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Abstract: Metabolic flexibility is the ability of an organism to adapt its energy source based on
nutrient availability and energy requirements. In humans, this ability has been linked to cardio-
metabolic health and healthy aging. Genome-scale metabolic models have been employed to simulate
metabolic flexibility by computing the Respiratory Quotient (RQ), which is defined as the ratio
of carbon dioxide produced to oxygen consumed, and varies between values of 0.7 for pure fat
metabolism and 1.0 for pure carbohydrate metabolism. While the nutritional determinants of
metabolic flexibility are known, the role of low energy expenditure and sedentary behavior in the
development of metabolic inflexibility is less studied. In this study, we present a new description of
metabolic flexibility in genome-scale metabolic models which accounts for energy expenditure, and
we study the interactions between physical activity and nutrition in a set of patient-derived models

check for

updates of skeletal muscle metabolism in older adults. The simulations show that fuel choice is sensitive to
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1. Introduction
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B Mosel The ability of an organism to efficiently switch between the oxidation of different en-
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ergy substrates according to environmental circumstances is known as metabolic flexibility.
Healthy metabolism is characterized by physiological shifts between glucose and fat oxida-
tion in response to nutrient availability. This process maintains homeostasis in response
to changing energy demands, for example, during exercise. This transition is driven by
insulin activity and regulated by a cross-talk between metabolic and signaling pathways
across different tissues [1]. Skeletal muscle, as the largest contributor to insulin-mediated
glucose uptake from plasma and as a major determinant of energy expenditure in resting
published maps and institutional affl- ~and non-resting conditions [2], is one of the major drivers of metabolic flexibility.

{ations. Energy metabolism is heavily involved in the aging process, not only because mito-
chondrial dysfunction and impaired nutrient sensing are among the main drivers of the
aging process [3], but also because all the recognized hallmarks of aging are connected

to undesirable metabolic alterations [4]. Metabolic flexibility is recognized as a feature

of healthy metabolism and has been associated with longevity and a longer health span.

It has also been associated with increased insulin sensitivity [5] and lower incidence of

age-related diseases, such as type 2 diabetes [6] and cardiovascular diseases [7]. Treatments

targeting metabolic flexibility may delay the onset of aging and related comorbidities. Cur-
conditions of the Creative Commons  T€Ntly, regular physical activity and a balanced diet are still the best available treatments to

Attribution (CC BY) license (https://  increase metabolic health and to maximize health span [8,9].

creativecommons.org/licenses /by / Computational models are key to investigate the complexity of the interactions be-

40/). tween nutrition and physical activity. Constraint-based metabolic models have been
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successfully used to simulate metabolic flexibility in silico by computing the Respiratory
Quotient (RQ) in different nutritional conditions, for example, after a meal, during the
transition between the fast and the fed state [10,11]. The RQ value concerns which macro
nutrients are metabolized and which pathway is used for energy production. It is defined
as the ratio of carbon dioxide produced by the body to oxygen consumed by the body,
and it varies between values of 0.7 for pure fat metabolism and 1.0 for pure carbohydrate
metabolism.

While the influence of nutrition and diet composition on metabolic flexibility is well
documented [12,13], fewer studies have examined the role of physical activity and seden-
tary behaviors on metabolic flexibility. Previous studies which modeled RQ during the fast
to fed transition using constraint-based models did not take the effect of energy expenditure
on RQ into consideration [11]. In this study, we propose a new description of the fast to fed
transition that allows us to simulate the effect of various levels of physical activity on fuel
choice in constraint-based models.

Constraint-based metabolic models do not include any description of signaling path-
ways. To simulate the changing concentration of plasma glucose and fatty acids after
a meal, Nogiec and coworkers [11] directly modulated the fluxes through glucose and
palmitate transporters, reactions transporting substrates between external medium and
cytoplasm compartments. The maximization of ATP, creatine phosphate, glycogen, and
triglycerides production was used as the objective function.

