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Abstract: In Phase I, we collected data on five subjects yielding over 90% positive performance
in Magnetoencephalographic (MEG) mid-and post-movement activity. In addition, a driver was
developed that substituted the actions of the Brain Computer Interface (BCI) as mouse button
presses for real-time use in visual simulations. The process was interfaced to a flight visualization
demonstration utilizing left or right brainwave thought movement, the user experiences, the aircraft
turning in the chosen direction, or on iOS Mobile Warfighter Videogame application. The BCI’s data
analytics of a subject’s MEG brain waves and flight visualization performance videogame analytics
were stored and analyzed using the Hadoop Ecosystem as a quick retrieval data warehouse. In Phase
II portion of the project involves the Emotiv Encephalographic (EEG) Wireless Brain-Computer
interfaces (BCls) allow for people to establish a novel communication channel between the human
brain and a machine, in this case, an iOS Mobile Application(s). The EEG BCI utilizes advanced and
novel machine learning algorithms, as well as the Spark Directed Acyclic Graph (DAG), Cassandra
NoSQL database environment, and also the competitor NoSQL MongoDB database for housing BCI
analytics of subject’s response and users’ intent illustrated for both MEG/EEG brainwave signal
acquisition. The wireless EEG signals that were acquired from the OpenVibe and the Emotiv EPOC
headset can be connected via Bluetooth to an iPhone utilizing a thin Client architecture. The use of
NoSQL databases were chosen because of its schema-less architecture and Map Reduce computational
paradigm algorithm for housing a user’s brain signals from each referencing sensor. Thus, in the
near future, if multiple users are playing on an online network connection and an MEG/EEG
sensor fails, or if the connection is lost from the smartphone and the webserver due to low battery
power or failed data transmission, it will not nullify the NoSQL document-oriented (MongoDB)
or column-oriented Cassandra databases. Additionally, NoSQL databases have fast querying and
indexing methodologies, which are perfect for online game analytics and technology. In Phase II,
we collected data on five MEG subjects, yielding over 90% positive performance on iOS Mobile
Applications with Objective-C and C++, however on EEG signals utilized on three subjects with
the Emotiv wireless headsets and (1 < 10) subjects from the OpenVibe EEG database the Variational
Bayesian Factor Analysis Algorithm (VBFA) yielded below 60% performance and we are currently
pursuing extending the VBFA algorithm to work in the time-frequency domain referred to as VBFA-TF
to enhance EEG performance in the near future. The novel usage of NoSQL databases, Cassandra and
MongoDB, were the primary main enhancements of the BCI Phase II MEG/EEG brain signal data
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acquisition, queries, and rapid analytics, with MapReduce and Spark DAG demonstrating future
implications for next generation biometric MEG/EEG NoSQL databases.

Keywords: brain-computer interface; machine learning algorithms; encephalographic (EEG);
magnetoencephalographic (MEG); Hadoop Ecosystem; iOS Mobile Applications; MongoDB;
Cassandra; Emotiv EPOC headset; OpenVibe

1. Introduction

In Phase I, “A Real-Time Magnetoencephalography Brain-Computer Interface Using Interactive
3D-Visualization and the Hadoop Ecosystem”, Journal of Brain Sciences, 2015 [1], was developed with an
overall above 92% performance on 5 MEG subjects utilizing the Variational Bayesian Factor Analysis
(VBFA) Machine Learning algorithm.

Secondly in Phase II, demonstrate in Figures 1 and 2, below, we extend the MEG Subjects
brainwave [2] data storage to MongoDB for ease of use and relevance with the Internet of Things (IoTs)
sensor based data acquisition [3] for analytical processing and data storage in Figure 2, extended to
implementation with Apple iOS Mobile Applications.
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Figure 1. Phase II, MongoDB MEG Brain Computer Interface Database(s).
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Figure 2. Phase II, magnetoencephalography brain-computer interface(s) (MEG BCI) with Apple iOS
Mobile Applications stored in MongoDB and Cassandra.

Thus, the acquisitioned tomographic magnetoencephalography/electroencephalography
(MEG/EEG) subject brainwave signals can be uploaded locally on a single node or into a new and
innovative cloud based hosting infrastructure referenced as a Cloud Service Provider (CSP) utilizing
MongoDB and/or Cassandra as the NoSQL databases.

The previous tomographic MEG/EEG subject brainwave data analysis locally stored acquisitioned
brainwave signals into directories in a UNIX based file system or utilizing a relational database system,
such as PostgreSQL or MySQL. However, this proved unfruitful for real-time data acquisition for
subject’s brain signals and was focused on a RAID (Redundant Array of Disks) architecture. The main
fallbacks and hazards with utilizing a Relational Database Management System for acquired subject’s
brain signals in real-time is if a MEG/EEG electrode array or sensor fails to acquisition signal data from
the subject it will result in nulls in the Relational Database Management System (RDBMS). Furthermore,
if the Database System Administrator attempts to run queries with a RDBMS filled with null values it
will cause major castrophes and possible crash the entire system, particularly for interactive queries on
large datasets.

The innovative and next generation usage of NoSQL databases, referenced as MongoDB and
Cassandra, where the rows and columns in the database do not need to be uniform as in a RDBMS,
and is also schema-less architecture, where the rows and columns do not require uniformity.

For instance, this provides a distinct advantage for real-time brain signal acquisition, because,
if a sensor fails, the MongoDB NoSQL database is not compromised, and additionally MongoDB
uses “Replication and Sharding” for distributed computing where the data is separated into blocks
or chunks and spread across distributed machines. Likewise, CASSANDRA NoSQL database is a
column-oriented NoSQL database designed by Facebook and distinctly designed for fast reads and
writes, fault-tolerance, and elasticity, and is more favorable than most NoSQL databases in that domain.
In terms of certain aspects of performance, the CASSANDRA NoSQL database is column-oriented
NoSQL database and has faster reads, writes, and elasticity than MongoDB, but MongoDB is more
popular and versatile for the usage of Internet of Things (IoTs) devices (e.g. sensors, MEG/EEG brain
signal electrode array sensors) [2,3].
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The concept of extracting brainwaves and classification of user intent is referred to as
brain-computer interfaces (BCls), sometimes called mind-machine interfacing (MMI) or brain-machine
interfacing (BMI), has been evolving for many years. These interfaces are used for both noninvasive
procedures (such as magnetoencephalography (MEG) and electroencephalography (EEG)), as well
as for invasive procedures (such as electrocorticographic (ECoG) events). What follows is a brief
discussion of the history and importance of BCIs in the noninvasive procedures of MEG and EEG as
they relate to recent applications, ranging from interactive video game technology to robotics and
mobile applications.

