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Abstract: The past decade has seen a large influx of work investigating time of day variation
in different human biofluid and tissue metabolomes. The driver of this daily variation can be
endogenous circadian rhythms driven by the central and/or peripheral clocks, or exogenous diurnal
rhythms driven by behavioural and environmental cycles, which manifest as regular 24 h cycles
of metabolite concentrations. This review, of all published studies to date, establishes the extent
of daily variation with regard to the number and identity of ‘rhythmic’ metabolites observed in
blood, saliva, urine, breath, and skeletal muscle. The probable sources driving such variation, in
addition to what metabolite classes are most susceptible in adhering to or uncoupling from such
cycles is described in addition to a compiled list of common rhythmic metabolites. The reviewed
studies show that the metabolome undergoes significant time of day variation, primarily observed
for amino acids and multiple lipid classes. Such 24 h rhythms, driven by various factors discussed
herein, are an additional source of intra/inter-individual variation and are thus highly pertinent to all
studies applying untargeted and targeted metabolomics platforms, particularly for the construction of
biomarker panels. The potential implications are discussed alongside proposed minimum reporting
criteria suggested to acknowledge time of day variation as a potential influence of results and to
facilitate improved reproducibility.

Keywords: circadian rhythms; diurnal rhythms; metabolomics; metabolite rhythms; blood; urine;
saliva; breath; skeletal muscle

1. Introduction

A favoured application of metabolomics is that of metabolic phenotyping, typically
for biomarker discovery and better understanding of disease pathology within the context
of the functions of metabolites observed in human metabolomes [1,2], with such studies
applied to the most prevalent chronic diseases within the human population such as cancer,
diabetes and cardiovascular disease [3]. However, the concentration of metabolites in
human biofluids and tissues is not static and varies across timescales of seconds to decades,
driven by biological functions. Observed variation between such studies is inevitable due
to biological variation within and between subjects as a result of genotype, environment,
lifestyle, and the influence of biological rhythms, some of this variation being mitigated
by control and monitoring of participant behaviour/diet/environment before and/or
during the study [4]. In addition to biological variation, there is also analytical variation,
resulting from sample selection/preparation [4,5], sample degradation as a result of storage
conditions and freeze-thaw cycles [6–8], instrument variation [9] and varied methods of
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data pre-treatment, statistical analysis and modelling [5,10,11]. Standard practices in the
field such as quality control processes, batch correction, data normalisation, and matched
cohorts mitigate or report some of this variation [1,11] but the extent and rigor in which
such practices apply vary from study to study, all of which impact the analysis and resulting
biological interpretation [12]. This contributes to the ‘reproducibility crisis’, i.e., a recurring
inability for external groups to reproduce published results, culminating in numerous
independent research teams achieving conflicting results or inadvertently promoting false-
positive findings stemming from replicating effects and bias [10,13–15]. Considine [10]
puts forward an informed and comprehensive picture of the challenges of reproducibility
and the implications for metabolic profiling and biomarker discovery. However, a key
variable which may explain some variation in the data within and between studies is
repeatedly overlooked; that of circadian control and diurnal variation which regulate
24 h biological rhythms including the metabolome. This results in significant changes to
observed concentrations of a range of metabolites and hormones dependent on the time of
day, with a well-known example being cortisol [16], with proline and leucine being further
examples of highly rhythmic metabolites. Studies discussing these and further rhythms in
metabolite concentrations and the context of these observations are discussed below. A
number of detailed reviews and tutorials for biomarker discovery have also overlooked
circadian control and diurnal variation of the metabolome as a consideration or influencing
factor in study design and sample collection [5,17–22], with others only acknowledging
circadian control as influencing metabolism in passing [23,24] and fewer still suggesting
that it be considered in study design [25].

The omission of time of day variation as an important feature in metabolomics study
design likely results from the fact that work characterising circadian and diurnal influence
through such platforms has almost exclusively occurred over the past decade. The growing
body of circadian metabolomics research should be of interest to the metabolomics commu-
nity due to identifying metabolites that exhibit significant 24 h rhythmic behaviour as well
as detailing the context and conditions in which this variation is observed. Such findings
may prove informative when constructing or interrogating a biomarker panel, dissecting
sources of inter-individual variation within studies as well as opening an additional line of
enquiry when conflicting results arise between studies. It is timely that this body of work is
thoroughly reviewed to establish the current knowledge base and consider the implications
with regard to reproducibility especially in the construction of biomarker panels.

Whilst an in depth knowledge of chronobiology is not required to appreciate the
findings of the studies discussed within this review, a general understanding of biological
rhythms, specifically circadian and diurnal rhythmicity, as well as internal biological clocks,
their relationship with metabolism, and how they can be monitored will offer some insight
into study design and the importance of context with regard to how results were collected.
As such, a brief overview and further reading are detailed below.