This implementation is not applicable to large genome-scale metabolic models such
as Recon2.2 and Recon3D, which have multiple alternative transporters for glucose and
palmitate coupled with the symport or antiport of different ions, such as H" and Na™.
In our model, we avoid this bias by limiting the availability of glucose and palmitate
through exchange reactions to simulate the fast to fed transition. This is comparable to
controlling the maximal amount of nutrients present in the external medium of a cell
culture. ATP phosphodiester bond hydrolysis (ATPH) was chosen as the objective function.
By maximizing ATP consumption instead of ATP production, we let the models generate
ATP using the optimal pathway, thus eliminating another potential source of bias. By
constraining the flux through the ATPH reaction, we can simulate a condition of reduced
energy expenditure. A simplified visualization of the two models is presented in Figure 1.
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Figure 1. Simplified representation of two different descriptions of the fast to fed transition in a
constraint-based metabolic model. (A) Architecture of the simulation presented in [11]: change in
nutrient availability during the fast to fed transition is modeled by modulating the flux through
glucose and palmitate transporters, the reactions transporting substrates between the external and the
cytoplasm compartments (black arrows). Production of ATP, creatinine phosphate (CrP), glycogen
and triglycerides (TG) was used as objective reaction (red arrow). The availability of glucose and
palmitate in the external compartment is assumed to be infinite. (B) Architecture of the simulation
presented in this study. The fast to fed transition is modeled by modulating the amount of nutrients
available in the external compartment through exchange reactions (black arrows). ATP phosphodi-
ester bond hydrolysis (ATPH) is used as objective function (red arrow). The models are free to choose
the optimal mix of substrates to optimize the flux through the objective function. RQ is defined as
the ratio between CO; efflux and O, influx (blue arrows) in both implementations. Blank arrows
represent reactions that were left unbounded.
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In this study, we investigate the link between physical inactivity and metabolic flex-
ibility by simulating the effect of changing levels of energy expenditure on fuel choice,
measured as RQ. Our new description of metabolic flexibility is tested in a set of constraint-
based metabolic models. This model set includes two human metabolic reconstructions,
Recon2.2 [14] and Recon3D [15], a model of central carbon metabolism, MitoCore [16] and
a set of 24 patient-derived models of skeletal muscle metabolism [17]. We show that, in all
models tested, fuel choice is sensitive to ATP consumption rate, and that a reduction in
ATP consumption reproduces phenotypes associated with metabolic inflexibility.

2. Results
2.1. New Description of the Fast to Fed Transition in Genome-Scale Metabolic Models Highlights
Heterogeneity of Model Predictions

We tested our model of the fast to fed transition using three different constraint-
based metabolic models—Recon2.2, Recon3D and MitoCore—to predict RQ in high energy
expenditure conditions, meaning that the objective function ATPH was unconstrained
(default upper bound ATPH = 1000 mM/gDw /h). Recon2.2, Recon3D and MitoCore
share most of their reaction identifiers and were chosen to facilitate a comparative analysis
of the results. To simulate the fasting condition, we restricted the maximal influx of
glucose and palmitate to 0.5 mM/gDw /h and 0.38 mM/gDw /h, respectively. In the fed
condition, the maximal influx of glucose and palmitate was restricted to 4.5 mM/gDw/h
and 0.034 mM/gDw /h, respectively. The bounds were progressively changed to simulate
the transition between these states. The exchange of other metabolites with the external
medium was deactivated, except for the exchange of water and protons (H™).

