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Abstract: Precision medicine has received a lot of attention in recent years and we have not yet found
any research cases that apply Data Envelopment Analysis (DEA) to investment decision making
in this area. The purpose of this study is to analyze the relative efficiency of candidate technology
sectors in order to determine priorities for government investment in precision medicine. The results
of the efficiency analysis can be used as an important reference for government policy makers to
determine the amount of government investment in the next year for each candidate technology
sector. The candidate technology for government investment in precision medicine was decided
for 23 sectors based on the data analysis and the opinions of expert committees. This study applies
the input-oriented DEA in regard to 23 technology sectors, which is widely used to analyze relative
efficiency in terms of inputs versus outputs and to enhance efficiency through the propositional
reduction of inputs. The input variables include the government’s research and development
(R&D) investment and forward and backward industry linkage effects. The output variables are the
employment creation effect, value-added effect, number of Korean patents, and number of Korean
papers. Our analysis results show that the 23 technology sectors in precision medicine overall have
a high efficiency, with the exception of the biobank technology sector. Therefore, since the Biobank
technology sector has strong infrastructure characteristics, it seems to require continuous investment.
The efficiency of DEA is high in most precision medicine sectors; therefore, overall, investing in these
technologies is expected to yield good benefits.

Keywords: data envelopment analysis; efficiency analysis; precision medicine; R&D investment

1. Introduction

The Korean government released the adjustment of the budget allocation in the National Research
and Development Project for 2019, and announced that the technology fields would drive innovation
and future growth for the fourth industrial revolution [1]. Precision medicine was among the eight
areas of innovation growth [1]. Precision medicine is strongly linked to artificial intelligence and
big data, which are the key technologies characterizing the fourth industrial revolution. Precision
medicine was also considered to be a countermeasure for the fourth industrial revolution and finally
classified as a field of innovation growth. Specifically, it seems that policy makers judged that
precision medicine can strengthen public services and create new industries. Meanwhile, policy
officers in the Korean government seem to believe that scientific technologies will lead the nation’s
innovation growth and the ‘4th Industrial Revolution’ [1]. The term ‘4th industrial revolution’ was
first mentioned at the World economic forum in 2016. However, compared with developed countries,
the term ‘4th industrial revolution’ has been used in an exceptional way in Korea. There is one
criticism on the other side, which is not relatively accustomed to new technologies related to the 4th
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industrial revolution represented by artificial intelligence. The fundamental reason for the Korean
government’s interest in the fourth industrial revolution is to strengthen the nation’s science and
technology competitiveness through innovation for economic growth. From this perspective, we
briefly examine advanced research. Yun applied the technique of open innovation to overcome the
limits of capitalism growth [2]. Kim et al. suggested that technological innovation is an important
source of national competitiveness in the service industry due to the arrival of a knowledge-based
society [3]. Based on the stagnation of the world economy in recent years, many experts argue for the
need to create new market demands through new technology via openness, convergence, and artificial
intelligence to overcome the current economic crisis [4]. In conclusion, the fourth industrial revolution
and innovation growth are recognized as important keywords to obtain better economic growth from
scientific technologies.

On the other hand, as societies by globalization grow more complex and diversified, it has been
necessary to change the planning environment of government policies. In particular, a limitation has
been revealed that decisions for policies using the traditional top-down method, the implementation
of policies that rely on existing customs, experience, and individual intuition, together with unclear
accountability do not explain why the policies should be established and performed. As a result,
the importance of establishing policies based on evidence, such as objective information, data, and
indicators, has started to be recognized. In other words, evidence-based quantitative decision-making
provides clear justifications and rapidity for policy making, and it seems there is the advantage that it
more easily resolves conflicts occurring in the process of executing the policies.

Precision medicine is a new industry area that has been highlighted by the state of the Union
Address in 2015 [5], in which Barack Obama, former president of the United States, announced plans
to invest in the precision medicine sector. The policy decision-makers in the Korean government also
selected precision medicine as an area for innovation growth. However, as the policy makers have
begun to have the burden of using the expert-opinion method that had been adopted traditionally
or investment decision-making in a top-down way, they require a scientific methodology for
evidence-based investment decisions. Specifically, after deciding on investment candidates in precision
medicine, it is necessary to determine which technology sectors have investment priority. There is a
limit to the amount of Korean government research and development (R&D) investment in precision
medicine because of the demand for a youth unemployment and welfare increase recently. Therefore,
the government’s investment decision-makers need to have an objective basis related to investment
priorities for each candidate technology sector.