One of the most dynamic current applications of these BCI developments is, “User Input
Validation and Verification for Augmented and Mixed Reality Experiences”, created by Aylin Climenser,
Hani Awni, Frank Chester Irving, Jr., and Stefanie A. Hutka, under United States Patent Publication
Number: US2018/0188807A1 [4]. The premise utilizes a head mounted display (HMD) incorporating
an EEG to monitor and analyze event related potentials (ERP) to a given stimulus that was observed by
the subject. Additionally demonstrated in Illustration C, Yongwook Chae with LOOXID LABS, INC,,
was issued patent US2018/0196511, “EYE-BRAIN INTERFACE (ERI) SYSTEM AND METHOD FOR
CONTROLLING SAME”, [5], on 12 July 2018, where the system is defined as providing an eye-brain
calibration (EBC) interface for calibrating eye movements and brain waves simultaneously, in addition,
the EBC interface is composed of a visual object and instructs a user to focus or gauze into the visual
object in a particular cognitive state; thus acquisitioning eye movements and brainwaves of the user
for the visual object that was included in the EBC.

Furthermore, Cruz-Hernandez at Immersion Corporation in 2018 was issued patent US
20170199569 Al, entitled, “Systems and methods for haptically-enabled neural interfaces”,
the processor is configured to receive a sensor signal from a neural interface configured to detect an
electrical signal that is associated with a nervous system demonstrated in Figure 3, above. Additionally,
the processor is utilized to detect an interaction with a virtual object in a virtual environment based on
the sensor signal [4].
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Figure 3. Yongwook Chae, “EYE-BRAIN INTERFACE (ERI) SYSTEM AND METHOD FOR
CONTROLLING SAME”, US2018/0196511.
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As aresult of the innovation of the next generation MEG and EEG BCI applications, this technology
is potentially applicable to other types of cloud based architectures utilizing Big Data analytics to
reduce computational time and expense. The general consensus is that such methods could yield the
same result with less time lag and more compact BMI devices [2].

At the moment, the integration of the gaming industry, mobile, and Big Data analytics was
approximated at $137.9 billion for 2018 [6]. The use of NoSql databases, such as Cassandra, MongoDB,
and the Hadoop Ecosystem yields keen competitive advantages over legacy relational transactional
databases, and web-based games are now the go-to standard platform with the brisk adoption
of mobile games [7]. Thus, an MEG based Brain-computer Interface (BCI) utilizing videogame
analytics attracts two primary audiences: (1) the neuroscience and neuro-engineering scientific
community and (2) gaming and Big Data analytics industry. The market revenue for BCI applications
interfaced to videogames has unparalleled future market revenue for avid gamers and diligent research
scientists. Furthermore, the videogame analytics and processing were stored in the Hadoop Ecosystem
demonstrated in Figures 1 and 2 (above), Figure 4, and below in Figures 5 and 6.

Currently, the telemedicine & healthcare industry has now adopted gamification, or the utilization
of game mechanics and design, to inspire people for motivation and behavioral influence that is
focused on wellness and healthy behaviors [7].

2. UCSF MEG System

At the University of California, San Francisco (UCSF), MEG technology is being used to study
multimodal and multiscale imaging of dynamic brain function as well as cortical spatiotemporal
plasticity in humans [1,8]. Thus, several novel signal processing and machine learning algorithms
had to be constructed, and UCSF had to fully utilize its twin 37-channel bio magnetometer.
This machine uses 275 channel SQUIDS-based detectors, housed in a magnetically shielded room
(MSR), to noninvasively detect tiny magnetic fields generated by neuronal activity in the brain,
as demonstrated in Figure 4, below.

Magnetoencephalography

= MEG signal generators are clusters
of pyramidal cells, normally
oriented to the cortical surface

= Model cell assemblies as current
dipole sources

= SQUID - Superconducting
QUantum Interference Device
(late 1960s)

= Magnetically shielded rooms l!

Lawrence Livermore National Laboratory

oprvens [ ———

Figure 4. University of San Francisco in California (UCSF) MEG Scanner with Superconducting
Quantum Interference Device (SQUID) detectors.
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Figure 5. Phase I, “A Real-Time Magnetoencephalography Brain-Computer Interface Using Interactive
three-dimensional 3D-Visualization and the Hadoop Ecosystem”, Journal of Brain Sciences, 2015.
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Hadoop Ecosystem.
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From these signals, computational modeling allows a spatiotemporal view of the time course
and spatial patterns of neuronal activity. The UCSF lab also uses digital 64-channel EEG and
three-dimensional (3D) computing facilities [1].

The manuscript utilizes the Variational Bayesian Factor Analysis (VBFA) machine learning
algorithm to classify and detect MEG/EEG brainwave classification [9,10] to define the user’s
intent while viewing a flight-simulator videogame in real-time [1], demonstrated in Figures 7 and 8.
Furthermore, prestigious neuroscientists, such as Srikantan Nagarajan at University of San Francisco in
California (UCSF), utilized location bias and spatial resolution in the reconstruction of a single dipole
source utilizing various spatial filtering techniques in neuromagnetic imaging. The analysis of location
bias for myriads of representative adaptive and non-adaptive spatial filters that are based on their
resolution kernels validating standardized low-resolution electromagnetic tomography referenced as
(sLORETA) using a minimum-variance spatial filter for MEG source reconstruction [9-14].

WARFIGHTER VIDEOGAME DATA ANALYZED IN PIG I

Lawrence Livermore National Laboratory &
%

Option: UCRLE Option:Additiena Information

Figure 7. Phase I, “A Real-Time Magnetoencephalography Brain-Computer Interface Using Interactive
3D-Visualization and the Hadoop Ecosystem”, Pig analysis for MEG Subject performance on Warfighter.
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Figure 8. (a) Phase II, MongoDB Magnetoencephalography Brain-Computer Interface Database.
(b) Phase II, Variational Bayesian Factor Analysis (VBFA) Machine Learning Algorithm. (c) Phase
II, MEG Subject Brain Wave Data and VBFAgeneratorCTF training matrices in MongoDBdatabase(s).
(d) Phase II, C code testVBFA function on MEG Subject Brainwave Data.