1.1. Key Concepts of Circadian Biology

How circadian rhythms propagate and exert temporal control over physiological
processes is reviewed elsewhere [26]. In brief, circadian rhythms are endogenous, approx-
imately 24 h oscillations in biological processes; such rhythms are generated by internal
clocks, which are present in almost every cell of the body. On the cellular level, the ‘clock
machinery’ is comprised of a transcription–translation autoregulatory feedback loop of
core ‘clock genes’, which generate rhythmic outputs, e.g., the rhythmic expression of clock-
controlled genes (CCGs), in turn conferring rhythmicity to the transcriptome, proteome
and ultimately the metabolome. By definition, circadian rhythms are temperature com-
pensated, resulting in no change to the rate of circadian oscillations across a significant
physiological range of temperatures [27]. Moreover, biological clocks have evolved to be
entrained (synchronised) by external factors, referred to as Zeitgeber, such as light/dark
or feeding/fasting cycles, thus aligning themselves to resonate (match) with the Earth’s
natural daily and seasonal cycles. Notably, circadian rhythms persist in free-running con-
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ditions, i.e., in the absence of Zeitgeber, thereby demonstrating their endogenous origin.
An extensive body of research in animal models has not only established the cellular
molecular machinery of the clock, but also the interconnectivity of all clocks within an
organism. The mammalian timing system is typically divided into a central pacemaker in
the ventral hypothalamus, i.e., the suprachiasmatic nuclei (SCN), and peripheral clocks
in all other tissues of the nervous system and the body. The former receives light input
from the eyes and, through neuronal and humoural signals, interacts with the peripheral
clocks; with the SCN portrayed as interacting with all other clocks in the body, much like
a conductor of an orchestra [28]. Furthermore, animal models have also demonstrated a
strong link between the central circadian system, metabolism, and metabolite rhythms.
Peripheral clocks possess some degree of autonomy. However, maintenance of ‘full cir-
cadian function’ relies on inter-clock signals between peripheral clocks and the SCN [29].
As described above, the clock machinery is capable of regulating metabolic processes, yet
in turn, metabolites as well as hormones are capable of feeding back and regulating the
core clock machinery and interfacing between peripheral/central clocks [30]. This interface
manifests as temporally correlated metabolic processes, reflected by temporally correlated
metabolites, across various tissues as demonstrated in mice [31,32].

Perturbations to the metabolome, potentially brought about by nutrient challenge or
time restricted feeding, can influence the metabolism–clock interface resulting in loss of
temporal correlation of metabolites between tissues or alterations in metabolite rhythms
and, in specific instances, altered rhythms of core clock genes [31,33]. Desynchrony between
peripheral clocks (circadian misalignment), potentially invoked by aberrations in the
metabolism–clock interface, has been linked to numerous chronic conditions and metabolic
disorders, with circadian-controlled genes being enriched amongst disease-associated
genes vs. non-circadian-controlled genes [34]. Such diseases associated with circadian
misalignment include hormone-dependent cancer such as breast and prostate cancer in
shift workers [35], coronary heart disease [34,36], neurological disorders and negative
impacts on mental health and well-being [37], in addition to metabolic disorders such
as diabetes [38], all of which have an increased prevalence in shift workers according
to epidemiological evidence available [36,39]. Predisposition and progression of these
conditions appear to be underpinned by key changes in metabolism driven by circadian
misalignment, such as increased insulin resistance and perturbed glucose metabolism
and energy expenditure being core risk factors for developing type 2 diabetes and/or
cardiovascular disease [40]. The intrinsic link between metabolism and the circadian
system, as demonstrated in animal models, and the epidemiological evidence emphasising
the clinical relevance of this research has likely spurred on circadian studies in humans,
employing metabolomics.

Human circadian rhythms can be identified via constant routine studies (gold-standard
protocol), controlling and minimising the influence of Zeitgeber. Specifically, ambient con-
ditions such as light, temperature, posture, activity, wakefulness, and diet of participants,
which otherwise may mask circadian rhythms, are kept constant throughout this type of
study. How a constant routine protocol is designed and typically employed is described
in detail by Duffy & Dijk [41], with further details on the process of entrainment and the
nature of un-entrained (free-running) rhythms provided in [42,43]. Human studies, such
as those discussed below, typically employ small but highly controlled study groups to
minimise intra- and inter-subject variation and restrict confounding factors which may
otherwise mask the rhythms being observed.

The circadian rhythms observed in constant routine conditions will differ in their
phase (timing) and amplitude between individuals, primarily as a result of their genetics,
age, and sex. Even if samples are taken at the same social time, e.g., 08:00 h, participants will
likely express variation in the phase of their individual circadian rhythm; the relationship
between the timing of an individual’s circadian rhythm and the timing of a Zeitgeber being
referred to as the phase angle of entrainment [44–46]. Much like the hands of an actual
clock revealing the current time of day there are (bio)markers that reveal the circadian
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clock’s phase, i.e., internal (biological) time. Widely used bona fide central clock phase
markers are salivary/plasma melatonin, urinary 6-sulfatoxymelatonin (aMT6s) and plasma
cortisol [47–49]; they are thought to reflect the timing of the SCN clock of an individual.
Biological rhythms with a period of 24 h that do not/are not known to meet the defining
principles of circadian rhythms, as outlined above, may be referred to as diurnal rhythms,
i.e., 24 h rhythms observable under entrained “real-life” conditions jointly driven by
exogenous factors, e.g., light/dark or feeding/fasting cycles, and the endogenous circadian
timing system. As a trivial example, consumption of xenobiotics such as caffeine could
lead to a 24 h rhythm peaking in the afternoon, as caffeine consumption stereotypically
occurs in the morning, and reaching a nadir overnight. However, such a rhythm would
not persist under constant conditions (no caffeine consumption) and thus is not circadian
but a diurnal, evoked rhythm. By contrast, 24 h melatonin and cortisol rhythms persist
under constant routine conditions and are thus deemed circadian. The terms should be
carefully employed to accurately reflect the conditions under which 24 h rhythms were
observed; a ~24 h cycle is not necessarily circadian—a common misinterpretation in the
literature. Example rhythms exemplifying classification as a circadian or diurnal rhythm
are provided in Figure 1 and real data demonstrating the influence of entraining agents
(e.g., meals, sleep/wakefulness) are provided in Figure 2.
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vies et al. [51] (B,C), Czeisler & Klerman [52] (D), and Chua et al. [53] (E). A,B,C: Comparative pro-
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h, 13:00 h, 19:00 h, and 22:00 h (snack). No significant difference observed in cortisol, a SCN-driven 