Therefore, this study proposes an evidence-based Data Envelopment Analysis (DEA)
methodology from the viewpoint of R&D decision making. DEA provides the relative efficiency
of the output-to-input between decision-making units (DMUs). The results of this study give an
evidence-based method for investment decision-making in precision medicine. Specifically, the
efficiency of DEA can be used as a proxy to evaluate investment priorities. This methodology also
allows government policy makers to have insight into making scientific and evidence-based decisions
in a way that escapes from the existing top-down and expert opinion methods. On the other hand,
there is a necessity to consider the possibility of creating a new industry or its economic effect in order
to determine the efficiency or priority of investment in candidate technology sectors. This is obvious
from the viewpoint of government policy makers who want to pull economic growth from scientific
technologies. For reflecting on these intentions, key factors, such as forward and backward industry
linkage effects, the employment creation effect, and the value-added effect, were used as variables of
DEA. Therefore, the results of this study are expected to be used to consider whether a new industry
in precision medicine can be created and what economic effects will be made in the future. However,
precision medicine is still in an early stage in Korea, is being developed mainly by the public sector, and
it is rare for the private sector to have a role. Therefore, most of the input and output variables used in
the DEA model were assumed to be from government-level data even though they are from national
data, such as number of Korean patents and number of Korean papers. The remainder of this paper is
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organized as follows. In Section 2, we explore application cases of DEA related to investment efficiency
in precision medicine. In Section 3, we introduce the theoretical contents of DEA. Section 4 displays
the data used in this study in detail and describes the analysis results. Finally, Section 5 discusses the
contributions and limitations of this research and improvement directions for it in the future.

2. Literature Review

2.1. Application of DEA in Precision Medicine and Investment Efficiency Analysis

DEA was developed by Charnes, Coopers, and Rhodes [6] and extended by Banker, Charnes, and
Cooper [7] as a “non-parametric programming method for estimating the production frontier and
evaluating the relative efficiency of decision-making units (DMUs) with multiple inputs and multiple
outputs” [8]. This study adopts the DEA method for analyzing the efficiency between investment
candidates in precision medicine. First, the advanced study on the efficiency analysis of investment is
briefly as follows. Wu et al. analyzed the efficiency difference in government investment projects [9].
International comparisons of efficiency in the public sector have been analyzed using DEA [10];
the study presents seven socio-economic indicators and 17 sub-indicators that can be measured in
public sector performance. DEA has also been used to measure the efficiency of education and
technology at the national level [11] and the efficiency of investment in China’s economic development
process [12].

It was difficult to find case studies in which DEA was applied to the analysis of investment
efficiency in precision medicine. However, there are cases of research using DEA in biomedical or
medical fields related to precision medicine. Here are just a few examples. Narimatsu et al. applied
DEA to preventive medicine, where it was used to assess an individual’s susceptibility to obesity in
establishing an effective risk model for the onset of obesity [13]. In this study, DEA was applied to
calculate the efficiency score and to evaluate the usefulness of the risk model. Specifically, the input
variables of DEA were exercise (measured by consumed calories) and the reciprocal of food intake
(measured by calorie intake), and the output variable was defined as the reciprocal of body mass
index (BMI). Salinas-Jiménez used DEA as the most appropriate analytical technique for presenting
primary care performance models for patients [14]. The performance of health care should be assessed
as an impact on the health outcomes of individual patients, in which DEA was used to develop
performance models for primary care. In addition, DEA is used in the biotechnology and medical fields
as follows: management towards financial sustainability for private health care [15]; evaluating key
factors for success in a multifaceted critical care fellowship [16]; agricultural biotechnology innovation
performance [17]; measuring the efficiency of large pharmaceutical companies [18]; assessing the
performance of pediatric emergency department physicians [19]; the efficiency of health systems of
autonomous communities in Spain [20]; a comparative study of three commonly used methods for
hospital efficiency analysis [21]; and evaluation of system efficiency [22].

2.2. Application of Linkage Effect

The term ‘linkage effect’ is used in many fields and appears often in biotechnology and
economics texts. Linkage in the biotechnology field often refers to the linkage of genes in the DNA
(deoxyribonucleic acid) sequence. Examples of linkage effect studies from the biosector include
the following: the variant impact on the linkage effect test (VIOLET) [23]; a genome-wide linkage
scan for exercise participation [24]; consideration of the sib-sib correlation, linkage effects, and
gene–environment interaction [25]; an electrochemical biosensor based on an enzyme substrate as
a linker [26]; linkage effects in inbreeding [27]; electrodermal arousal between participants in a
conversation [28]; and linkage effects on the binding affinity and activation of GPR30 [29].

The term ‘linkage’ when used in economics often refers to the linkage of a particular industry to
other industries or services. Studies related to the linkage effect in economics include the following:
linkage effects in developing countries [30], United Kingdom agriculture in the wider economy [31],
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linkage effects and environmental impacts from oil consumption industries [32], and direct foreign
investment and linkage effects [33].

3. Methodology

As discussed earlier, DEA is a decision-making technique that compares the relative efficiency of
outputs versus inputs among DMUs. DEA techniques have also been studied in a variety of different
models. The input-based model focuses on reducing inputs with fixed outputs, while the output-based
model aims at increasing outputs given fixed inputs. When a researcher chooses a model, he basically
considers the realistic aspects of data availability. That is, if it is easy to adjust the input variables, an
input-based model can be used, whereas an output-based model is preferred if the output variables
are easier to modify. On the other hand, from the viewpoint of returns to scale, if the output increases
by the same rate as the input then there is a constant returns to scale (CRS); when the output changes
differently from the rate of increase of the input, it is referred to as a variable returns to scale (VRS)
model. In the VRS model assumptions, a higher rate of increase in output than the rate of increase in
input is called an increasing returns to scale (IRS) and, for the vice versa case, a decreasing returns to
scale (DRS). However, in practice, there may be incomplete competition, asymmetrical information,
or selective regulations, for example, in which the VRS model is better suited [34]. In this study, we
utilize the input-based VRS DEA method.