3. Phase II: Wireless EEG MongoDB & Cassandra Brain Computer Interface Databases and iOS
Applications

The Phase II integrates with Phase I utilizing the same machine learning classifier as in Phase
I project begins with the use of a wireless Emotiv Epoch EEG headset integrated to MongoDB and
Cassandra NoSQL databases with iOS Mobile Applications, demonstrated in Figures 9-11. Figure 12,
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illustrates the overall and analogous architecture of the Phase Il NAZZY with Frozen Video Game
BCI process. The Emotiv Epoch EEG headset was designed by Emotiv Systems the predominant
leader in commercial Brain Computer Interface technology. The Emotiv Epoch system was utilized
to measure the electrical activity that is associated with the brain and muscles of the face and it
converts brain signals and activity into control signals [1,10]. The Emotiv Epoch implements Artificial
Neural Networks based learning and training techniques while using the McCulloch-Pitts model and
Back-Propagation Neural Network algorithm [10].

BCI MEG SUBJECT MEG SUBJECT On Brain Computer Interface

P

Subject MEG Train Matrix “ALP’ MEG Train Matrix ‘GAM’

Figure 9. Phase II, MongoDB Magnetoencephalography Brain-Computer Interface Database storage of

MEG Subject Variational Bayesian Factor Analysis training matrices and MEG Subject Performance
and Metadata.
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Figure 10. MEG Brainwave data acquisition in MongoDB with 12-byte BSON timestamp representing
ObjectID for Epoch Trial performance for MEG Subject.



Diseases 2018, 6, 89 11 of 34

MEG Brain Signal Sensor Array
posed of 273 MEG Channels in MongoDB

BIOMETRIC SECLRITY MEG DATABASE
DETECTION AND CLASSIFICATION BY MEG BRAIN WAVES

MEG Sub'|ect BrainWaves Control Wa rﬁghter I

Lawrence Livermore National Laboratory &
2

‘Option:UCRLE ‘Option:Additiona Information

(b)

Figure 11. Cont.



Diseases 2018, 6, 89 12 of 34

Nazzy Ironman Subject MEG Brain Computer Interface to
Warfighter Flight Simulator iOS Mobile Applications

Varisice! Bpmian Fator Anghysis Alpesn

B

N SIS,

MEG Subject Data f Filtered MEG Brain Signal__ R e
VBFA Machine Learning

Algorithm

NazleronMan with i0S Fliﬁht Simulator Mobile Agglication '

Lawrence Livermore National Laboratory w
I’}

Option:UCRLE Option:Adaitional Information

(©)

Nazzy Ironman Subject MEG Brain Computer Interface to Warfighter
Flight Simulator iOS Mobile Applications stored in MongoDB Databases

Nazzy Ironman Subject MEG Brain Computer Interface to
Warf'ishlel’ Flight Simulator i0S Mobile Applications

Bean B
st MEG Bsin Signy |

NEG SubjectDaia l -
VBFA Machine Leaming
rithm

Lawrence Livermons Nascnal Laborntary L

Lawrence Livermore National Laboratory

Option:UCRLE option: Anmbions information

w 4
(d)

Figure 11. (a) MEG Brainwave data acquisition in MongoDB with 12-byte BSON timestamp

representing ObjectID representing Subject’s Training Matrices acquired during VBFA Machine learning
algorithm training on MEG brainwaves. (b) MEG Brainwave data acquisition in MongoDB with 12-byte
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BSON timestamp representing ObjectID representing with Subject Brainwaves controlling flight of
Warfighter simulation. (c) Nazzy Ironman Subject MEG Brain Computer Interface to Warfighter Flight
Simulator iOS Mobile Applications yielding over 90% performance on MEG Subject brain signal
data. (d) Nazzy Ironman Subject MEG Brain Computer Interface to Warfighter Flight Simulator iOS
Mobile Applications stored in MongoDB databases yielding over 90% performance on Subject Data,
demonstrated in Figures 9-11.

NAZZY IRONMAN PHASE: 1
T

- l &

h

PHASE Il

iOS Mobile Application for Wireless Emotiv
and OpenVibe EEG

105 Mobile Application of Warfighter Videogame

9

EEG Signal Data and Stimulus
Information in MongoDB

NAZZY using FROZEN VIDEOGAME with BCI -

JAVA Program for EEG Data Aquistion

(b)

Figure 12. (a) NAZZY IronMan with Frozen Videogame & iOS Warfighter Mobile Game for Brain
Computer Interface Project with Emotiv/OpenVibe Wireless electroencephalography (EEG) brain
signal(s) data while using machine learning algorithms to classify brain signals in iOS videogame
applications utilizing EEG brain signal data storage in NoSQL database MongoDB. (b) NAZZY IronMan
with Frozen Project with Emotiv Wireless EEG brain signal(s) data using machine learning algorithms
to classify brain signals in iOS Frozen videogame utilizing EEG brain signal data storage in NoSQL
database MongoDB.
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3.1. EEG Data Acquisition and Signal Processing

The aim of the wireless BCI research assumes that it is possible to assess thought movements
of individuals that are induced by specific events in the virtual environment while using EEG and
videogame analysis. In it is stated mental thoughts which are characteristics of user intent can be
classified using machine learning algorithms, while the subject’s brain waves are being acquired
via wireless EEG, and are essential in this research for measuring multiple states from left-right
thought movement. Electroencephalography (EEG) is the recording of electrical brain activity, which is
caused by the firing of neurons within the brain. The EEG brain signals and machine learning/signal
processing feature extraction are used to classify the EEG signal will be used as a control signal for
the warfighter simulator or NAZZY Frozen Video game. The classification of EEG brainwave data
illustrating multiple states of left-right thought movement are detected and analyzed with novel
machine learning algorithms. The output of the subject’s analytics while playing the flight simulator
videogame or NAZZY Frozen Videogame post signal classification is recorded and warehoused in a
NoSQL Cassandra and MongoDB database environment.

The dilemma with wireless EEG is that the sensors typically may have a very poor signal-to-noise
ratio (e.g., lower monetary EEG sensor array cost may yield poor conductivity) and the utilization
of proprietary software (e.g., Emotiv Back-Propagation Neural Networks) are often necessary to
pre-process the wireless EEG brain-wave signals before the VBFA machine learning classifier can be
applied, see in Figure 13 [15]. The lack of conductivity from EEG sensor array as opposed to MEG
sensor arrays are based on a higher remuneration cost for design for brain signal acquisition. In the
human brain, the current is generated mostly by pumping the positive ions of sodium, potassium,
calcium, and the negative ion of chlorine, through the neuron membranes in the direction that is
governed by the membrane potential [16]. Thus, an EEG signal is a measurement of currents during
synaptic excitations of neurons in the cerebral cortex. The human head pertains to three different layers
inclusive of the skull, scalp, and brain, and myriads of subsequent thin layers. The lack of conductivity
from EEG sensors to acquisition brain signals is due to the skull attenuating the signals approximately
one hundred times more than soft tissue [10,16].