All models predicted RQ values within the expected range (0.7 < RQ < 1.0), (Figure 2A),
but the exact predictions by the three models were not consistent. In particular, the pre-
dictions of the MitoCore model were divergent from those of Recon2.2 and Recon3D.
MitoCore’s RQ profile rose to an RQ value of 1.0 in the second half of the transition. An
inspection of the uptake fluxes during the fast to fed transition showed that the model
maximizes the uptake of glucose but does not metabolize palmitate in the second part of
the simulation, despite its availability in the medium. This suggests that the composition of
the medium employed in this study might be sub optimal to conduct metabolic flexibility
simulations with the MitoCore model. Different RQ profiles can be explained by the differ-
ent ATP yields for glucose and palmitate among the three models (Figure 2B). MitoCore has
the highest ATP yield for glucose (33 mM/gDw /h), which explains why MitoCore selects
glucose as its only energy substrate when sufficient glucose is available to meet energy
requirements (glucose > 2.7 mM/gDw /h, Figure 2A). Recon2.2 and Recon3D have an ATP
yield for glucose of 31.5 and 32 mM/gDw /h, respectively. The ATP yield for palmitate is
106.8 mM/gDw /h in Recon2.2, 113.0 mM/gDw /h in Recon3D and 111.9 mM/gDw/h in
MitoCore. Moreover, the structure of the metabolic network differs significantly across
the models. MitoCore is a comparably small model focused on mitochondrial metabolism,
which only contains 555 reactions and only describes a part of the metabolic network of
the Recon models. Additionally, the topology of the metabolic network of the MitoCore
models is different from the topology of both Recon models due to a different formula-
tion of mitochondrial transport reactions and of the proton gradient that drives oxidative
phosphorylation, suggesting that the topology and the stoichiometry of the metabolic
network also affect RQ predictions. These differences influence the type and the amount
of substrate used by the model to fulfil the objective function, and thus determine the
predicted RQ value. Both Recon3D and MitoCore models needed to be modified before
they could predict RQ values in the expected range, as explained in Appendix A.
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Figure 2. Simulations of fast to fed transition highlight heterogeneity of model predictions. Validation
of our of the fast-to fed transition. (A) RQ values predicted by three human constraint-based models
(Recon2.2, Recon3D and MitoCore) during the fast to fed transition with the objective function
ATPH left unconstrained (upper bound ATPH = 1000 mM/gDw /h). X axis: upper bound values for
palmitate and glucose exchange reactions during the fast to fed transition (in mM/gDw /h). (B) ATP
yields for glucose and palmitate across the three models.

2.2. RQ Is Sensitive to Changes in ATP Consumption Rate

We showed that our model of the fast to fed transition could reproduce theoretical
RQ values in high energy expenditure conditions. To investigate how each model adapts
its fuel choice to a decrease in energy expenditure, we progressively reduced the rate
of ATP consumption. Figure 3 shows the RQ profiles computed during the fast to fed
transition for the Recon2.2, Recon3D and MitoCore models, while the upper bound on
the ATPH reaction was decreased within the range of 1-200 mM/gDw /h. The RQ values
were sensitive to changes in the ATP consumption rate in all models tested: as the upper
bound of the ATPH reaction decreased, RQ converged to a value of 1.0 in both the fast and
fed conditions, as shown in Figure 3, indicating that the models prioritized carbohydrates
as energy substrates in low energy expenditure conditions. Reduced ARQ), defined as the
difference between the RQ in the fast state and in the fed state, is a phenotype associated
with metabolic inflexibility.
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Figure 3. RQ is sensitive to changes in ATP hydrolysis rate. RQ values during the fast to fed transition
simulated for different rates of ATP hydrolysis in Recon2.2 (A), Recon3D (B) and MitoCore (C). The
upper bound of the objective reaction (ATPH) was progressively decreased from 200 mM/gDw /h
(blue line) to 35 mM/gDw /h (red line). In all models, as ATP hydrolysis rate decreases, RQ values
approaches a constant value (RQ = 1.0) faster during the fast to fed transition.



Metabolites 2021, 11, 695

50f12

The tipping point for this metabolic inflexibility phenotype is reached when the ATP
consumption constraint becomes lower than the ATP generated in the fed state. The
precise energy consumption level below which metabolic inflexibility phenotype develops
is determined by the ATP yield for glucose and palmitate, and therefore is different for each
of the three models (Figure 2B). A second tipping point is reached when ATP consumption
becomes lower than the ATP generated in the fast state. After this point, the models
exclusively employ glucose for ATP production.