In DEA, the goal is to improve technical efficiency. Technical efficiency can be expressed as given
below [34]:

TEk =
∑N

n=1 µnyk
n

∑M
m=1 υmxk

m
(1)

where

TEk is the technical efficiency of entity k using M inputs to obtain N outputs,
yk

n is the quantity of output n obtained by entity k,
xk

m is the quantity of input m consumed by entity k,
µn is the weight of output n,
υm is the weight of input m,
N is the number of output n, and
M is the number of input m.

Equation (1) is called the fractional programming model, because the equation is in a fractional
form. However, in general, this fractional model can be transformed into the form shown in Equation (2)
in which the solution can be obtained using linear programming techniques.

θk∗ = minθ,λθk,

s.t. θkxk
m ≥

J
∑

j=1
λjxj

m(m = 1, . . . M),

yk
n ≤

J
∑

j=1
λjyj

n(n = 1, . . . N),

λj ≥ 0,
(j = 1, . . . k, . . . , J),

(2)

where

θk is the objective function of entity k in linear programming,
θk* is the real technical efficiency of entity k,
yk

n is the quantity of output n obtained by entity k,
xk

m is the quantity of input m consumed by entity k,
N is the number of output n,



J. Open Innov. Technol. Mark. Complex. 2018, 4, 39 5 of 17

M is the number of input m,
J is the number of entity j, and

λj is the weight of input xj
m and output yj

n.

In Equation (2), θk represents the concept of efficiency. The actual measured efficiency of entity
k is expressed as θk*. The conceptual form of computing the efficiency of entity k in Equation (2)
can be described as follows. In the first conditional equation, θk is reduced starting from 1, and the
efficiency of the observed value k becomes θk* at the moment when the inequality (≥) of the conditional
expression converts to an equality (=). Equation (2) is a typical linear programming problem. Usually,
linear programming is conducted in such a way as to maximize or minimize the objective function.
The efficiency of observation k effectively becomes the objective function in the linear programming
approach. To examine the efficiency calculation process in more detail, the process of calculating
the efficiency assuming one input and one output must be examined in more detail as shown in
Figure 1 [35].
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Figure 1. Understanding the concept of efficiency [35]. CRS, constant returns to scale; VRS, variable
returns to scale; DRS, decreasing returns to scale; IRS, increasing returns to scale.

In Figure 1, the horizontal axis represents the input value, the vertical axis represents the output
value, and the black points A, B, C, D, E, and F are observations or entities. In the input-based model, the
output value is fixed and the input value is lowered to improve the efficiency. Thus, in the input-based
model, each observation moves horizontally to the left in Figure 1, which increases efficiency.

In Figure 1, finding the observation point with the highest ratio of output to input, and connecting
this point to the origin, allows for the efficiency frontier to approach 100%. In Figure 1, given that
point B has the highest ratio of output to input, the straight line connecting point B and the origin
is the efficiency frontier in the CRS model assumptions. The efficiency frontier in the VRS model
assumptions is the line connecting the points at the outermost point to the left of the observed values.
Using the lines connecting points A, B, and C vertically down from point A and horizontally across
from point C outlines the efficiency frontier in the VRS model assumptions. Point B is the point at
which the efficiency frontier in the CRS model assumptions meets the efficiency frontier in the VRS
model assumptions. From point B, the upper (lower) part of the horizon corresponds to the DRS (IRS).
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In economics, an assumption of DRS (IRS) implies a smaller (greater) rate of increase in output than
the rate of increase in input.

In the VRS model assumptions, the point where the efficiency of point F is 100% is FVRS-I-NS.
However, comparing points FVRS-I-NS and A, the input values of the two points are the same, but
the output value of point A is higher. Thus, to achieve 100% efficiency, point F must move vertically
upward from FVRS-I-NS to point A. The value that an individual entity must further move to achieve
100% efficiency is referred to as ‘slack’.

In Figure 1, point DCRS-I is the efficiency frontier point, projected point, or target point of point
D in the input-based CRS model assumptions. In other words, in the input-based CRS assumptions,
point D must move to point DCRS-I so that the efficiency becomes 100%. Similarly, in the input-based
VRS assumptions, point D has to move to point DVRS-I for 100% efficiency. Thus, the target point of
point D differs depending on the assumptions that are used [35].

There are several ways to measure efficiency. Table 1 shows the types of efficiency represented
by distance expressions using Figure 1. For example, in the distance expression in Table 1, dD is
the distance between points d and D. Table 1 shows the types of efficiencies represented by distance
expressions (Figure 1). However, technical efficiency does not reveal the cause of the inefficiency [36].
Causes of inefficiencies may be management problems or scale problems [36]. The DEA method
decomposes technical efficiency into pure technical efficiency and scale efficiency in an attempt to
resolve inefficiency issues. Scale efficiency is equal to the total efficiency divided by pure technical
efficiency [35].

Table 1. Types of efficiency.