EEG is the quintessential tool to study and diagnosis myriads of neurological disorders and other
brain related abnormalities. The utilization of EEG Brain Computer Interface technology has myriads
of applications to the following [1,17]:

Brain-Machine Interfaces

e  Pilots and flight control

e  Vigilance monitoring for air force, navy, or ground troop vehicles

e  Clinical settings: Monitoring patient mental states and providing feedback

e  Education: Improving vigilance, attention, learning, and memory

e  Monitoring mental processes (“reading the mind”)

e  Detecting deception (FBI, CIA, other law enforcement agencies)

e  Predicting behavior

e  Detecting brain-based predispositions to certain mental tendencies (the brain version
of Myers-Briggs)

e  Likelihood of improving with one type of training versus another

e  Likelihood of performing better under specific circumstances
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i0S Mobile Application for Wireless Emotiv
and OpenVibe EEG

105 Mobile Application of Warfighter Videagame.

(@)

Wireless EEG Signals are Very Noisy!
Preprocessing of Signals with Matlab with FIR & IIR Filters

Emotiv EEG Signal Filtered at 30Hz

Matlab Program

OpenVibe EEG Signal

(b)

Figure 13. (a) Emotiv EPOC Headset, Features, and Brain Computer Interface applications.
(b) Utilization of Matlab FIR (Finite Impulse Response) & IIR (Infinite Impulse Response) Bandpass
and Lowpass Filters on Wireless EEG Signals.

3.2. EEG Cassandra NoSQL Databases

Apache Cassandra is a proven high availability and scalable NoSQL database without diminishing
in performance. The NoSQL database, Cassandra, is “suitable for applications that can’t afford
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to lose data, even when an entire data center goes down [17]”. Therefore, with respect to
Brain Computer Interface applications where brainwave signals are acquired in an EEG/MEG
electrode array referencing each sensor channel often in real-time. The utilization of the Cassandra
NoSQL column-oriented architecture database is a quintessential solution due to fault-tolerance,
decentralization indicating no individual failure points and that every node is identical with data
automatically replicated [18,19]. The usage of elasticity is a necessity with the Cassandra NoSQL
database, since read and write output have linearity as new BCI machines could be added to the cloud
network, as illustrated in Figures 14 and 15, below discussing beneficial cloud security constraints.

A Cloud Provider

Blocked Access By Wilbert A. McCla

NAZZY IRONMAN CLOUD PROVIDER FACILITY

Figure 14. Nazzy IronMan Brain Computer Interface Cloud Provider Facility with Cassandra NoSQL
database(s).

ACME BRAIN COMPUTER INTERFACE with “NAZZY IronMan”
CASSANDRA Cloud Security Architecture Strategy

= INCREASED
AGILITY

= REDUCE COSTS

* IMPROVE
EFFICIENCECY

*=  MANAGE RISKS

e LEL LT

L.doodliitild

Figure 15. Nazzy IronMan Brain Computer Interface Cassandra Cloud Security Architecture Strategy.



Diseases 2018, 6, 89 17 of 34

3.3. Cassandra EEG Databases

Cassandra EEG Databases: KeySpaces and Column-Families

The Cassandra NoSQL database(s) utilizes KeySpaces (referenced as databases) for the BCI EEG
project the referenced KeySpace, eeg_motor_imagery_openvibe illustrated in Figure 16, utilizes a
Simple Strategy which is referred to as “Rack Unware Strategy”, the strategy utilizes by default in
the org.apache.cassandra.locator.RackUnwareStrategy configuration file. The Simple Strategy places
replica sets in a single data center in a topology, which is “not aware” of their placement on a data
center rack, thus denoted “Rack Unware Strategy”. Theoretically, the usage of Rack Unware Strategy
is computationally faster in theory due to implementation, but this is not the case if the next data node
has the given keys as opposed to other data nodes.

EEG SIGNAL
ELECTRODE ARRAY:
TIME
[ox}
. ’ ; ¢ R c4
269.900391 | 6770871786 | 1693 239882 REFNOSE

5706354950 | 4636, 530085
FC3

FC4

7000.340031 | 1697824796 | 4830.917829 | 9 5
98| 450809707 | S90.591659 | 3203,050359 ) cl

4729.671201 | 58

612, 514453 | 6249,677684 | 1689,137420 | 5029,629980 | § ov]
6 | 5262.546375 | 4735,3766%0 | 599231512 | 3259.952509 (e d d ch
654664

416.621094 | 6540.118296 | 1701.671215 | 4967.501384 | 8566.845591 | 5621.27440 Cp3
3 | S467.650576 | 4673.330208 | 567,238566 | 3197,845043 | 2600.700461 | -43854,

179563 CP4
[{ 302.552734 | 6702.402479 | 1686.641554 | 4917.3422 5! 57

5 | 5646.661098 | 4633.677258 | 564.465830 | 3197.

= 118094

HAND_IMAGERY EEG Signal with 317,825
rows imported

Figure 16. Emotiv and OpenVibe EEG Sensor Array stored in Cassandra NoSQL database.

The Replication Factor is specifically important because it indicates how many copies of the
portioned data will be stored and then distributed and dispersed throughout the Cassandra Cluster.
The Replication Factor Setting yields this information indicated as the following, Simple_Strategy and
Replication Factor = 1, and demonstrated in Figures 17 and 18, with displaying primary key and all
attributes for keyspace, eeg_motor_imagery_openvibe and column-family (table), eeg_1.

Furthermore, if the replication factor is set to 1, then the writes are written only to a single node,
as in Figures 17 and 18, below. If the nodes goes down, the values are no longer accessible. However,
if the replication factor is set to 2 or greater, then the nodes in the cluster will get the value written to
the nodes on every write and therefore replicas of each other.