Figure 1. Mock data representation of two biological rhythms (e.g., metabolite rhythms) X (top) and Y
(bottom) under entrained conditions (left) and constant routine (right). Entrained conditions consist
of a light/dark cycle, meals at 08:00, 13:00, 19:00 h (shown by dashed vertical lines) and designated
sleep time between 23:00 and 07:00 h (shown by grey shading of x-axis). (Top-left): Metabolite X:
A rhythm with a regular 24 h period under entrained conditions may or may not be influenced
by Zeitgeber (e.g., wake/sleep). (Top-right): Metabolite X: The rhythm observed under entrained
conditions persists and maintains its 24 h periodicity under constant routine, the amplitude may
or may not change between the conditions, and the rhythm is considered circadian. (Bottom-left):
A rhythm with a more complex cycle, but regular 24 h period, and peaks correspond to mealtimes
under entrained conditions (08:00, 13:00, 19:00 h), suggesting some effect of feeding/fasting cycles.
(Bottom-right): The rhythm is significantly dampened in constant routine (does not persist), with
a regular period/amplitude no longer detectable. The rhythm of metabolite Y is not considered
circadian in nature, as it did not persist under constant routine conditions, and is classed as a diurnal
rhythm, i.e., a rhythm evoked by exogenous cycles such as feeding/fasting and sleep/wake.
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Figure 2. Comparative metabolite/hormone profiles under entrained conditions: sleep vs. prolonged
wakefulness (A–C), entrained vs. circadian constant routine conditions (D), and inter-individual
variation under constant routine conditions (E), reproduced from Honma et al. [50] (A), Davies
et al. [51] (B,C), Czeisler & Klerman [52] (D), and Chua et al. [53] (E). A,B,C: Comparative profiles
of cortisol, dodecanoylcarnitine (C12), and taurine under entrained light/dark conditions, sleep
(highlighted in black) vs. prolonged wakefulness (highlighted in grey), with meals provided at
07:00 h, 13:00 h, 19:00 h, and 22:00 h (snack). No significant difference observed in cortisol, a SCN-
driven hormone, between sleep conditions (A), peaks in measured intensity (y-axis) corresponding
to mealtimes observable in various lipids and amino acids (B,C), alongside statistically significant
perturbations during prolonged wakefulness vs. sleep [51]. D: Growth hormone rhythm observable
under entrained conditions (peak during sleep) but dampened under constant routine. E: Individual
rhythmic profiles of six participants showing inter-individual variation in lipid profiles (SM18:1/24:1),
with two individuals displaying an inversed rhythm (~12 h ahead/delayed) relative to the other
four participants.

Considering the broad context in which time of day variation can be observed, and
the implications that this may have for reproducibility between studies, we review all
original research to date on human participants that applied either an untargeted or
targeted metabolomics platform to observe time of day variation. Specifically, we have the
following objectives:

1. Establish the tissues in which time of day variation of metabolites have been observed,
or failed to be observed, and the extent to which the metabolome is influenced.

2. Establish the source(s) for this observed daily variation and, if applicable, which
metabolite classes are most susceptible.

3. Consider the implications of circadian/diurnal variation and the timing of sample
collection on biomarker discovery and how this may undermine their potential clinical
application.



Metabolites 2021, 11, 328 6 of 36

1.2. Literature Search—Parameters and Outcomes

Prior to starting the literature search, three database/search engines were selected
based on differing breadth of literature curation and indexing features to facilitate specific
searching. PubMed (NCBI) provides specific curation of biomedical literature alongside
subject headings (indexing) in the form of Medical Subject Headings (MeSH) terms for
improved specificity of returned literature from submitted searches. Web of Science was
selected for offering wider curation of literature, which may potentially not be included on
the MEDLINE database used by PubMed. However, Web of Science does not use subject
headings which may reduce search specificity vs. PubMed but still allows for Boolean
operators (e.g., and, or) to combine search terms. Lastly, Google Scholar was chosen
due to a lack of specific curation and similar search tools as Web of Science. Combined
together all three platforms were deemed more than adequate to return the majority of
relevant literature available, with further manual searching performed thereafter. Search
terms relating to the subject fields of interest were chosen and, where possible, matched to
MeSH terms—it was assumed that MeSH terms such as metabolomics likely correspond
to common key words associated with literature across databases. Various combinations
of search terms were trialled to acquire a search result that was considered broad in
terms of ‘hits’, i.e., tens to low hundreds, but not so broad as to be infeasible to read and
evaluate. Yielded literature from the search was counted as relevant based on the article
title, article keywords, or abstract broadly referring to metabolomics/metabolism and
circadian rhythms/chronobiology. Relevant literature collected from the database search
were subject to inclusion criteria to assess if they were capable of addressing the outlined
objectives, as stated above. Inclusion criteria consisted of three simple parameters, applied
in the following order:

1. The literature details original research, i.e., no derivative work such as reviews
2. The research studied human participants over a time course
3. Employed any metabolomics platform to analyse samples collected across the time

course.

