and parasternal views is typically used in the routine assessment of the LA, and thus,
both AI models have the opportunity to assess the LA as a marker of AF.

The use of AP4 view hypothetically provides more structural information relevant
to AF which the AI model can learn from. Recent studies on right atrial and ventricular
abnormalities have also been implicated in AF [14,15], and thus, it is possible that providing
more cardiac chambers in view has allowed it to learn to detect AF with higher accuracy.
Heatmaps derived from frame and pixel analysis of cines in AF compared to sinus rhythm
indicate that the AI model is perceptive of changes in the atrial structure and function, with
a particular focus on irregularities with the opening and closure of both tricuspid and mitral
valves and their annular motion (Figure 4) (Supplemental Video S1). While these latter
features appear to be deemed most important, closer examination reveals there is at least an
intermediate level of importance along both atrial walls which infers assessment of atrial
size. Altogether, this suggests that the AI model is potentially using echocardiographic
features of atrial remodeling and function to phenotype AF. It is important to note that
additional Doppler information was not provided to the AI model, which would have
also allowed for the assessment of mitral inflow patterns in AF that are likely better
assessed on AP4 view [6]. With that said, we acknowledge that PLAX is sometimes
the easier view to obtain when acquiring imaging in practice due to patient positioning,
consistent anatomical landmarks, and technical ease of holding the ultrasound probe in the
appropriate position [16]. Our ongoing efforts to continue to increase the magnitude of our
datasets to train our base AI model on PLAX cines, as well as combined AP4 and PLAX
cines, will further enhance AF detection flexibility in the future.

At the level of dedicated echocardiography laboratories, AI may improve the assess-
ment of AF with additional prognosticative ability and stroke risk stratification. Contem-
porary practice heavily relies on rhythm-based detection for diagnosis of AF followed by
calculation of clinical scores such as CHADS2 or CHA2DS2-VASc. Yet, it is known that
echocardiographic features such as large atrial size is a predictor of stroke independent
of AF [17]. In fact, there has been an increase in the amount of research in the literature
over the years suggesting that atrial myopathy is an independent predictor for stroke. The
Cardiovascular Health Study was a large longitudinal study that investigated risk factors
for cardiovascular disease and stroke in adults aged 65 years and older. The study found
that markers for atrial myopathy including wave terminal force in lead V1 and N-terminal
pro-B-type natriuretic peptide were associated with increased risk for thrombus formation
and embolic stroke regardless of the presence of AF [18]. Subsequent studies on the use of
strain imaging echocardiography have proposed that a positive global left atrial strain has
prognostic value in assessing the severity of atrial myopathy and may further risk stratify
patients with stroke [19]. Therefore, the echocardiographic severity of atrial remodeling
potentially provides more information about AF burden and stroke risk than conventional
ECG or Holter, which can be less sensitive for early or paroxysmal disease. With the aid of
AI algorithms, this may allow echocardiography to detect AF faster and become a reliable
adjunct to the current clinical scores for stroke risk stratification, allowing for more timely
consideration of anticoagulation.
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Limitations

This study has important limitations. Our AI model performed exceptionally in
the setting of our study, but its diagnostic accuracy may be affected by variable image
quality in clinical practice especially when applied to POCUS. Differences in the specific
ultrasound machine and operator experience will inevitably contribute to variable image
acquisition. However, these differences can potentially be addressed with AI as well
through recent advances in image analysis and optimization [8,20]. We acknowledge that
the validation and testing datasets were relatively modest in size for the assessment of
diagnostic accuracy. This was largely due to the 80:10:10 training–validation–test split ratio
we chose for deep learning, where most studies were used for training purposes, and the
overall echocardiographic studies available with three or more cardiac cycles for both AF
and sinus rhythm to avoid cycle length being a confounding factor. Furthermore, our AI
model utilizes a two-class classification layer which means it currently only identifies AF
or sinus rhythm and has yet to be tested against other specific rhythms from a technical
perspective. This is clinically relevant when attempting to differentiate AF from similar
rhythms such as atrial flutter or irregularly patterns like sinus rhythm with premature atrial
complexes or sinus arrhythmia. Given the early stages of developing this novel approach,
our primary intent was for the AI model to first attain high accuracy in distinguishing
AF from sinus rhythm and then build its library of rhythms successively. With that said,
the AI model can be modified in a future sub-analysis to provide an uncertainty score
when it is given a study that is outside of the distribution of AF or sinus rhythm. A high
uncertainty score would indicate the AI model has determined a study is neither AF nor
sinus rhythm. Finally, we recognize that the current AI model and the results attained
are preliminary in terms of its applications to the real word. Nonetheless, we consider
our work a successful proof-of-concept that supports continued effort in this field of AI in
medicine. Future directions would be to prospectively validate our AI model with more
datasets internally and externally outside our centre and to include POCUS imaging.

5. Conclusions

In summary, we have demonstrated that AI can automate rhythm detection on echocar-
diography without conventional ECG information. Our AI model can differentiate AF
from sinus rhythm on 2D AP4 cines with a high diagnostic accuracy that appears to be
comparable to that of an echocardiography cardiologist’s assessment of the ECG rhythm
strip as the gold standard. This has major implications in POCUS where rhythm strips are
unavailable and could help augment the clinical decisions of less experienced operators on
diagnosis at bedside, leading to timely consideration of anticoagulation. Moreover, our AI
model is potentially phenotyping AF based on atrial remodeling on echocardiography that
is not reflected at the level of rhythm detection by ECGs, which may lead to earlier detection
of AF and individualized stroke risk stratification for patients. Further prospective datasets
and testing are required to validate this AI model to transition from proof-of-concept to
real world applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/diseases12020035/s1, Supplemental Video S1: Video of heatmap
from Figure 4 of a cine in atrial fibrillation.
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