The eeg_1 represents the Cassandra Column-Family illustrated in Figures 19 and 20, which is
analogous to a table in a traditional relational database system.
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OPEN VIBE CASSANDRA EEG KEYSPACE (DATABASE)
DESCRIPTION

wil@ubuntu: ~/Downloads/CASSANDRA fapache-cassandra-3.0.13/bin g 2 W) 321AaM %

cqlsh:eeg_motor_imagery_openvibe> DESCRIBE keyspace eeg_motor_imagery_openvibe;
" , CREATE KEYSPACE eeg_motor_imagery_openvibe WITH replication = {'class': 'Simple]
rategy', 'replication_factor': '1'} AND durable_writes = true;

CASSANDRA KEYSPACE EEG_MOTOR_IMAGERY_OPENVIBEwith SIMPLE
STRATEGY and REPLICATION FACTOR =1

Figure 17. OpenVibe EEG Sensor Array stored in Cassandra NoSQL KEYSPACE (database) with
Simple_Strategy and Replication Factor = 1.

OPEN VIBE CASSANDRA EEG DATABASE and CASSANDRA TABLE
DESCRIPTION

wil@ubuntu: ~/Downloads/CASSANDRA fapache-cassandra-3.0.13/bin Ty 3 4) z242AM &
CREATE TABLE eeg_motor_imagery_openvibe.eeg_1_signal (
time text PRIMARY KEY,
text,
text,
text,
4 text,
text,
6 text,
cp3 text,
cp4 text,
fc3 text,
fca text,
refnose text
) WITH bloom_filter_fp_chance = 6.061
AND caching = {'keys': 'ALL', 'rows_per_partition': 'NONE'}
AND comment = "'
AND compaction = {'class': 'org.apache.cassandra.db.compaction.SizeTieredComp
actionstrategy', 'max_threshold': '32', threshold': '4'}
AND compression = {'chunk_length_in_kb': '64', 'class': 'org.apache.cassandra
.10.compress.LZaCompressor'}
AND crc_check_chance = 1.0
AND dclocal_read_repair_chance = 6.1
AND default_time_to_live = @
AND gc_grace_seconds = 864000
AND max_index_1interval = 2048
AND memtable_flush_period_in_ms = @
AND min_index_interval = 128
AND read_repair_chance = 0.0
7] AND speculative_retry = "99PERCENTILE';

£ W cqlsh: eeg_motor_imagery_openvibe>

Figure 18. OpenVibe EEG Sensor Array stored in Cassandra NoSQL KEYSPACE (database) with
Simple_Strategy and Replication Factor = 1 displaying primary key and all attributes for keyspace,
eeg_motor_imagery_openvibe and table, eeg_1_signal Cassandra statistics.
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OPEN VIBE CASSANDRA EEG DATABASE

wil@ubuntu: ~/Downloads/CASSANDRA fapache-cassandra-3.0.13/bin Ty 3 ) 209AM It
Using 1 child processes

Starting copy of eeg_motor_imagery_openvibe.eeg_1_signal with columns [time, c3,

c4, refnose, fc3, fc4, c5, c1, c2, c6, cp3, cp4

Processed: 317825 rows; Rate: 4516 rows/s; Avg. rate: 5412 rows/s

317825 rows imported from 1 files in 58.729 seconds (8 skipped). EEG SIGNAL

cqlsh:eeg_motor_1imagery_openvibe> select * from eeg_1_signal; ELECTRODE ARRAY:
TIME

c3

C4

269.900391 | 6770.871786 | 1693.408449 | 4913.708598 | 8822.398820 | 5564.72271 REFNOSE
6 | 5706.354950 | 4636.530085 | 572.144155 | 3202.194656 | 2552.208940 | -44424.

020429 FC3
604.472656 | 6271.239432 | 1697.753532 | 5043.879729 | 8269.008991 | 5734.94855 FC4
© | 5257.841792 | 4729.671281 | 584.728039 | 3299.955093 | 2703.896527 | -43583.

248252 C5
128.982422 | 7000.340031 | 1697.824796 | 4830.917829 | 9069.453329 | 5489.77208

7 | 5962.717198 | 4588.889707 | 598.591659 | 3203.050359 | 2505.502917 | -44936. [ex]|
786401

612.814453 | 6249.677684 | 1688.137424 | 5029.629980 | 8261.580904 | 5715.40854 C2
6 | 5262.546375 | 4735.376690 | 599.231512 ‘ 3259.952509 | 2698.754507 | -43490. C6
654664

416.621094 | 6540.118296 | 1701.671215 | 4967.501384 | 8566.845591 | 5621.27440

3 | 5467.650576 | 4673.330208 | 567.238566 | 3197.845043 | 2600.700461 | -43894.

179563

302.552734 | 6702.402479 | 1686.641554 | 4917.342256 | 8759.68%061 | 5579.19953

5 | 5646.661098 | 4633.677258 | 564.465830 | 3197.132018 | 2556.922388 | -44234.

118094

b

@
=
é:
_
B
A
]

By

\

HAND_IMAGERY EEG Signalwith 317,825
rows imported

Figure 19. OpenVibe EEG Sensor Array stored in Cassandra NoSQL KEYSPACE (database) with
Simple_Strategy, table, eeg_1_signal importing 317,825 rows of EEG brain signal data.

OPEN VIBE CASSANDRA EEG DATABASE and CASSANDRA
STIMULATIONTABLE DESCRIPTION for HAND IMAGERY DESCRIPTION

wil@ubuntu: ~/Downloads/CASSANDRA fapache-cassandra-3.0.13/bin 1y 3 ) 3:13AM {3t
@ cqlsh:eeg_motor_imagery_openvibe> describe eeg_signal_1_stimulation_table;

CREATE TABLE eeg_motor_imagery_openvibe.eeg_signal_1_stimulation_table (
time text PRIMARY KEY,
duration text,
identifier text
) WITH bloom_filter_fp_chance = 0.81
AND caching = {'keys': 'ALL', 'rows_per_partition': 'NONE'} EEG STIMULATION
AND comment = '' .
AND compaction = {'class': 'org.apache.cassandra.db.compaction.S5izeTieredComp TABI‘E DESCRIPTON'
actionStrategy', 'max_threshold': '32', 'min_threshold': '4'} « TIME
AND compression = {'chunk_length_in_kb': '64', 'class': 'org.apache.cassandra

io.compress.LZ4Compressor'} « |DENTIFIER
AND crc_check_chance = 1.0 +« DURATION

AND dclocal_read_repalr_chance = 0.1
AND default_time_to_live = 0

AND gc_grace_seconds = 864000

AND max_index_interval = 2048

AND memtable_flush_period_in_ms = @
AND min_index_interval = 128

AND read_repalir_chance = 0.0

AND speculative_retry = '99PERCENTILE';

-
o

cqlsh:eeg_motor_imagery_openvibe> I

.