Efficiency Distance Expression

Technical efficiency of point D (TE)
(Total efficiency, assuming CRS)

dDCRS−I
dD

Point D’s pure technical efficiency (PTE)
(VRS assumption)

dDVRS−I
dD

Scale efficiency of point D (SE) = TE/PTE
dDCRS−I

dD
dDVRS−I

dD

= dDCRS−I
dDVRS−I

In addition, pure technical efficiency can be compared using scale and technical efficiencies to
characterize inefficiencies more fully. Table 2 summarizes the inefficiencies by situation.

Table 2. Causes of inefficiency by situation.

Situation Cause of Inefficiency

Pure technical efficiency > Scale efficiency Scale
Pure technical efficiency < Scale efficiency Pure technology

Pure technical efficiency = Scale efficiency (After comparing technical efficiency and scale efficiency)
The lower efficiency factor is defined as the cause of the inefficiency.

4. Measuring the Efficiency of Precision Medicine Technology Sectors

4.1. Selection of Candidate Technology Sectors in Precision Medicine

We first briefly review the technology sectors that are important in precision medicine based on
recent studies from the literature. Im et al. discuss ‘next generation technologies’ related to precision
medicine, in which molecular pathology, immunofluorescence, molecular imaging, flow cytometry,
and other molecular profiling strategies and their integration into new cutting-edge technologies
for functional testing are identified as important technologies [37]. In addition, the techniques of
single- and scant-cell molecular analyses, extracellular vesicle analysis, and circulating DNA analysis
are emphasized [37]. Hunter proposed nine essential models for predicting the future of precision
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medicine: (1) proteomics biomarkers bridging research and the clinic; (2) predictive drug safety testing
and research; (3) three-dimensional cell culture revolution; (4) bioinformatics and systems biology (e.g.,
in metabolomics); (5) model-based drug development; (6) pharmacogenomics; (7) wellness monitoring;
(8) functional medicine; and (9) new principles of consumer engagement [38].

In this study, DMUs represent the technology sectors and the candidates for the government’s
R&D investment in precision medicine. DMUs were selected by combining data-based analysis from
a previous research document set and expert knowledge. Specifically, data-based analysis refers to
the process of deriving candidates of technology sectors from a global thesis database (e.g., Elsevier’s
abstract and citation database, SCOPUS). We examined earlier precision medicine studies from the
SCOPUS database going back 5 years from 2012 to 2017. In addition, we applied a document-clustering
method based on the similarity of occurrence patterns of technical keywords and reference documents.
The clustering results showed that documents with similar occurrence patterns should be grouped
in the same sector. For this group of papers, the abbreviated names of the technology sectors were
roughly defined. The technology sector candidates were finalized by a committee of experts, composed
of doctors, business operators, government officials, and data analysis experts engaged in business
or research related to precision medicine. The expert committee first selected six areas of precision
medicine application for consideration for government investment. The committee reviewed the
technology sectors derived from the data-based analysis, gathered expert opinions, and finally selected
23 candidates for the government’s investment in precision medicine. Table 3 shows the 23 technology
sectors (i.e., DMUs) selected from the six areas.

Table 3. Technology candidates in precision medicine.

Area Code Technology Sectors (Decision-Making Units, DMUs)

Omics and biometric information services T01 Acquisition of omic data
Omics and biometric information services T02 Biometric and bioinformatic data analysis
Omics and biometric information services T03 Biomarker discovery
Omics and biometric information services T04 Omics-based prediction and diagnosis of diseases

Cohort and clinical information service T05 Biobank
Cohort and clinical information service T06 Cohort
Cohort and clinical information service T07 Clinical data analysis
Cohort and clinical information service T08 Data-based treatment and prevention service in precision medicine

Lifelog and ICT T09 Acquisition of lifelog data
Lifelog and ICT T10 Integrated sensor and mobile healthcare technology
Lifelog and ICT T11 Development of smart healthcare device
Lifelog and ICT T12 Smart healthcare based on mobile devices in precision medicine

Precision medicine platform T13 Data standardization and common model for precision medicine
Precision medicine platform T14 Health data encryption and security for precision medicine
Precision medicine platform T15 Data collection and integration for precision medicine
Precision medicine platform T16 Data storage and process for precision medicine
Precision medicine platform T17 Data platform for precision medicine

Precision medicine proof T18 Personalized pharmacogenomics
Precision medicine proof T19 Disease prediction and diagnosis in precision medicine
Precision medicine proof T20 Personalized prescription and treatment of disease in precision medicine
Precision medicine proof T21 Preclinical and clinical trials in precision medicine

Precision medicine service/industrialization T22 Clinical decision support system
Precision medicine service/industrialization T23 Personalized medicine services in precision medicine