Standard flux balance analysis (FBA) simulations are known not to generate a single
unique solution. We observed fluctuations in the predicted RQ value, as shown in Figure S2,
which were caused by unbalanced H' in transport reactions and by the consequent rise
in unfeasible reaction cycles in the flux distribution. After the imposition of further
constraints on transport reactions between the cytoplasm and external compartments and
the application of parsimonious FBA (PFBA) [18], the predicted RQ returned to the expected
range. The objective values (i.e., the flux through the ATPH reaction) achieved over the
course of the PFBA simulations for each of the three models are shown in Figure S3.

Despite the differences observed in the predictions of the three models, we can also
observe a common pattern in the response of each model. Predicted RQ value is sen-
sitive to changes in the upper bound of the ATPH reaction, i.e., sensitive to levels of
energy expenditure [19].

2.3. RQ Changes Are Independent from Intake Fluxes

Our findings show that fuel utilization is dependent on energy expenditure, i.e., RQ
is dependent on the upper bound of the ATPH objective reaction. To demonstrate that
RQ changes are not due to artificial constraints on intake fluxes, we kept the bounds
for palmitate and glucose intake fluxes constant while progressively reducing the upper
bound of the ATPH reaction. In this simulation, the upper bound for glucose uptake
was kept at 4.5 mmol/gDw /h, while the upper bound on palmitate intake flux was kept
at 0.38 mmol/gDw /h. This simulation was performed using parsimonious constraints
(PFBA).

RQ change is independent of substrate intake fluxes (Figure 4). We inspected the
PFBA solutions relative to the two extreme conditions (i.e., for ATPH UB = 100 and ATPH
UB = 1) and visualized these flux distributions using the Minerva software [20]. Despite
the constraints on boundary reactions, we could still detect unfeasible loops in the PFBA
solution (Figure S4A-C) and the presence of proton leaks between the cytoplasm and
mitochondrial matrix.
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Figure 4. RQ changes are independent on intake fluxes. Predicted RQ for varying levels of ATPH
upper bound. Intake bounds for palmitate and glucose were kept constant. Glucose uptake upper
bound: 4.5 mmol/gDw /h. Palmitate uptake upper bound: 0.38 mmol/gDw /h.
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2.4. Resistance Training Increases Metabolic Flexibility

We established the importance of ATP phosphodiester bond hydrolysis rate for fuel
selection in a set of generic human metabolic reconstructions and we hypothesized that low
energy expenditure could be one of the major contributors to the development of metabolic
inflexibility. Now, we ask whether a physical activity intervention, such as a resistance
training program, can restore metabolic flexibility. To answer this question, we used a set
of patient-derived models of skeletal muscle metabolism in older adults [17]. These models
were developed using longitudinal gene expression data collected from skeletal muscle
of the same individuals before and after a resistance training program. Therefore, they
capture the long-term metabolic adaptations in energy metabolism that follow a metabolic
intervention, such as a 12-week training program, and they can be used to investigate the
effect of a non-nutritional intervention on metabolic flexibility.

In high energy expenditure conditions (ATPH upper bound = 1000 mM/gDw /h),
all 24 models predicted identical RQ values (Figure 4A), meaning that they used the
same mixture of substrates to produce ATP. Conversely, when ATPH was constrained to
simulate a low energy expenditure condition (ATPH upper bound = 35 mM/gDw /h), each
individual model predicted a different RQ profile (Figure S1). In low energy expenditure
conditions, much less ATP was needed to fulfill the cellular objective and the models could
use different mixtures of substrates to generate ATP. Trained models predicted a lower
average RQ (Figure 4B), and a higher utilization of OXPHOS for ATP production (Figure 5B)
during the fasting state in low expenditure conditions (ATP UB = 35 mM/gDw /h).Three
untrained models (id: 4, 5, 11) predicted no flux through the mitochondrial adenine
nucleotide translocator (ANT) reaction (reaction ID: ATPtm); therefore, they were not
included in Figure 5.