B
-
B
s
8

2

|

Figure 20. OpenVibe EEG Sensor Array stored in Cassandra NoSQL KEYSPACE (database) with
Simple_Strategy, Stimulation table, eeg_signal_1_stimulation_table importing eeg brain signal data
(e.g., time, identifier, duration).

3.4. EEG MongoDB NoSQL Databases

The usage of a NoSQL database such as MongoDB are excellent for fast queries and indexing
without the usage of a schema-less architecture and is perfect for sensor inputs, particularly if the
sensor fails are does not acquisition the signal properly it will yield a null value which for large
number of users could be devasting to a typical relational database management system. The novelty
of the MongoDB fast indexing and querying shown in Figures 21-27, below illustrates the power of
MongoDB to match the user’s intent or Stimulation Code against the acquired brain-signal for fast
indexing. As in subsequent sections, the usage of elasticity is a necessity with the MongoDB NoSQL
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database, since read and write output have linearity as new BCI machines are added to the cloud
network, as illustrated in Figure 21 below, discussing beneficial cloud security constraints.

ACME ADOLOSCENET BRAIN COMPUTER INTERFACE
MONGODB Private Cloud CRM DATABASE

INCREASED

AGILITY
REDUCE
COSTS
IMPROVE
EFFICIENCECY
MANAGE
RISKS

Tokenization of Openvibe
EEG Channel Array in Java

+ D

» RISK AND TRUST

NAGEMENT

PROTECTION

* ACCESS

CONTROL

+ MONITORING &

AUDITING

» COMPLIANCE

Security
Governance

Implementation
Operations

Management

Figure 22. Java Tokenization of OpenVibe EEG Sensor Array inputted into MongoDB Collection

utilizing db.openVibeSignal.find() queries.
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OpenVibe Wireless EEG
composed of 11 EEG Signal Channels in MongoDB and Timestamp(s) and Atfribute Descriptions iy

-

EEG SIGNAL ELECTRODE
ARRAY:

TIME

(o]

C4

REFNOSE

FC3

FC4

Ccs

ci

c2

Cé

CP3

CP4

NOTE: 12-byte MongoDB
BSON Timestamp

Figure 23. Usage of NoSQL database MongoDB for Wireless EEG Signal Storage and Retrieval with
MongoDB BSON Timestamp with EEG Signal Electrode Array:.

JAVA Code Emotiv/OpenVibe Brainwave Signals for Creating a MongoDB
Collection

MongoDB Jar files
import com.mongodb.BasicDBObject;
import com.mongodb.DBCollection;

+ "Chamel €45 * 45" " o “Chamnel Red Jlose

MongoDB Collection: openVibeSignal

Java Code for Emotiv/OpenVibe EEG Wireless Sensor Array
Channel inserting a document into MongoDB Collectionfrom
Java class BasicDBObject

Figure 24. Java Program for Emotiv and OpenVibe EEG Sensor Array Channel inserting a document
into MongoDB Collection using Java class BasicDBObject.
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OpenVibe Brain Signal Stimulation Codes inputted
into MongoDB Collection:
+ Time

« Stimulation Code
Duration

OperVibe Wirsless EEG Stmulation 770 Code MongoDB Query on Right Moverent |

Figure 25. OpenVibe EEG Sensor Array Java Program for Brainwave Signal Stimulation Codes for
time, stimulation code, and duration.

OpenVibe Wireless EEG Stimulation 770 Code MongoDB Queu on Right Movementl

@ Command Prompt - mongo = d
1

The Stimulation Codes are a Dictionary of different mental
states and brain-movements and must be queriedin
MeongoDB to match with the OpenVibe Signal collectionin
MongoDB

Lawrence Livermore National Laboratory @
U

Option: UCRLE Option: Addrtional information

Figure 26. Wireless EEG Java Stimulation Code Dictionary to input EEG signal patterns in MongoDB.
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OpenVibe Wireless EEG Signal Channels
composed of 11 EEG Channels in MongoDB

MongoDB Java Code to Acquire
Wireless EEG Channels

Lt | Rt LA Adr i
.~"\":‘-I "“f I Wi

MongoDB Wireless EEG Channel Data Storage and Analysis

Figure 27. Stimulation Codes have to match the acquired EEG signal patterns in MongoDB.

The other asset to utilizing MongoDB as a document-oriented data store is the use of MapReduce
as a computational paradigm for key-value pairs to do basic signal processing methods for each
user’s intent in a condensed and formulated manner, as shown below in Figures 23-28. MongoDB
also utilizes an ObjectID with a 12-byte timestamp in BSON notation composed of the machine id,
process, and other features. The usage of ObjectID to identify a document in a MongoDB collection
(e.g., table) is useful for MEG/EEG brainwave signal channel arrays, which can be easily parsed in a
Java MongoDB driver file to Tokenize the channel array before ingestion into the MongoDB, “Signal
Files” database, as demonstrated in Figure 23 [20,21], below. For instance, in Figure 23, a MongoDB
connection was implemented with a series of Java Case Switch Statements illustrating either an
Emotiv or OpenVibe collection for ingestion into the MongoDB Signal Files database, also illustrated
in Figure 27. In addition in Figure 23, once the OpenVibe EEG sensor channel is Tokenized and
ingested in MongoDB, the usage of signal processing techniques on EEG channels can be implemented
in MongoDB also utilizing the MapReduce computational paradigm algorithm for key-value pair
analysis with signal processing techniques illustrated in Figure 28, below. Thus, this is beneficial
for sensor-based signal acquisition, analysis, and fault-tolerance. For instance, if one of the MEG or
EEG sensor channels fails to emit brain signal activity, the database will not yield large sequences of
“NULL” values that could easily compromise or crash a traditional relational database during signal
acquisition and real-time queries. Therefore, the utilization of NoSQL databases such as MongoDB are
the quintessential tool for real-time signal acquisition and analysis for data storage [2], and additionally
with the MongoDB BSON timestamp notation a replica data set on a node can be easily referenced and
detected if a system failure took place during the Brain Computer Interface brainwave data acquisition.
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JAVA Code Emotiv/OpenVibe Brainwave Signals for Creating a MongoDB
Database & Collection

I Use MapReduce in MongoDB for Signal Processin: Melhodsl

MongoDB OpenVibe/Emotiv
; ﬁnal Files Database

s Use MapReduce to Calculate
= AverageData
/ EEG BrainSignal Channels

MongoDB OpenVibe/Emotiv

Signal Files Database & Collections "“"‘;":‘::’:"’:I"““ I
in Java Switch Statements 2 .