After this assessment of relevant literature yielded from the database search, manual
searching was performed. Manual searching consisted of reading literature that met
inclusion criteria and checking reference lists which may refer to further relevant studies
(based on title/keywords/abstract) which would then be subject to inclusion criteria.
Further details on search parameters and outcomes are shown in Table 1.
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Table 1. Summary of literature search parameters and outcomes. Two separate searches were performed, with the first
search featuring ‘circadian’ as a key word (performed circa 21 April 2020) and the second search featuring ‘diurnal’ in lieu of
circadian (highlighted—light grey, performed circa 23 July 2020). The two searches were performed to encompass as much
literature as possible observing daily rhythms. On the first search, the search terms had to be reduced when using Google
Scholar due to insufficient ‘hits’ (n = 1 ‘hits’) resulting from excess search terms. Reduced hits on the second search when
using the phrases ‘diurnal’/’diurnal variation’ may stem from neither term corresponding to MeSH terms (for PubMed)
and potentially being uncommon key words associated with literature from other search engines reducing discoverability.
Manual searches consisted of looking for prior referenced work in collected literature that met inclusion criteria.

Met Inclusion Criteria *
Search Terms

Database/Search
Engine ‘Hits’

Relevant Papers
(Based on Abstract) Circadian

Studies
Diurnal
Studies

“Human(s)” “Circadian Rhythm OR Circadian
Clocks” “Metabolomics OR Metabolome” **

PubMed (NCBI) 70

133 6 19

Web of Science 52
“Metabolomic” “Circadian” “Rhythm”

“Human” “Chronobiology” Google Scholar 212

N/A Further manual
searches 13

PubMed (NCBI) 19

3 16

“Human(s)” “Diurnal Variation OR Diurnal”,
“Metabolome OR Metabolomics” *** Web of Science 28

“Metabolomic” “Metabolome” “Diurnal”
“Rhythm” “Human” “Chronobiology” Google Scholar 92

N/A Further manual
searches 0

123
(Majority duplicates

of prior search)

*A total of 29 novel papers met inclusion criteria, human studies employing a metabolomics platform taking multiple samples over a time
course** Search terms corresponding to MeSH terms; *** No MeSH terms corresponding to “Diurnal” OR “Diurnal variation”.

2. Literature Search—Results and Commentary
2.1. Blood

For the purpose of brevity, details relating to study design are not listed within the
main body of text unless relevant to the provided commentary. Instead, key aspects of
study design alongside results pertinent to the outlined objectives are summarised in tables
after each subsection. Subsections and summary tables appear in the following order: blood
(plasma/serum), urine, saliva, breath, and skeletal muscle. Furthermore, supplemental
material containing compiled lists of metabolites showing time of day variation, and the
context in which this variation took place, has been produced (Tables S1–S6) in addition to
an overview of observed time of day changes across the studies (Figures S1 and S2).

Blood is the most investigated biofluid assessed for time of day variation of the
metabolome, based on the outcome of the performed literature search, with 18 studies
discussed here. The collated literature implicated various factors contributing to time of
day variation (Table 2) and other findings of interest which are presented below as common
subthemes that we will carry forward, where applicable, to subsequent sections for the
other sample matrices.
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Table 2. A brief summary of study design, cohort details and results with regard to observed time of day variation of metabolites for relevant studies analysing plasma/serum.

Author(s) Assay/Platform Time Course Details Study Setting/Conditions Cohort Details
Rhythmic/Gradient

Metabolites/
Features Observed

Rhythmic/Gradient
Classes Primarily

Observed

Park et al., (2009) [54] Untargeted
1H NMR

Diurnal variation 24 h, 1 h
intervals between samples

‘Inpatient’
Standardised meals.

Consistent light/dark cycle

N = 10, 5 males
Age 22–83

BMI 18.5–32.6
34 Amino acids

Lipids (unidentified)

Ang et al., (2012) [55]

Untargeted
UPLC/Q-TOF MS

(Reversed
Phase)

Diurnal variation
(25 h, 3 h intervals between

samples)

‘Inpatient’
17:8 wake/sleep, light/dark

cycle. Hourly isocaloric
meals

Semi-recumbent position

N = 8
All male

Age 53.6 ± 6.0
BMI 23.2 ± 1.4

203 features (19%)
34 metabolites

Amino acids
Acylcarnitines

LysoPEs
LysoPCs

Dallmann et al., (2012) [56]

Untargeted
GC-MS
LC-MS

(Reversed
Phase)

Circadian variation
(constant routine

40 h, 4 h intervals between
samples)

‘Inpatient’
Standard constant routine

parameters (see [41])

N = 10 (split into 2 equal
groups, within which

samples were pooled for
each 4 h interval)

All male
Age 57.8 ± 1.0 & 61.0 ± 0.6
BMI 26.6 ± 0.6 & 25.1 ± 0.5

41 (15%)

Amino acids
Glycerophospholipids

Acylcarnitines
Steroid hormones

Kasukawa et al., (2012) [57]

Untargeted
LC-TOF MS
(Reversed

Phase)

Circadian variation (forced
desynchrony 28 h,

bookended by constant
routine protocols (38 h each,

2 h intervals between
samples)

‘Inpatient’
Standard constant routine

parameters (with the
exception of meals every 2 h

(see [41])
Controlled light/dark

cycles, temperature during
forced desynchrony

N = 6
All male

Aged 20–23
312 features (7%) Amino acids

Steroid hormones

Chua et al., (2013) [53]

Targeted Lipidomics
LC-MS/MS
(Reversed

Phase)

Circadian variation
(constant routine

37 h, 4 h intervals between
samples at 5 h onwards of

constant routine)

‘Inpatient’
Standard constant routine

parameters (see [41])

N = 20
All male

Age 24.4 ± 1.8
3 ‘Overweight’

17 ‘Healthy

35 (13.3%) Glycerolipids
Glycerophospholipids

Davies et al., (2014) [51]