1é\overage RQ, Trained vs. Untrained, HighEE Average RQ, Trained vs.Untrained, LowEE
’ —— Trained —— Trained
0.95 Untrained 0.95 Untrained
0.90 O'0‘90
2 *0.85

0.85 ’
0.80

0.80
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Figure 5. Simulations in low energy expenditure conditions show heterogeneity of individualized
models’ predictions. RQ values predicted by a set of 24 patient-derived models of skeletal muscle
metabolism. (A) High energy expenditure conditions (ATPH bound = 1000 mM/gDw /h). All models
predict the same RQ values during the fast to fed transition and have overlapping RQ profiles.
(B) Comparison of trained vs. untrained subgroups. Low energy expenditure condition (ATPH
upper bound = 35 mM/gDw /h). In this condition, untrained models predicted lower RQ values
on average and low variability between the fast and fed conditions than trained models. These two
phenotypes are associated with metabolic inflexibility.

Higher RQ and lower flux through OXPHOS in fasting conditions are phenotypes asso-
ciated with insulin resistance and metabolic inflexibility [21]. Resistance training has been
proved to be effective in restoring mitochondrial function in insulin resistant and diabetic
subjects [22,23]. The results of this simulation show that a 12-week training intervention
was effective in increasing utilization of the OXPHOS pathway in the skeletal muscle of
older individuals. The large variability in OXPHOS utilization, especially among the un-
trained models, suggests that these individuals could have had different metabolic health
before the beginning of the training program, and that some of them could have been more
metabolically flexible than others. Our previous study on the same set of patient-derived
models arrived at similar conclusions [17]. Without supplementary information regarding
the lifestyle of these individuals before and during the study, for example, data about their
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nutrition or previous fitness status, we cannot speculate further. Therefore, this observation
underlines the importance of collecting information about the lifestyle of the participants
along with molecular data in systems medicine studies. Taken together, these results not
only confirm that patient-derived models developed from longitudinal gene expression
data can capture long-term metabolic adaptations to lifestyle change interventions, but
also support the hypothesis that energy expenditure is a main determinant of metabolic
flexibility and that physical activity can improve metabolic health in older adults.

3. Discussion

Metabolic flexibility is an important integrative biology concept which can help us
understand the link between sedentary behavior, overnutrition and the dysregulation
of energy metabolism and is an important part of metabolic health. Knowledge of the
determinants of metabolic flexibility will help develop treatments to maintain and restore
metabolic health in pathologies associated with metabolic inflexibility, such as insulin
resistance, Type 2 diabetes, cardiovascular diseases, and aging.

Previous computational models of metabolic flexibility focused on nutritional intake
as a determinant of metabolic flexibility, while the effect of energy expenditure on fuel
choice remained understudied. In this study, we propose a new description of metabolic
flexibility in genome-scale metabolic models, which enables the study of the interactions
between physical activity and nutrition.

Patterns in fuel oxidation are determined not only by dietary intake but also by energy
expenditure. We constrained the flux through the ATPH to reproduce a condition of lower
energy expenditure. Limiting the flux through this reaction had a large effect on RQ and
was sufficient to reproduce phenotypes associated with metabolic inflexibility, such as a
lower ARQ between the fast and fed states.

When the flux through the ATP phosphodiester bond hydrolysis (ATPH) reaction was
progressively reduced, RQ values progressively increased, while the difference between
RQ in the fast and fed condition decreased. Since low energy expenditure is one of the
main determinants of metabolic inflexibility, a physical activity intervention should restore
metabolic flexibility even in absence of a nutritional intervention. To verify this hypothesis,
we simulated the fast to fed transition in a set of patient-derived models of skeletal muscle
metabolism that describe the metabolism of 12 older individuals before and after a 12-week
resistance training program [24]. In high energy expenditure conditions, all models had
the same response during the fast to fed transition. In low energy expenditure conditions
(ATPH upper bound = 35 mM/gDw/h), trained models showed an increased utilization of
the oxidative phosphorylation (OXPHOS) pathway for energy production (Figure 6). These
results show that patient-derived models can capture some of the long-term metabolic
adaptations resulting from a metabolic intervention, supporting the idea that these models
can be used to improve our understanding of individual responses to diet and exercise.