4.2. Modeling of DEA

To apply the DEA method, the appropriate input and output variables must first be selected.
In the analysis of the efficiency of government investment projects, Wu et al. used the following
as input variables: financial input in the early stage, financial input from the government, financial
input from society, and personnel input from the government; social benefits and economic benefits
were used as output variables [9]. Lovre et al. conducted an international comparison of efficiency
in public sectors; in this study, socio-economic indicators that affect the growth of public sector
performance were categorized into seven areas: administration, education, healthcare, infrastructure,
income distribution, stability, and economic performance [10]. These seven areas were subdivided
into a total of 17 sub-indicators. Xu et al. applied DEA to measure the efficiency of education and
technology; in this research, total R&D expenditure and total R&D personnel nationwide were used as
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input variables to measure technical efficiency, and scientific articles, patent applications, and patent
grants were used as output variables [11]. Kim et al. measured the efficiency of investment in new and
renewable energy (NRE) in Korea; here, public R&D expenditure for NRE and subsidy for NRE usage
promotion were used as input variables, and number of patents, total volume of power generation, and
unit cost of power generation were used as output variables [39]. A study by Zhang et al. examined
the efficiency of the Chinese government’s investment; the input variables were fixed-asset investment
at the provincial level, net fixed asset value at the industry level, and number of employees at the
industry level and at the provincial level, and the output variables were gross domestic product
(GDP) and value-added industry at the provincial level in the study [12]. Muangthai et al. conducted
an input–output analysis to examine industrial linkage effects, which they describe as follows [40]:
“The input–output analysis describes the interconnection of the industries in which the output of an
industry will appear as the input of other industries”. In the linkage effect, “the backward linkage
measures the impact on the supplier industries of a unit increase in the final demand for a product.
The forward linkage represents the increase in sector i needed to supply the input required to produce
a unit of the final demand output in sector j”.

In previous research, when the DEA method had been applied to the analysis of government
investment efficiency, the input variables tended to be government investment and human resources,
and the output variables were usually number of patents, number of papers, social gain, economic
gain, GDP, and value-added effect. Notably, input–output analysis and DEA are both efficiency
analysis methods. However, input–output analysis, as mentioned above, identifies cases where
industry-linkage effects are utilized.

The choice of indicator used for DEA depends on the suitability of the indicator and its data
availability; as such, seven DEA indicators were selected based on these two selection criteria as shown
in Figure 2.
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Figure 2. Input and output variables of Data Envelopment Analysis (DEA) for this study. R&D,
research and development.

Figure 2 shows that there are three input variables: forward industry linkage effect, backward
industry linkage effect, and government R&D investment. The four variables for output are
employment creation effect, value-added creation effect, number of Korean patents, and number
of Korean papers. Two indicators, forward industry linkage effect and backward industry linkage
effect, may be used as output variables depending on the researcher. However, in this study, these two
indicators were used as input variables considering that the variables best represented the situation
being examined. Additionally, it is common practice to use government R&D investment as an input
variable. All four output variables were judged to be suitable indicators. Table 4 summarizes the seven
indicators used in the analysis and the form in which each indicator value was derived.
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Table 4. Seven indicators used for analysis.

Type Indicators Data Source Generation Method Year

Input Forward industry
linkage effect

The Bank of Korea
(Inter-industry relation table)

Technology-Industry
classification matching 2014

Input Backward industry
linkage effect

The Bank of Korea
(Inter-industry relation table)

Technology-Industry
classification matching 2014

Input Government R&D
investment NTIS Query/expert 2012–2017

Output Employment
creation effect

The Bank of Korea
(Inter-industry relation table)

Technology-Industry
classification matching 2014

Output Value-added
creation effect

The Bank of Korea
(Inter-industry relation table)

Technology-Industry
classification matching 2014

Output Number of Korean
patents

GPASS
(LEXISNEXIS) Query 2010–2017

Output Number of Korean
papers SCOPUS at KISTI Query 2012–2017

The calculation process of the seven indicators is described briefly. First, government R&D
investment refers to the amount available for investment after categorizing the government R&D
projects by technology sectors. The screening of government R&D projects consists of two processes.
First, the potential research projects are identified using queries from the National Science and
Technology Information Service, NTIS; these projects are selected as candidates [41]. The search queries
in this process are determined through expert consultation. In the second process, research projects
are selected by the government’s personnel in charge of the particular area of study (e.g., precision
medicine) to best represent the area of study. Through expert consultation, only research projects
meeting the study goal are selected. The final research projects are then matched to specific sectors.
If a project is matched to many technology sectors in a 1:n relationship, where 1 means a project and n
represents the number of related technology sectors, the budget of the project is assigned into 1/n for
each technology sector. In other words, after matching projects and technology sectors with 1:n for all
research projects, the total budget for each technology sector is used for analysis.