Emit: 317825 Reduce 27632, and uu:Em:ssen|
LawrencoL v t
— e 5

Emotiv and OpenVibe EEG Brain Signal MongoDB Use MapReduce in MongoDB for Signal
Driver Processing Methods

Figure 28. MapReduce in MongoDB for Signal Processing and EEG data analytics.
3.5. EEG and MEG BCI Objective and iPhone Integration

The Wireless EEG project describes the measurements done with a wireless EEG neuro-helmet
while a user is involved in a warfighter simulation while using brainwaves that translate the
user’s intentions into actions controlling the warfighter simulator or manually using the iOS
UlTapGestureRecognizer Class in the OpenGL ES 2.0 and GLKit environment to fire projectiles or
control movement which can be done by button-press or from acquired offline Emotiv and OpenVibe
EEG brain-wave files while using the following mongodb export function, for example “mongoexport
—db brainwaveusers —collection brainsignals —csv —fieldFile fields.txt —out /opt/backups/contacts.csv”,
as shown in Figures 29, 30 and 31a below.
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i05 Mobile Application of Warfighter Videogame Using
OpenGLES 2.0 and GLKit

T T A Se o8 W U P e
(a)
i0S Mobile Application of Warfighter Videogame Using OpenGL ES
2.0 and GLKit uses addTarget Method for Moving Targets

addTarget Method

TR LReRORE S WRK  UPEl LW
(b)

Figure 29. Cont.
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i0S Mobile Application of Warfighter Videogame with
aerial targets on the iPhone Retina (3-5 inch)

i05 Simulator - iPhone Retina (3.5=inch) / i05...
Carrier = 5:36 AM -_—

[ add new method before update method/
Users/mcclay.wfDeskiop/ Warfighter/
Warfighter/

SGGEVIiewController.m
[voldjaddTarget {

sGaGWarfighter * target = [[SGGWarfighter
alloc] inltwithFile: @ Target.png"
effect:self.effect];

[self.children addObject:targat];

int minY = target.contentSize. helght2;

int maxY = 320 - target.contentSize.height/2;

int rangeY = max¥ - minY;

int actualy = [arcdrandom(] % rangeY) + min¥;

target.position = GLEVectorZmake(a80 + #
(target.contentSize. width/2), actualy);

int minVelocity = 480.0/4.0;
int maxVelocity = 480.0/2.0;

int rangeVelocity = maxVelocity - minVelocty;
int actualVelocity = (arcdrandomi) %
rangeVelocity) + minvelocity;

target.moveVelocty = GLEVector2Make(-
actualVelocity, 0);
|self.targets addObject:target];
target.scale = 2.0;
1

(©)

Figure 29. (a) iOS Mobile Application of Warfighter Videogame using OpenGL ES 2.0 (Khronos
Group, Beaverton, Oregon if USA, country, https:/ /www.khronos.org/about/) and GLKit with the
UlTapGestureRecognizer class to fire a projectile. (b) iOS Mobile Application of Warfighter Videogame
using OpenGL ES 2.0 and GLKit with aerial targets using the addTarget Method. (c) Display of iOS
Mobile Application of Warfighter Videogame using OpenGL ES 2.0 and GLKit with aerial targets using
the addTarget Method (close-up).

We developed a driver that is able to substitute the actions of the BCI as mouse button presses for
real-time or non-real-time use in visual simulations. The process was added into warfighter simulator
visualization demonstration. By thinking left or right, the user experiences the aircraft turning in the
chosen direction. The driver components of the BCI can be compiled into any software and substitute
a user’s intent for specific keyboard strikes or mouse button presses to evade or chase aerial targets,
as shown in Figure 29 referenced above and Figure 30 below.
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i0S Mobile Application of Warfighter Videogame Phases
of Velocity and Rotation on iPhone Retina (3-5 inch)

i0% Simulator - iPhone Retina (3.5-inch) / S _#05 Simulatos - iPhane Retina (3.5-inch} | #05...
Casries F LB T - Cairar T 5:5% AM -

| +4

Chasing Targets

Moving Targets Evading Targets

Figure 30. iOS Mobile Application of Warfighter Videogame using OpenGL ES 2.0 and GLKit to evade
or chase aerial targets.

The innovation of the Wireless EEG BCI builds upon the BCI technology developed at LLNL,
for user intent, which induces certain actions and has myriads of applications. The Wireless
EEG BCI allows for people to use their brainwaves and psychological state as control possibilities.
In Figure 30 we illustrate this below using the BCI with moving aerial targets in the flow diagram.
However, the VBFA machine algorithm performance on EEG data classification is drastically below
performance (e.g. approximately less than 60% EEG Subject performance) when compared to greater
than 90% performance from MEG Subject data, as illustrated in Figure 31b. This is primarily
due to better signal acquisition from the UCSF CTF MEG Scanner with 275 sensor array utilizing
Superconducting Quantum Interference Device (SQUIDs) technology in a magnetically shielded
room during subject brain signal acquisition and testing [1,22]. In addition, the monetary value of
MEG sensors are orders of magnitude greater than EEG, which complements a lower signal-to-noise
ratio and lucid signal acquisition for MEG Subject classification. We illustrate the MEG Subject
Brainwave classification and implementation on iOS Mobile applications in the subsequent section(s)
of this manuscript.
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i0S Mobile Application for Wireless Portable EEG BCI Interface to
Flight-Simulator Video Game

Emaotiv and OpenVibe Wireless

Portable EEG Machine Learning

: L Algorithm
Filtered EEG Brain Signal

-

R L L B e —— T W PR

i0S Application using OpenGL ES 2.0 and GLERt
i03 Mobile Application

(@)

iOS Mobile Application for MEG BCI Interface to Apple iOS
Warfi

hter with greater than 90% classification performance

Varisiora! Baymian Facior Andyain e,

Q- Ry
¥ Ras

ettt -3

D Beafi 7t ool 1 Ex T < S el
MEG Subject Data I Filtered MEG Brain Signal I TR N R S
Machine Learninﬁ Alﬁorithm '

i0S Aaglication usinﬁ OEnGL ES 2.0 and GLKit '

i0O8 Mobile Application
Lawrence Livermore National Laboratory w
%

Option:UCRLE Option:Adartionsl Information
(b)

Figure 31. Cont.
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MEG BClI Interface to Apple iOS Frozen Videogame Mobile
Application
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MEG Subject Data l Filtered MEG Brain Signal '
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Figure 31. (a) iOS Mobile Application of Warfighter Videogame using OpenGL ES 2.0 and GLKit to
evade or chase aerial targets. (b) iOS Mobile Application of Warfighter Videogame using OpenGL ES

2.0 and GLKit to evade or chase aerial targets can be interfaced to MEG Subject Brain Signal Data with
over 90% classification performance. (c) Nazzy IronMan with Apple iOS Frozen Videogram Application
can be interfaced to with MEG Subject Brain Signal Data with over 90% classification performance.