Constraint-based metabolic models are useful tools to investigate the interactions
between physical activity and nutrition, and how they influence metabolic health and the
aging process. Nevertheless, there are still important inconsistencies in the predictions of
different models. FBA predictions are heavily biased by the reaction composition of the
models and by the boundary constraints the modelers apply. This fact is often overlooked
in genome-scale metabolic modeling studies. Unfortunately, this is necessary due to the
characteristics of the genome-scale modeling framework itself, especially when dealing
with larger human models such as Recon2.2 and Recon3D, which contain a large number of
boundary reactions. Leaving these models under-constrained often causes the appearance
of physically unfeasible and physiologically unrealistic flux cycles in the FBA solution.
We applied constraints to boundary reactions and used methods such as parsimonious
FBA (PFBA) to reduce this effect. The differences that can be observed in the results are
also due to the fact that different models have different focuses: MitoCore is limited to
central carbon metabolism, Recon models are “generic” metabolic reconstructions, and
skeletal muscle models collectively represent a tissue-specific metabolism. It is important
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to remember that none of these models are “true”; they are different approximations of
human physiology.
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Figure 6. Increased utilization of oxidative phosphorylation (OXPHOS) in trained models in response
to low energy demands. Percentage of total cellular ATP produced was measured as flux through
the adenine nucleotide translocator (ANT) reaction (reaction ID: ATPtm). Twenty-one models were
included in the analysis (N trained = 12, N untrained = 9). (A) High energy expenditure. (B) Low
energy expenditure. In low EE conditions, trained models produce a higher percentage of total ATP
from OXPHOS than untrained ones. Untrained models show a larger variance in the percentage of
total ATP obtained from OXPHOS than untrained models.

However, we can identify properties that are common to all models: RQ predictions
are dependent on the upper bound of ATPH reactions, even when palmitate and glucose
intake fluxes are kept constant. Moreover, RQ change is independent of endocrine (insulin)
signaling and allosteric regulation, which cannot be described in GSMMs. Metabolic
flexibility thus appears to be an intrinsic property of the metabolic network, which is
determined not only by intake fluxes but also by energy expenditure and by the model-
specific ATP yields of relevant substrates.

In principle, the calculation of RQ from reaction stoichiometry is straightforward. In
practice, it is difficult to obtain reproducible results in RQ simulations across different
metabolic models.

These simulations are challenging not only because of their sensitivity to ‘technical’
variability, for example, the use of a different solver software, or due to different model
composition and constraints on intake fluxes, but also because they are sensitive to "biolog-
ical" variability, for example, different nutrition and energy expenditure habits, or different
genetic backgrounds among different individuals. It may be difficult to distinguish "techni-
cal" variability from "biological" variability. Several model inconsistencies that biased the
results were addressed, as discussed in Appendix A. To ensure the reproducibility of the
results, model composition and simulation parameters such as reaction bounds should be
standardized as much as possible.

Metabolic flexibility is an important health concept that integrates nutrition and
energy expenditure. Expanding this concept to any response of fuel metabolism to external
stressors, such as hot and cold temperatures, traumatic events such as illness, injuries or
surgeries, and psychological stress [25] could reveal more details about how these factors
interact in many pathological and physiological conditions, including aging.