Untargeted
UPLC/Q-TOF MS/MS and

targeted FIA-MS
UPLC-MS/MS

(Reversed
Phase)

Diurnal variation (24 h). 24
h wake/sleep cycle vs. 24 h
prolonged wakefulness, 2 h
intervals between samples

48 h

‘Inpatient’
Standardised meals and
mealtimes. Controlled
light/dark cycle and

activity/posture

N = 12
All male

Age 23 ± 5,
BMI 24.5 ± 2.3

109 (63.7%) sleep/wake
88 (51.5%) sleep deprivation

78 (45%) during both
conditions

Amino acids
Acylcarnitines

LysoPCs
Phosphatidylcholines

Sphingolipids
Fatty acids

Kim et al., (2014) [58]

Untargeted
LC—TOF MS

(Reversed
Phase)

Diurnal variation
Sampling 1, 3, 7, 9, 11, 14 h

post-wake, first sample
fasted.

‘Inpatient’
Standardised meals and

mealtimes

N = 26
14 males

Age 33 ±10.9
BMI 24.3 ±3.3

11 (9%) LysoPCs
Phosphatidylinositol
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Table 2. Cont.

Author(s) Assay/Platform Time Course Details Study Setting/Conditions Cohort Details
Rhythmic/Gradient

Metabolites/
Features Observed

Rhythmic/Gradient
Classes Primarily

Observed

Chua et al., (2015) [59]

Targeted Lipidomics
LC-MS/MS
(Reversed

Phase)

Circadian variation
(constant routine

37 h, 4 h intervals between
samples at

5 h onwards of constant
routine)

‘Inpatient’
Standard constant routine

parameters (see [41]}

N = 20
All male

Age 23 ± 5
BMI 24.5 ± 2.3

4 (1.5%) decreased during
sleep deprivation

21 (5.5%) increased during
sleep deprivation

Sphingomyelins
TAGs

Phosphatidylcholines
Phosphatidylinositol

Skarke et al., (2017) [60]
Targeted

LC-MS/MS
(HILIC)

Diurnal variation
am vs. pm (48 h, 5 samples

12 h apart)
‘Outpatient’

N = 6
All male

Age 32.3 ± 3.6
BMI 25.2 ± 3.4

9 (5.4%)

Isherwood et al., (2017) [61]

Targeted
FIA-MS

UPLC-MS/MS
(Reversed

Phase)

Diurnal variation (24 h—2 h
intervals between samples)

‘Inpatient’
Controlled sleep/wake,

light/dark cycle, and
posture

Hourly isocaloric meals

N = 23
All male

BMI/Age
Lean group 23.2 ± 1.4/

53.6 ± 6.0
OW/OB 29.8 ± 2.3/

51.0 ± 7.7
T2DM group 31 ± 1.6/

57.3 ± 4.8

50/130 (38.5%) total
35—lean

39—OW/OB
20—T2DM

Amino acids
Phosphatidylcholines

LysoPCs
Acylcarnitines

Gehrman et al., (2018) [62] Targeted
1H NMR

Diurnal variation (48 h—2 h
intervals between samples)

‘Inpatient’
Habitual sleep/wake cycle

Hourly isocaloric meals

N = 30
20 male and 10 females

(split equally into 2 groups)
BMI < 29
Healthy

Age 35.0 ± 7.5
Insomnia

Age 37 ± 7.9

24 (total)
11 common to both groups

6 unique to healthy
7 unique to insomnia

Amino acids

Sato et al., (2018) [63]
Untargeted

UHPLC-MS/MS
GC-MS

Diurnal variation
am vs. pm

‘Outpatient’
Standardised meals and

mealtimes

N = 8
All male

Age 30–45
BMI 27–32.5

532, 130, 349 features (50%,
12%, 33%) time of day, diet,
time of day diet interaction,

respectively.
After HFD

13% features lost daily
variation, 17% gained new

daily variation
After HCD

7% features lost daily
variation

14% gained new daily
variation

Amino acids
Fatty acyls

Glycerolipids
Glycerophospholipids

Sphingolipids
Carbohydrates

Xenobiotics
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Table 2. Cont.

Author(s) Assay/Platform Time Course Details Study Setting/Conditions Cohort Details
Rhythmic/Gradient

Metabolites/
Features Observed

Rhythmic/Gradient
Classes Primarily

Observed

Skene et al., (2018) [64]

Targeted
FIA-MS

UPLC-MS/MS
(Reversed

Phase)

Circadian variation
(constant routine 24 h, 11

samples at 1–3 h intervals)
Day shift vs. night shift

(simulation))
circadian vs. behavioural

control

‘Inpatient’
Standard constant routine

parameters (see [41])
During baseline & shift

work—controlled
sleep/wake, light/dark

cycle, temperature.
Standardised meals and

mealtimes

Night shift:
N = 7

6 males
Age 27.6 ± 3.2
BMI 25.6 ± 3.3

Day shift:
N = 7, 4 males
Age 24.0 ± 2.2
BMI 25.9 ±3.4

65 (49.2%) across both shift
patterns, 27 (20.5%)

common to both

Amino acids
LysoPCs

Phosphatdylcholines
Acylcarnitines

Glycerophospholipids
Sphingolipids

Grant et al., (2019) [65]
Untargeted & Targeted

LC-QTOF/MS
(HILIC)

Circadian variation (24 h)
Circadian- vs.

wake-dependent changes

‘Inpatient’
Standard constant routine

parameters (see [41])

N = 13
9 males

Age 25.0 ± 4.3
BMI 22.0 ± 2.1

Targeted: Group level
28/99 (28.3%) (rhythmic,

rhythmic & linear)
4/99 (4%) linear

Untargeted:
Group level

361 (22%) rhythmic features
8% linear features
Individual level

14% rhythmic profiles
4% linear profile

Amino acids
Organic acids

Gu et al., (2019) [66]

Untargeted
UHPLC-MS

(Reversed phase) &
GC-MS/MS

Diurnal variation (26–48 h)
(48 h time course for N = 2,
26 h for N = 1 participants),

‘Inpatient’
Standardised meals and

mealtimes
Habitual sleep time (10 h

sleep)

N = 3
2 males

Age 20–31
BMI 18 < 29.9

100/663 (15.1%) rhythmic in
at least 1 individual

26/663 (3.9%) rhythmic in
at least 2 individuals.