3.6. MEG Subject Data BCI iOS Mobile Applications Integration

The MEG Subject Brainwave data demonstrated performance greater than 92% for mid and
post- movement thought activity. Thus, the interfacing of iOS Mobile Applications using classified
brainwaves as control signals for a user’s intent was a simple implementation, as in Phase L
The interfacing to iOS Mobile Applications was the quintessential usage of the BCI technology since
the iOS applications developed in this project were written in Objective-C and the BCI technology
in Phase 1 retrieving and utilizing machine learning algorithms [23-25] to classify brainwaves was
written in C/C++, demonstrated in Figure 31b,c, below. The other aspects of Phase I & Phase II of
integrating the MEG Subject’s brainwave performance and videogame analytics into the Hadoop
Ecosystem, MongoDB, and Cassandra were written in the Java programming language.

The final and near future phase of the iOS Mobile Application involves the collection of user
statistics displayed on an iOS mobile application with output yielded for each user’s videogame
analytics” and dynamic biometric features, such as a user’s UlTapGestureRecognizer tap speed or
thought movement processes, an illustration of this premise is displayed in Figure 32, below, can be
stored and analyzed in a MongoDB database with multiple MEG Subject’s collection or a Cassandra
MEG Subject keyspace.
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i0S Mobile Application for Wireless Portable EEG BCI
Interface User’s Statistics

0% Siry

— i05 Simulator - iPhone Retina (3.5-inch) / i05...
Carriar = 4:28 PM -—

Carrigr = 4:32 PM L

Edit  Brain Computer Interface - Done Brain Computer Interface -+

H IronMan o n IronMan
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Jonathan Emotiv © Jonathan Emotiv
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Figure 32. iOS Mobile Application of Warfighter Videogame using OpenGL ES 2.0 and GLKit for online
user’s game analytics and dynamic biometrics.

4. Conclusions

We are currently extending in several directions the machine-learning module that infers user
intent from data. We delineate two of these directions here.

First, the classification algorithm that is described in this paper is based on modeling the data as
ii.d. Gaussian (conditioned on the mixing matrix). However, real MEG data are non-Gaussian and
exhibit strong temporal correlations. A model that accounts for those features would describe the
data more accurately and could therefore lead to improved classification and performance. We are
exploring several extensions of our model, including formulating a time-frequency version to handle
temporal correlation and replacing the factor model with a mixture of Gaussian distribution to
handle non-Gaussianity.

Second, the present algorithm is designed for binary classification tasks. However, in the majority
of BCI applications, the user has several separate and distinct, specific intents [26]. For example, in a
flight simulator application, in addition to moving the plane left and right, the user may wish to
move it up and down, to rotate it at different angles, and to fly it at different speeds. We are therefore
extending our model to handle tasks involving more than two classes.

In Phase II of the BCI project, a non-real-time MEG brainwave CTF files and EEG Emotiv &
OpenVibe brainwave files of thought movements [27,28] were analyzed while using signal processing
and machine learning algorithms [26] for feature extraction and classification for an iOS mobile
application using MongoDB and Cassandra as the MEG/EEG brain signal processing data warehouse.
At specific places along the warfighter simulation, the user’s intention to control the warfighter
via button presses or hard-wired brainwaves becomes more challenging to avoid aerial targets and
fire projectiles.
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In the near future, we are developing better machine learning classifier and signal processing
algorithms to ameliorate the signal-to-noise ratio, anomaly detection of MEG/EEG brainwave
signals, and to perform brain-wave security [29], authentication classification in real-time online
internet applications (e.g. NAZZY IronMan MEG/EEG VLAN Base Unit), as illustrated in Figure 33
below; with future outcomes investigating the usage of behavioral monitoring of cognitive state
for “thought-actions”, based on historical analysis of brainwave signature data imposed by a
given stimulus.

NAZZY IRONMAN MEG/EEG Brainwave Signal Data
| Authentication with Cassandra NOSQI Database with
|Spark Scala Streaming

Firewall

NAZZY IRONMAN VLAN Base Unit

= spoik’

Streaming
RDD
RDD

Figure 33. Nazzy Ironman MEG/EEG (Virtual LAN) VLAN Base Unit for Security Authentication.

Secondly future directions, involve MEG/EEG brainwave signals for cryptographic key
authentication using modulus theory based on generating functions utilizing NoSQL databases,
such as Cassandra, MongoDB, and components of the Hadoop Ecosystem, such as Hive and Spark
Directed Acyclic Graph (DAG) [30-33]. The usage of Spark DAG and the Spark Machine Learning
Library and GraphX to develop biometric key generation based on the utilization of MEG/EEG
brain waves for subject authentication. The premise of biometric key generation based on the subject
MEG/EEG brainwaves [34] for authentication is based on abstract algebra and combinatoric techniques
developed by, Monsky, Paul, “Generating Functions attached to some infinite matrices”, at Brandeis
University published in The Electronic Journal of Combinatorics, as illustrated in Figure 34, below.
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National SECURITY PROJECT MEG /EEG PRISM USING MODULUS THEORY FOR
CRYPTOGRAPHIC KEY AUTHENTHICATION Project WITH CASSANDRA &
MONGODB NOSQL DATABASES
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Slometric Key Generation with
MEG/EEG Brainwaves with
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Figure 34. MEG/EEG Cryptographic Key Authentication utilizing MEG/EEG brainwaves with
Cassandra and MongoDB NoSQL databases.

Our long-term research goal is to develop an MEG/EEG VLAN [35-37], Base Unit for
Security Authentication of MEG/EEG neuromagnetic brainwave signals [38] to detect and classify
authenticated MEG/EEG brainwaves and to reject anomalies and outliers [39] that are demonstrated
in Figure 33 [40-43]. Furthermore, the usage of cryptographic key generation [44,45], based on the
biometric authentication of a MEG/EEG subject’s brainwaves will be researched and developed and
coupled with DSA SHA-1 algorithm encryption techniques for Cassandra and MongoDB cryptographic
biometric databases, as illustrated in Figure 34, above.
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