4. Materials and Methods
4.1. Development of Patient-Derived Models of Skeletal Muscle Metabolism in Older Adults

Patient-derived models of skeletal muscle metabolism used in this study were devel-
oped using gene expression data [24], in combination with a template human metabolic
network reconstruction, Recon2.2 [14]. Gene expression data were used to identify model
reactions with high experimental support. Gene expression data were converted into
an “ experimental confidence” score, ranging from 3 (high confidence) to —1 (negative
confidence) for each reaction in the Recon2.2 model. Microarray probeset intensity values
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were log-transformed and sorted by decreasing expression values. When two or more
probes mapped to the same gene, their expression values were averaged. Using these
data, together with the gene—protein reaction annotations included in the Recon2.2 model,
we computed the reaction-level confidence score which was used as input for the model-
building algorithm. The CORDA algorithm [26] generated models which included all the
high-confidence reactions and a minimal amount of lower-confidence reactions, such that
the resulting networks were fully connected and that all the reactions could carry flux.
After all the patient-derived models were drafted, they underwent substantial manual
curation and validation. Details on the development and validation of the patient-derived
models used in this study are presented in [17].

4.2. Simulating the Fast to Fed Transition in Constraint-Based Models

In this study, we investigate the effects of physical activity on metabolic flexibility
using a set of different models, including Recon2.2, Recon3D, MitoCore, and 24 patient-
derived models of skeletal muscle metabolism based on Recon2.2. Recon models are known
to have several shortcomings: for example, the involvement of FAD in beta oxidation
and the electron transport chain are not correctly represented. Successive studies made
substantial corrections to these models [27]. The theoretical ATP yield for 1 mM palmitate
(C16:0) is 104 mM/gDw /h. Recon2.2 predicts a yield of 106.75 mM/gDw /h, while the two
corrected model version presented in [27] predict a yield of 108.25 and 108.24 mM/gDw /h,
respectively. Since the discrepancy between the theoretical value and the predicted yield
increased after the corrections, we believe that these corrections are not relevant for the
particular substrates used in our simulations. For this reason, we decided to employ the
“base” Recon2.2 model in this study. In addition, Recon2 was known to generate ATP
without the import of any carbon substrate. This issue was addressed in Recon2.2 by
introducing a new compartment to the model (the mitochondrial intermembrane space).
The possible unaccounted influx of carbon substrates via sink reactions, which could also
be responsible for this behavior, was also addressed by constraining the flux through
these reactions to zero. All transport reactions between the cytoplasmic and external
compartments of the model were constrained (i.e., upper and lower bound set to zero).
Only the reactions relevant to the intracellular transport of glucose (Recon2.2 reaction id:
GLCGLUT?2, GLCt2), palmitate (reaction id: HDCAFAPMItc), oxygen (reaction id: O2t),
carbon dioxyde (reaction id: CO2t), and water (reaction id: H20t) were left unconstrained.

To identify the fuel mix utilized by the models during the fast to fed transition, we
computed the Respiratory Quotient (RQ) using the following relation:

RQ = CO§" /OF' (1)

In fasting conditions, the plasma concentration of glucose is low, and skeletal muscle
uses fatty acids as an energy substrate. After a meal, the plasma concentration of glucose
rises, and insulin is secreted by the pancreas in response. Insulin signals to skeletal muscles
and to other tissues to use glucose for energy production. The oxidation of fatty acids such
as palmitate is inhibited, and fatty acids are instead stored in adipocytes as energy reserve.
This is known as the fast to fed transition.

We reproduced this transition by progressively changing the upper bound of the
glucose and palmitate exchange reactions. In the fasted condition, the maximal influx of
glucose and palmitate was restricted to 0.5 mM/h and 0.38 mM/h, respectively. In the fed
condition, the maximal influx of glucose and palmitate was restricted to 4.5 mM/h and
0.034 mM/h, respectively. All other exchanges, except water and protons, were deactivated.
The LP solver chose a combination of palmitate and glucose from the medium to fulfill
the cellular objective. By maximizing ATP consumption instead of ATP production, the
models generated ATP using the optimal pathway, thus eliminating a potential source of
bias. To improve the stability of the solutions, we decided to employ parsimonious flux
balance analysis (PFBA) [18]. This extension of classical FBA identifies the flux distribution
that fulfils the objective while minimizing the number of reactions that carry flux. By
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constraining the flux through the ATPH reaction, we simulated a condition of reduced
energy expenditure. This allowed us to simulate the effect of reducing energy expenditure
on fuel choice. (Figure 1B). The analyses were performed in Python 3.7 using the Cobrapy
package (v. 0.22) [28]. The Gurobi solver (v. 9.1) was used to perform flux balance analysis.