Amino acids
DAGs

Lysolipids
Phospholipids
Steroid lipids

Kervezee et al., (2019) [67]

Targeted
DI-MS

LC-MS/MS (Reversed
phase)

Diurnal variation (24 h—2 h
intervals between samples)

Baseline vs. forced
misalignment

post-simulated shift work

‘Inpatient’
Controlled sleep/wake,

light/dark cycle and hourly
isocaloric meals during

sampling periods

N = 9
8 males

Age 22.6 ± 3.4
BMI 21.3 (19.6–23)

51 (39.2%) baseline
53 (40.8%) night shift

32 (24.6%) both,
24 phase shifted, 27 (21%)

significantly changed
post-night shift

Amino acids
Fatty acids

Organic acids
Lysophospholipids

PCs

Honma et al., (2020) [50]

Targeted
FIA-MS

UPLC-MS/MS
(Reversed

Phase)

Diurnal variation (70 h, 2 h
intervals between samples)

16:8 wake/sleep cycle >
40 h prolonged wakefulness

> 8 h recovery sleep

‘Inpatient’
Standardised meals and
mealtimes. Controlled
light/dark cycle and

activity/posture

N = 12
All female
Age 25 ± 4

BMI 24.9 ± 3.6

Total 97/130, 58 (44.6%)
common for all conditions.
Baseline 78 (60%) 8 unique.
Sleep deprivation 76 (58.5%)
5 unique Recovery sleep 80

(61.5%) 5 unique

Glycerophospholipids
Sphingolipids
Amino acids

Biogenic amines
Acylcarnitines
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Table 2. Cont.

Author(s) Assay/Platform Time Course Details Study Setting/Conditions Cohort Details
Rhythmic/Gradient

Metabolites/
Features Observed

Rhythmic/Gradient
Classes Primarily

Observed

Lusczek et al., (2020) [68]

Untargeted
UHPLC/MS

(Reversed
Phase)

Diurnal variation (24 h—4 h
intervals between samples)

‘Inpatient’
Self-selected light/dark,

feeding/fasting,
sleep/wake cycle for
healthy participants

Healthy cohort
N = 5

2 males,
Age 45–72

BMI 22.4–33.3
ICU cohort

N = 5
2 males

Age 43–66
BMI 31.0–57.3

10 (16.7%) in healthy
0 in ICU

Amino acids
Acyl carnitines

LysoPEs

Footnotes: Age and BMI are quoted in standard units, years and kg/m2, respectively. Where available, mean age/BMI ± 1 SD given. Significant changes in metabolites identified in studies performing am vs. pm
(two-time point) comparison(s), should be considered as gradient changes ergo ‘gradient metabolite’, Significant changes in metabolites identified in studies over a >24 h time course with n ≥ 5 should be
considered as rhythmic changes ergo ‘rhythmic metabolite’, rhythmicity being detected by cosinor analysis and/or MetaCycle. Rhythmic/gradient features are denoted as such, otherwise the table refers
to rhythmic/gradient metabolites. Rhythmic/gradient classes primarily observed are not an exhaustive list of all metabolite classes observed within a study but a summary of the most rhythmic classes, if
any, for that particular study, as denoted by the author or inferred from provided data. Abbreviations: DAG—diglyceride; DI-MS—direct infusion mass spectrometry; FIA-MS—flow injection analysis mass
spectrometry; GC-MS—gas chromatography mass spectrometry; HILIC—hydrophilic interaction chromatography; LC-MS—liquid chromatography mass spectrometry; LysoPC—lysophosphatidylcholine;
LysoPE—lysophosphatidylethanolamine; MS/MS—tandem mass spectrometry; NMR—nuclear magnetic resonance; PC—phosphatidylcholine; Q-TOF MS—quadruple time of flight mass spectrometry;
SESI-MS—secondary electrospray ionisation mass spectrometry; TOF MS—time of flight mass spectrometry; U(H)PLC—ultra high performance liquid chromatography.
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2.1.1. Circadian Variation

