

Supplemental Information

Iron-bound lipocalin-2 from tumor-associated macrophages drives breast cancer progression independent of ferroportin

Christina Mertens¹, Matthias Schnetz¹, Claudia Rehwald¹, Stephan Grein², Eiman Elwakeel¹, Andreas Weigert^{1,3}, Bernhard Brüne^{1,3}, Michaela Jung^{1*}

Figure S1: 3D tumor spheroid model using stable Lcn-2R knockdown MCF-7 and MDA-MB-231 breast cancer cells. Knockdown efficiency and maintenance of the knockdown was routinely probed at mRNA (Suppl. Fig. S1a, b) and protein level (Suppl. Fig. S1c, d)

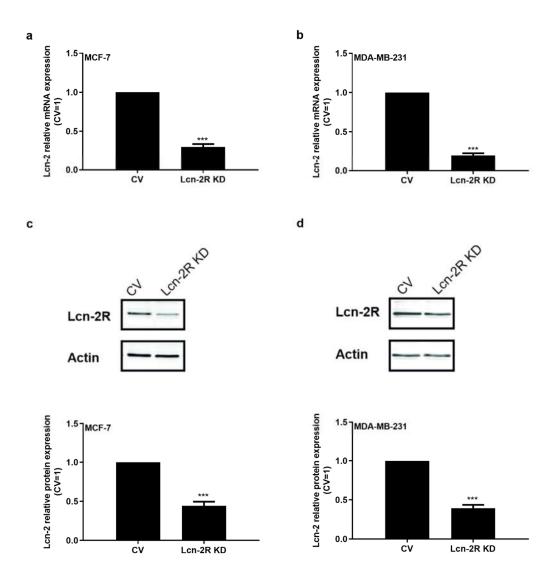
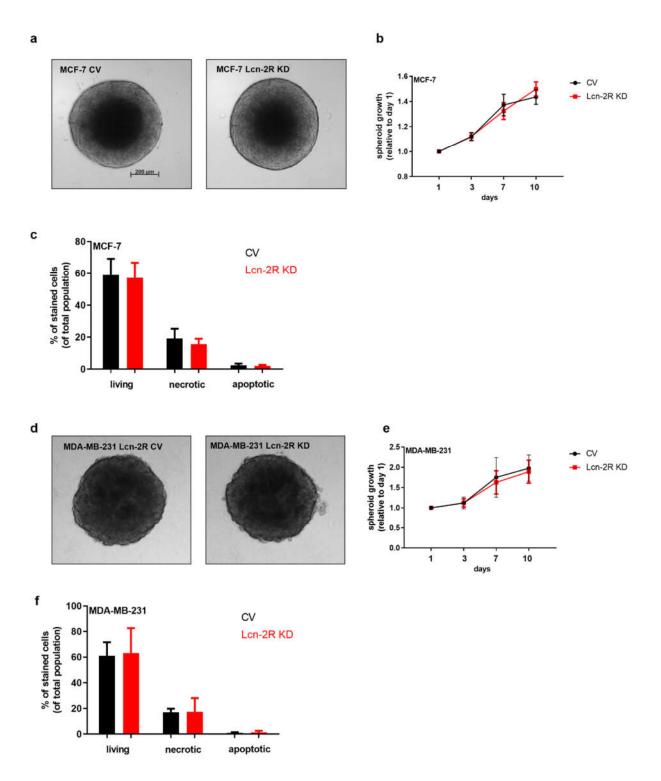
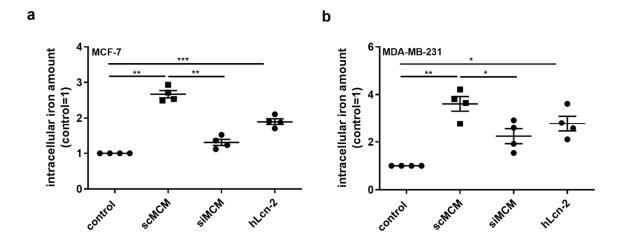

Figure S2: Basal knockdown effects on tumor spheroid growth

Figure S3: Iron levels of MCM-treated tumor cells

Supplemental material and methods: Generation of M Φ -conditioned medium (MCM) and MCM-stimulation of breast cancer cells


Supplemental references

Metabolites 2021, 11, 180 2 of 5


Supplemental Figure S1. 3D tumor spheroid model using stable Lcn-2R knockdown MCF-7 and MDA-MB-231 breast cancer cells. (a-d) Knockdown efficiency and maintenance of the knockdown was routinely probed at (a, b) mRNA and (c, d) protein level. Graphs are displayed as means \pm SEM. Statistically significant differences were calculated after analysis of variance (ANOVA) and Students t-test, with ***p < 0.001.