5. Conclusions

A new description of the fast to fed transition enables the investigation of the in-
teractions between energy expenditure and fuel choice using constraint-based models.
Even though it is limited to the analysis of glucose and palmitate metabolism, our model
is rich enough to describe metabolic flexibility. Recon2.2 and Recon3D were improved
by accounting for unbalanced protons in glucose transport reactions. Simulating low
energy expenditure conditions reproduced phenotypes linked to metabolic inflexibility
in several human metabolic reconstructions. Predicted RQ changes are independent of
substrate intake fluxes. Patient-derived models of skeletal muscle metabolism can capture
the metabolic adaptations following a resistance training intervention and can be used to
investigate the variability in the individual responses to metabolic interventions. Physical
activity can restore metabolic flexibility.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10

.3390/metabo11100695/51; Figure S1: Individual RQ profiles of 24 patient-derived models of skeletal

muscle metabolism in older adults in low energy expenditure conditions (ATPH UB =35 mM/gDw /h),
Figure S2A-C: Visualization of unstable RQ predictions for Recon2.2, Recon3D and MitoCore models

in low energy expenditure conditions (ATPH UB < 35 mM/gDw /h) when using classical FBA,
Figure S3A—C: Flux through ATPH (objective reaction) during the fast to fed transition for Recon2.2,
Recon3D and MitoCore models (1000 > ATPH UB > 1 mM/gDw /h), Figure S4A-C: Visualization of

the PFBA flux distributions predicted by Recon2.2 for constant intake fluxes and varying ATPH UB

levels. A: ATPH UB = 100, B: ATPH UB = 1, C: Superposition of the two flux distributions for easier

comparison.
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RQ Respiratory Quotient

ATPH ATP phosphodiester bond hydrolysis reaction
OXPHOS Oxidative phosphorylation

UB Upper bound
gDw Grams of dry weight
Appendix A

Both MitoCore and Recon3D models required modifications before they could give
RQ predictions in the expected range. By default, MitoCore has an upper bound constraint
of 0.9 mM/gDw /h on the reaction GLCtl1r (glucose transporter). This resulted in a non-
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smooth trajectory in the RQ profile at higher ATPH UB values and in a "flat" RQ profile at
lower ATPH UB values:
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The constraints on this reaction were removed, yielding the predictions presented in
Figure 2. Recon3D model gave inconsistent predictions with higher RQ values than ex-
pected, for example, converging at RQ = 1.015:
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Recon2.2 and Recon3D model contain two alternative reactions for Complex IV of the
electron transport chain (cytochrome oxidase), (IDs: CYOOm3i and CYOOm?2i).
CYOOm3i:7.92h;, + o2y + 4.0focytC,; == 1.96hy0,; + 4.0ficytCy, + 0.02025,, + 4.0h;
CYOOm2i:8.0 hy; + 025, + 4.0 focytC,, == 2.0hy0,, + 4.0 ficytC,, + 4.0 h;.

The two reactions have similar formulations, but CYOOm3i also produces 02s (reactive
oxygen species, ROS). In model 2, 02s are converted into 02 + h202 by the reaction superox-
ide dismutase (ID: SPODM). The 02 produced by SPODM is then reused by CYOOm3;,
accounting for 1% of the input flux. This means that the 02 influx from the external com-
partment into the cytosol (which is measured to compute RQ) will be 1% smaller, causing
an increase in the RQ value. When the CYOOm3i reaction was deactivated in Recon3D,
the model predictions returned to the expected range. In Recon2.2 the two reactions are
associated with different genes. During the construction of the skeletal muscle models,
which are based on Recon2.2., only one of the two reactions (CYOOm3i) was inherited by
the “child” models [17].
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