In this study, 2012–2017 data were used. The number of Korean papers was based on retrieved
results from SCOPUS using queries [42]; papers were limited to authors from Korea. The number
of Korean patents corresponded to patents searched for using queries at LEXISNEXIS (GPASS) [43],
filed from 2010 through 2017, in which the applicant’s nationality was specified as Korean. Note
that it takes about 2 years for a patent to be released after receiving the application; therefore, the
patent search period was extended by two years (2010 through 2017) compared with the thesis time
frame. For reference, GPASS is a patent database that processes LEXISNEXIS, which is utilized within
the Korea Institute of Science and Technology Information (KISTI). The search expressions, created
through collaboration between technical and search experts, included government R&D investment,
Korean paper numbers, and Korean patent numbers. The three types of search expressions were
similar; however, the words used in the search queries differed slightly depending on the different
characteristics of the three databases. The four economic effects, namely the employment creation
effect, the value-added creation effect, the forward industry linkage effect, and the backward industry
linkage effect, were basically derived from the inter-industry relation table published by the Bank
of Korea [44]; however, this table lists the four economic effects by Korean industry classification.
Therefore, the industrial classification was matched with the 23 precision medicine technology sectors
as shown in the conceptual illustration in Figure 3.
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In Figure 3, the technology sector (T01) is represented by the international patent classification
(IPC), which is derived from the searched patent documents. It is also possible to calculate the
ratio based on the frequency of appearance of the derived patent classifications. In other words, the
technology sector (T01) can be defined as the ratio of appearance of the IPC. Four economic effects
should be derived for each technology sector; however, the inter-industry relation table provides
the values by Korean industry classification. Therefore, we used the Korean Standard Industry
Classification-International Patent Classification (KSIC-IPC) matching table provided by the Korean
Intellectual Property Office [45] to obtain the four economic effects for each technology sector. If the
economic value provided by the industrial classification multiplied by the ratio of the IPC matches
the classification, the economic effect value of the technology sector (T01) is obtained. This process
was applied equally to all four economic effects. Note that the text and numerical values shown in
Figure 3 are conceptual examples and not actual values. On the other hand, the industry association
table does not announce the actual value every year. The most recently announced data release was in
2016, corresponding to a base year of 2014.

The four economic effects are described below. In this paper, the employment creation effect refers
to the direct employment number required for the relevant industry and the additional employment
number indirectly caused by other industries per 1 billion Korean won (KRW) of input, referring to
the employment table of the Bank of Korea’s inter-industry relation table. The value-added effect
refers to the situation in which the value-added unit directly or indirectly stimulates the entire national
economy if the final demand for the domestic product of an industrial sector increases by one unit.
That is, it indicates how much the production inducement by the increase of 1 unit of final demand
causes the added value to be realized. Given that the products of each industry are used as final
goods for consumption and are also used as intermediaries for the production of other industries,
there is some correlation among industries, which can be used as an indicator of the industry linkage
effect [46].

The industrial linkage effect can be divided into forward and backward industry linkage effects.
The forward industry linkage effect represents the degree to which intermediate goods are sold to
other industries, and the backward industry linkage effect represents the degree to which intermediate
goods are purchased from other industries. The forward industry linkage effect is commonly measured
using the sensitivity dispersion index, and the backward industry linkage effect is measured using the
power dispersion index [47]. The sensitivity dispersion index can be obtained by dividing the sum of
the row entries of the production induction coefficients of an industry by the average of all industries.
An industry with a value greater than 1 is an industry that receives higher than average impacts from
other industries. The power dispersion index is determined by dividing the sum of the column entries
of the production induction coefficients of an industry by the average of all industries. If this value is
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greater than 1, it means that the production inducement effect on the whole industry is higher than
the average. The values of the seven indices derived in the manner described above are shown in
Table 5; however, government R&D investment was normalized between 0 and 1 using maximum and
minimum values, not actual values.

Table 5. Values of the seven indicators used in the analysis.

Code
Forward
Industry

Linkage Effect

Backward
Industry

Linkage Effect

Government
R&D

Investment

Employment
Creation

Effect

Value-Added
Creation

Effect

Number
of Korean

Patents

Number
of Korean

Papers

T01 0.641 0.990 0.753 9.900 0.979 14 9
T02 0.767 1.026 0.729 10.599 0.983 37 37
T03 0.687 1.069 0.353 9.937 0.980 87 28
T04 0.666 1.005 1.000 10.015 0.979 163 89
T05 0.720 1.016 0.817 9.561 0.977 5 95
T06 0.734 0.979 0.501 10.881 0.981 6 104
T07 0.680 1.042 0.435 9.842 0.979 31 541
T08 1.012 1.239 0.141 9.778 0.978 147 333
T09 0.784 0.975 0.833 11.481 0.985 10 2
T10 0.806 1.043 0.520 11.020 0.983 135 242
T11 0.805 1.071 0.596 10.861 0.983 24 277
T12 0.797 0.965 0.202 11.826 0.984 12 184
T13 0.807 0.953 0.315 11.812 0.984 19 197
T14 0.787 0.984 0.254 11.435 0.984 19 111
T15 0.790 0.987 0.095 11.526 0.984 125 15
T16 0.793 0.963 0.060 11.757 0.984 12 125
T17 0.789 0.950 0.332 11.797 0.984 9 73
T18 0.697 1.050 0.990 9.880 0.979 34 558
T19 0.728 1.059 0.532 9.901 0.979 226 408
T20 0.728 1.049 0.514 9.867 0.979 37 339
T21 0.714 1.014 0.504 10.474 0.980 9 213
T22 0.802 0.865 0.000 12.561 0.984 7 182
T23 0.667 1.010 0.050 10.252 0.980 10 107

4.3. Efficiency Measurement of Candidate Technology Sectors

In this study, the DEA for the precision medicine field was conducted using the DEAP
software [48]. The results are shown in Table 6.