Dallmann et al. [56] was first to publish a constant routine study observing circadian
control of the metabolome in plasma and saliva (latter discussed below—see Section 2.3.1),
with 41 (15%) of identified metabolites within plasma displaying circadian rhythms, of
which, >75% comprised lipids, with nearly all peaking at subjective lunch time (when par-
ticipants would expect their second daily meal under a typical sleep/wake, feeding/fasting
cycle). These findings provide evidence that lipid metabolism is under circadian control.
The amplitude of these observed rhythms differs between metabolites, with lactate abun-
dance varying by ~66% and glutamate by ~40% across the 24 h period as but two examples,
with other observed metabolites displaying even greater variation. This is a pertinent
finding considering active discussion in the literature for these two metabolites as potential
biomarkers and therapeutic targets for various diseases [69–75] and a consideration that can
be applied to the findings of all the papers discussed below. In a separate constant routine
study published in the same year [57] it was reported that phenylalanine, tryptophan, and
leucine were observed to display circadian rhythms. In total, eight rhythmic metabolites
were observed within the study, a comparison to the 41 observed previously [56] was
drawn and the conclusion reached was that the authors likely observed less rhythmic
metabolites due to curated selection of features with minimal variability between partic-
ipants. Chua et al. [53] observed a comparable level of circadian rhythmic metabolites
(35/263 metabolites, 13.3%) in their lipidomics assay, with triacylglycerides (TAGs) and
diacylglycerides (DAGs) peaking in the morning. However, of these metabolites, only
12 (5%) to 86 (33%) displayed rhythmicity, with a median of 20% across all participants.
Importantly, there were also significant differences in the phase of the rhythmic metabolites
between participants, some as great as 12 h. These phase differences were observed despite
similar cortisol and melatonin rhythms between participants, metabolite rhythms typically
measured relative to dim light melatonin onset (DLMO) or when cortisol levels peak to
account for individual differences in circadian timing (chronotype). As age/sex/ethnicity
were all controlled for, the authors concluded that the three observed ‘lipidome pheno-
types’ may be a result of predetermined genetic differences. This is a reasonable assertion
echoed by a prior review [76], suggesting that genetic variation in human clock genes could
contribute to phenotypic differences and is supported by twin and familial studies stating
27–50% of the variance in diurnal preference/chronotype is attributable to genetic, not
environmental, influence [77–80].

These findings suggest that a portion of the plasma metabolome/lipidome is under
circadian influence (Table S7), the extent of which is potentially confounded by inter-
individual differences in diurnal preference/circadian timing (chronotype).

2.1.2. Sleep Deprivation and Prolonged Wakefulness

The aforementioned studies employ a constant routine protocol enforcing wakefulness
over the observed time period. In an interesting development, Davies et al. [51], proceeded
by Chua et al. [59], Grant et al. [65], and Honma et al. [50], characterise the impact of
wakefulness (total sleep deprivation) on the plasma metabolome (Table S8). A distinction
between these four studies is that both Chua et al., and Grant et al., performed their
sample collection during a constant routine protocol where participants were subject to
total sleep deprivation for the duration whilst Davies et al., and Honma et al., employed an
entrained protocol with two and three phases, respectively, across consecutive days with a
8 h period of sleep permitted during the first 24 h of sampling proceeded by 24 h of total
sleep deprivation with Honma et al., monitoring a third day permitting ‘recovery’ sleep.
The experimental design of both Davies et al., and Honma et al., studies allowed for paired
comparisons between test conditions (e.g., sleep vs. no sleep) for individual participants.

Of the 109/171 (64%) rhythmic metabolites observed by Davies et al. (amino acids, bio-
genic amines, lipid groups), 95 (87%) of which peaked between 06:00 and 18:00 h, 21 (28%)
lost rhythmicity during prolonged wakefulness alongside reduced/increased amplitude
of metabolites that peaked within the day/night cycle, respectively. Furthermore 27/171
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(16%) metabolites (three sphingolipids, eight acylcarnitines, 13 glycerophospholipids, tryp-
tophan, serotonin, taurine) exhibited a significant increase during sleep deprivation vs.
baseline sleep with serotonin exhibiting the largest change (44% ± 20%), illustrating a
perturbation to metabolite rhythms coinciding with total sleep deprivation. These results
were echoed by Chua et al. [59] and Grant et al. [65] who observed linear changes in 25/11
(9.5%/11.1%) metabolites, respectively, predominantly phosphatidylcholines/TAGs in
the former study (lipidomics assay) and amino acids in the latter (HILIC (hydrophilic
interaction chromatography) assay), as a result of sleep deprivation. Further agreement
between Davies et al., and Chua et al., was observed for diacyl-phosphatidylcholines,
which were affected by sleep deprivation.

Having performed untargeted/targeted HILIC assays, as opposed to reversed-phase
assays which were performed previously [51,53], Grant et al., observed the impact of
prolonged wakefulness on polar metabolites, with 28/99 (28.3%) displaying rhythmic-
rhythmic/linear metabolites peaking in the biological night, of which 13 were amino
acids, a similar result with regard to amino acids rhythms having been observed to some
degree previously [55–57,61]. Furthermore, Grant et al., identified nine novel rhythmic
polar metabolites (organic acids, nucleotides, and an amino acid) not observed in prior
non-polar/lipid studies. Group-level analysis of their untargeted dataset mostly reflected
what was observed in the targeted dataset (see Table 2).

Honma et al. [50] performed a similar study to Davies et al. with the exception of an
all-female cohort (Davies et al., studied an all-male cohort) and therefore offers a novel
insight into sex-dependent differences resulting from prolonged wakefulness (see Table S4).
At face value, the female cohort were comparable to the male cohort of Davies et al.,
with 58/130 (44.6%) metabolites being rhythmic and common across the three study days
(baseline sleep, prolonged wakefulness, recovery sleep), and 97/130 (75%) were rhythmic
on at least one of the three days but not rhythmic across all three. During sleep deprivation
15/130 (12%) of metabolites in female participants were significantly altered, of which
14 decreased in concentration, in contrast to Davies et al., in which 37/141 (26%) were
significantly increased during sleep deprivation. Furthermore, a subset of 32 common
rhythmic metabolites between the cohorts of both studies was analysed with regard to their
mean acrophase (peak time) and it was observed that the acrophase in the female group
was ~1 h later compared to the male group (female = 15:48 ± 0:40 h, male = 14:53 ± 0:42 h).
Whilst the datasets are from different studies, they were both performed by the Skene
laboratory (University of Surrey) with highly similar methodology, the same commercial kit
to perform the targeted assay, similar cohorts (excluding sex) and subject to the same data
processing and analysis, making these observations more compelling. Complementary to
the findings of Davies et al., and of Skene et al. [64] (discussed below—see Section 2.1.3),
the findings of Honma et al., also illustrate how acute disruption of the sleep–wake cycle
can result in changes to metabolite rhythms that persist after the disrupted behavioural
cycle is restored.