Metabolites **2021**, 11, 180 3 of 5

Supplemental Figure S2. Basal knockdown effects on tumor spheroid growth. (a) 3D tumor spheroid model using stable Lcn-2R knockdown MCF-7 and MDA-MB-231 breast cancer cells. Representative pictures out of at least 4 independent experiments are given. (b, c) Spheroid growth of Lcn-2R knockdown (KD) cells compared to infiltrated control virus (CV)-transduced cells, measured by the spheroid diameter for each time-point. (d, e) Measurement of cell death and survival by Annexin V/PI staining. Graphs are displayed as means \pm SEM. Statistically significant differences were calculated after analysis of variance (ANOVA) and Students t-test.

Metabolites 2021, 11, 180 4 of 5

Supplemental Figure S3. Iron levels of MCM-treated tumor cells. (a) MCF-7 and (b) MDA-MB-231 breast cancer cells were stimulated with M Φ -conditioned medium (MCM) from scRNA-treated control M Φ or Lcn-2-knockdown M Φ (siMCM) for 24 h. Supernatant of unstimulated M Φ served as control. Recombinant iron-loaded Lcn-2 (1 µg/ml) served as positive control. Iron levels were measured by AAS and are represented as relative iron levels with respect to untreated control cells. Graphs are displayed as means \pm SEM. Statistically significant differences were calculated after analysis of variance (ANOVA) and Students t-test, with *p < 0.05, **p < 0.01, ***p < 0.001.

Metabolites **2021**, 11, 180 5 of 5

Supplemental material and methods

Generation of $M\Phi$ -conditioned medium (MCM) and MCM-stimulation of breast cancer cells

Human monocytes were isolated from commercially available buffy coats (DRK-Blutspendedienst Baden-Württemberg-Hessen, Frankfurt, Germany) using Ficoll-Hypaque gradients (PAA Laboratories, Solingen, Germany). Monocytes were differentiated into primary human MΦ with RPMI 1640 containing 5% AB-positive human serum (DRK-Blutspendedienst) for 7 days and achieved approximately 80% confluence.

GenMute® transfection reagent (SignaGen, Offenbach, Germany) was used according to the manufacturer's instructions to knockdown Lcn-2. 50 nM LCN-2 siRNA (Qiagen, Hilden, Germany) was transfected into primary human MΦ. A non-targeting, scrambled siRNA (sictrl; Qiagen) was used as control.

 $24 \, h$ prior to stimulation, cells were serum-starved. According to our previous studies [1, 2, see below], $20 \, ng/ml$ IL-10 (Peprotech, Hamburg, Germany) was used for $24 \, h$ to induce an iron-release M Φ phenotype with enhanced secretion of iron-loaded Lcn-2. Conditioned media of polarized M Φ (MCM) were collected, centrifuged at $1000 \, x$ g for 5 min at 4° C, and aliquots were stored at -80° C until further use. Supernatant of unstimulated M Φ served as control.

Human MCF-7 and MDA-MB-231 breast cancer cells were maintained in DMEM medium (Thermo Fisher Scientific, Dreieich, Germany), supplemented with 10% fetal bovine serum (Capricorn Scientific, Ebersdorfergrund, Germany), 100 U/ml penicillin, and 100 μ g/ml streptomycin (Sigma-Aldrich, Darmstadt, Germany). Cells were cultivated at 37°C in a humidified atmosphere with 5% CO₂. 24 h prior to stimulation, cells were serum-starved. We stimulated breast cancer cells with MCM from scRNA-treated M Φ (scMCM) or siLcn-2- M Φ (siMCM) for 24 h. Supernatants from unstimulated M Φ served as control. Treatment with recombinant iron-loaded Lcn-2 (hLcn-2; 1 μ g/ml) served as positive control. Afterwards, cells were washed and harvested and the cell lysates were used to quantify intracellular iron levels via AAS measurements.

Supplemental References:

- 1. Schnetz M, Meier JK, Rehwald C, Mertens C, Urbschat A, Tomat E, Akam EA, Baer P, Roos FC, Brune B *et al*: The Disturbed Iron Phenotype of Tumor Cells and Macrophages in Renal Cell Carcinoma Influences Tumor Growth. *Cancers (Basel)* 2020, **12**(3).
- 2. Mertens C, Akam EA, Rehwald C, Brune B, Tomat E, Jung M: Intracellular Iron Chelation Modulates the Macrophage Iron Phenotype with Consequences on Tumor Progression. *PLoS One* 2016, **11**(11):e0166164.