Technology sectors where the PTE value is 1 can be interpreted as an area where efficiency is
optimized. The following sectors showed optimized efficiency: T01, T04, T07, T08, T09, T10, T11,
T12, T13, T15, T16, T17, T18, T19, and T23. DEA showed that the personalized prescription and
treatment of disease in precision medicine (T20), biobank (T05), biometric and bioinformatic data
analysis (T02), preclinical and clinical trials in precision medicine (T21), and cohort (T6) technology
sectors had less than average technical efficiency. Technology sectors where the cause of inefficiency is
pure technology should make efforts to improve efficiency by securing the capability to improve the
technology; these sectors were as follows: biometric and bioinformatic data analysis (T02), biobank
(T05), cohort (T06), personalized prescription and treatment of disease in precision medicine (T20),
and preclinical and clinical trials in precision medicine (T21). If the cause of inefficiency is scale and
the returns to scale is DRS, efforts should be made to improve the efficiency of the technology sector by
reducing the scale; this was the case for the following sectors: biomarker discovery (T03), acquisition
of lifelog data (T09), integrated sensor and mobile healthcare technology (T10), development of smart
healthcare devices (T11), and health data encryption and security for precision medicine (T14). On the
other hand, if the reason for the inefficiency is scale and the returns to scale is IRS, it is necessary
to make efforts to improve the technical efficiency of the technology sector by increasing the scale;
however, our results did not identify a technology sector with this issue.
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Table 6. Data envelopment analysis results.

Code Technical
Efficiency (TE)

Pure technical
Efficiency (PTE)

Scale
Efficiency (SE)

Cause of
Inefficiency

Returns to
Scale

T01 1 1 1 -
T02 0.947 0.966 0.98 Pure technology drs
T03 0.989 0.999 0.99 scale drs
T04 1 1 1 -
T05 0.962 0.966 0.996 Pure technology irs
T06 0.991 0.992 0.999 Pure technology irs
T07 1 1 1 -
T08 1 1 1 -
T09 0.982 1 0.982 scale drs
T10 0.973 1 0.973 scale drs
T11 0.923 1 0.923 scale drs
T12 1 1 1 -
T13 1 1 1 -
T14 0.981 0.999 0.982 scale drs
T15 1 1 1 -
T16 1 1 1 -
T17 1 1 1 -
T18 1 1 1 -
T19 1 1 1 -
T20 0.962 0.963 0.999 Pure technology irs
T21 0.981 0.982 1 Pure technology -
T23 1 1 1 -

Average 0.986 0.994 0.992

Note: The T22 technology sector is excluded in the analysis because there is no government R&D investment.

Precision medicine requires the medical profiles of individuals as opposed to universal medical
care in the traditional way. Biobank and cohort technologies are becoming the infrastructure technology
for precision medicine by collecting and managing personal genome, clinical, environmental, and
life-log information. Therefore, these technical fields have characteristics that require large-scale
resources. Biobank and cohort technologies must enhance their technological capabilities in terms of
infrastructure, as the cause of their inefficiencies was identified as pure technology. On the other hand,
biomarkers are technologies for measuring changes in the living body. Lifestyle information acquisition
and mobile health and device technologies are the basis of smart health, all of which are highly
dependent on information technology. In general, precision medicine is considered to be an innovative
technology due to its strong bio-information technology convergence; thus, it requires a certain level of
economy. The DEA results also showed that the cause of inefficiency of the aforementioned technology
sectors is scale, with DRS characteristics. However, from the perspective of cultivating precision
medicine as a new industry, it is necessary to consider carefully whether a reduction in size of these
technology sectors is a desirable direction.

Input-based DEA attempts to increase efficiency by reducing input resources. In other words, the
input resource can be saved by the difference between the projected value where efficiency is 100%
and the original value used for DEA analysis. Inefficiency has to do with the reduction rate of input
resources as expressed in Equation (3). If the projected value is smaller than the original value, the
value of Equation (3) would most likely be negative.

Reduction ratio (inefficiency ratio) = (projected value − original value)/original value (3)

Table 7 shows the inefficiencies of input resources for the remaining technology sectors, except for
the technology sectors with a technical efficiency (VRS TE) of ‘1’.
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Table 7. Inefficiencies by input variables.

Code Technology Sectors (DMUs) Forward Industry
Linkage Effect

Backward Industry
Linkage Effect

Government R&D
Investment

T02 Biometric and bioinformatic data analysis −0.034 −0.038 −0.034

T03 Biomarker discovery −0.001 −0.052 −0.001

T05 Biobank −0.035 −0.034 −0.267

T06 Cohort −0.008 −0.008 −0.008

T14 Health data encryption and security for
precision medicine −0.001 −0.013 −0.001

T20 Personalized prescription and treatment
of disease in precision medicine −0.037 −0.036 −0.037

T21 Preclinical and clinical trials in
precision medicine −0.018 −0.018 −0.018

In terms of the government’s R&D investment, the inefficiency of the Biobank (T05) is −0.267,
which is relatively inefficient. This indicates that the biobank sector has a strong infrastructure
characteristic; therefore, it is important for society and requires a significant investment. It also
indicates that the investment is relatively high compared with that of other technology sectors; however,
the low performance is of concern. Treatment of disease in precision medicine (T20), biometric and
bioinformatic data analysis (T02), preclinical and clinical trials in precision medicine (T21), cohort
(T06), biomarker discovery (T03), and health data encryption and security for precision medicine (T14)
were analyzed as technology sectors that should increase efficiency through investment reduction.

On the other hand, if the inefficiency is theoretically set to ‘0’, the efficiency of the technology
sector becomes ‘1’. However, DEA researchers argue that inefficiency cannot attain a value of absolute
‘0’. There are cases where it is necessary to assume some inefficiency, considering the characteristics of
the analysis unit [36]. Biobank and cohort technologies are all cases of large-scale national projects in
that they collect and utilize human resources. The high inefficiency of the biobank (T05) also appears to
be the result of a nationwide resource infrastructure project, which has the property that large budgets
are injected into the standardization of sample processing and infrastructure for resource management.
However, ‘cohort’ is similar to ‘biobank’ in that it has the property of being a resource infrastructure
business, but the inefficiency is relatively acceptable. This seems to be due to the fact that the biobank
technology sector has been widely used for a long time in traditional biopharmaceutical technology,
whereas the cohort technology sector is aimed at a prospective cohort study for a large population.
It has also been attributed to the recent emergence of precision medicine. Thus, theoretical inefficiency
based on the characteristics of the analytical unit may be interpreted differently depending on the actual
industrial viewpoint. As such, the inefficiency of the analytical unit requires careful consideration.

The forward industry linkage effect and the backward industry linkage effect have characteristics
that represent the current situation. These indicators are not readily adjustable by the government in a
short period of time. In addition, as these two variables increase, the inter-industry linkages become
more active and, consequently, help the national economy. As DEA analysts have pointed out, these
two variables are not subject to reduction but, rather, are conditional variables that must be accepted.

5. Conclusions

The mode of government investment in R&D is determined through a very complex process.
This process reflects the limitations of the budget, the opinions of technical experts and government
officials, the needs of private companies, and the general opinion of the public. It also reflects the
R&D investment trends of technologically advanced countries’ governments and the announcement of
future promising technologies both domestically and abroad. Thus, the R&D status of global companies
is also considered. This study focused on an alternative for R&D investment decision-making using
DEA to calculate the efficiencies of specific technology sectors using input and output variables, i.e.,
based on a scientific methodology rather than an expert opinion base. Here, we investigated the
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investment efficiencies of 23 precision medicine technology sectors that required government R&D
investment. Our DEA results identified 15 of the 23 technology sectors as having an especially high
pure technical efficiency, with 0.963 as the lowest value. In other words, in the field of precision
medicine, the pure technical efficiency is high. Thus, according to the efficiency analysis, it would
be sufficient to invest in the detailed technology sectors on an equal footing within the range of
the available budget, without discrimination among technology sectors. Our results also revealed
weaknesses in the biobank technology sector; however, given its strong infrastructure characteristics,
continued investment is recommended.

From the academic point of view, this study contributes to the first application of the DEA
technique to analyze investment efficiency in precision medicine. In previous studies, it was difficult
to find case studies applying DEA to investment decision-making in precision medicine. Second,
this research contributes to the efficiency analysis of the government’s investments by providing
a framework that links employment and new industry creation using the industry linkage effect,
employment effect, and value-added effect as applied to DEA. In addition, our approach provides a
precedent reference for policy makers to decide which areas to invest in first. This is expected to help
policy makers in Korea overcome any lack of resources in the midst of slow growth.

This study had several limitations. First, we used an input-based DEA model, which is always
concerned with the reduction of input resources; as such, the research methodology and/or practical
aspects may be at a disadvantage. For example, in the field of precision medicine, this may not be
appropriate if we have a policy of setting sufficient input resources and maximizing performance.
Second, even though the input-based model was used, it is not easy to adjust the effects of forward
industry linkage and backward industry linkage as input variables. On the other hand, the main
purpose of this study was to investigate the efficiency of input versus output from the viewpoint of
government investment. Given that precision medicine is a new industry in Korea, it has developed as
a government-led endeavor. We applied this aspect to the acquisition of values of seven variables used
for DEA analysis, in which six of the seven variables had values in line with the national viewpoint,
i.e., government and private values. We assumed that all seven variables were similar to those derived
at the government level given the level of government involvement. This is the third disadvantage
of this study. However, as the precision medicine industry continues to develop, these variables will
need to be calculated separately at the private level and the government level; in the present situation,
it is impossible to obtain the seven variables separately. Fourth, the input cash flow is not considered
in the four economic effect indicators used in this study. Therefore, in this study, the basic assumption
is that the amount of future cash flows that can be obtained from the candidate technology sectors
will be the same. In the future, it is expected that more sophisticated efficiency measurement will be
possible by estimating the economic life cycle of the candidate technology sectors and the scale of cash
flows by the lifetime.

Additional recommendations include supplementing the aforementioned shortcomings described
in the limitations, applying the current status of available human resources by technology sector, and
developing the means to calculate the input/output variable value based on a nationally recognized or
government-specified standard. In addition, it is possible to estimate the economic life cycle and the
cash flows by candidate technology sector, thereby measuring more sophisticated efficiency. We are
going to address these issues in future research endeavors.
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