2.1.3. Shift Work

In work that runs parallel to the studies investigating prolonged wakefulness and
sleep deprivation, Skene et al. [64] and Kervezee et al. [67] independently investigated and
characterised the impact of circadian misalignment on the plasma metabolome brought
about by simulated shift work (Table S10). Skene et al. compared simulated day (DS) vs.
night (NS) shift work and focused on which metabolite rhythms are primarily driven by
the central SCN clock or external behavioural cycles.

In the constant routine period succeeding the simulated shift work, Skene et al. ob-
served 65/132 (49.2%) rhythmic metabolites following one or both conditions, with a further
19 metabolites (seven amino acids, 12 lysophosphatidylcholines) losing rhythmicity follow-
ing NS and a second independent group of 19 metabolites (mostly phosphatdylcholines,
acylcarnitines) gaining rhythmicity only after NS. There were 27 common rhythmic metabo-
lites between test groups, only three of which maintained the same peak time between DS
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and NS. This was also a common trait with the circadian markers melatonin DLMO and
cortisol, indicative to the authors that it is likely that these three metabolites (taurine, sero-
tonin, sarcosine (N-methylglycine)) are strongly influenced by timing of the central SCN
clock. Conversely, the remaining 24 rhythmic metabolites (mostly glycerophospholipids
and sphingolipids) exhibited a significant shift in peak time between test conditions, with
the majority experiencing a 12 h delay, i.e., inversed rhythms, and thus suggested to be
strongly influenced by the shifted behavioural cycles (e.g., sleep/wake; feeding/fasting).
This delay was maintained in the constant routine following cessation of the shift condi-
tions demonstrating that endogenous metabolite rhythms can be induced and driven by
external behavioural cues which likely reflect peripheral oscillators dissociating from that
of the SCN, as concluded by the authors.

Similar to Skene et al., Kervezee et al. [67] observed a change in rhythmic metabolites
in NS, with 51/130 (39.2%), 53 (40.8%), and 32 (24.6%) metabolites having displayed
rhythmicity at baseline, NS, and in both datasets, respectively. Of the 32 metabolites
rhythmic in both conditions (baseline and NS), 24 (75%) exhibited a phase shift, on average
of 8.8 h, matching the shift in sleep pattern. Therefore, these changes are deemed more
strongly influenced by behavioural cycles as opposed to circadian control with amino acids
being an enriched group within the 24 metabolites exhibiting a phase shift. A further seven
(~22%) metabolites, from the subset of 32, remained aligned with the non-shifted melatonin
phase (measure of SCN phase). Therefore, this subset of seven metabolites (Table S10) were
deemed circadian SCN clock regulated, or at least not regulated by the sleep/wake cycle.
The 19 metabolites that lost rhythmicity post-shift work simulation were predominantly
lipids, similar findings shown by Davies et al. [51] and Chua et al. [59] when investigating
the impact of sleep deprivation and corroborating with the results of Skene et al., [64].

The observation that behaviourally induced rhythms can be retained and persist for at
least 24 h in free-running constant routine conditions complements the findings of Davies
et al. [51] and Honma et al. [50] thus shift work and atypical sleep patterns are important
considerations for metabolomics studies prior to recruitment and sampling.

2.1.4. 24 h Diurnal Rhythms

Parallel to studies employing constant routine methodologies to investigate circadian
rhythms are those which investigate diurnal rhythms, 24 h rhythms under entrained
conditions. Three further studies, not investigating shift work or the impact of sleep,
were obtained from the performed literature search characterising time of day variation
over >24 h time courses. Park et al. [54] identified 34 metabolites exhibiting time of day
variation between three time classes (‘morning’, ‘afternoon’ and ‘night’) covering a time
course of 24 h. These distinct time classes were produced by averaging hourly 1H-NMR
(nuclear magnetic resonance) spectra across all 10 participants for the 25 time points and
by performing PCA analysis. Identification of time of day variation was performed with
a bespoke two sample t-test, with correction for multiple testing, performed to test for
significant differences in spectral regions between the three ‘time classes’. Ang et al. [55]
showed time of day variation across 24 h in a range of metabolite classes using untargeted
LC-MS (liquid chromatography mass spectrometry). They considered their work as an
external validation of the Dallmann et al. study [56], having replicated some of their
findings despite some key differences in methodology (see Table 2). In total, 34 rhythmic
metabolites were identified with variation in abundance ranging from 49–81% (average
65%). The magnitude of this variation was similar to that observed by Dallmann et al.,
with amino acids and phospholipids being two highlighted rhythmic metabolite classes
that displayed similar amplitudes. Gu et al. [66] observed diurnal variation in three
participants within their pilot study to perform individual-level analysis to better explore
inter-individual variability as opposed to group-level analysis; with only Chua et al. [53,59]
having observed individual rhythms and differences prior to this publication and Grant
et al. [65] also performing individual-level analysis and publishing in a similar timeframe.
Gu et al., observed diurnal rhythms in all three participants (Tables 2 and S2) in addition to
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observing inter-individual differences in the acrophase of metabolite rhythms relative to
DLMO, such differences may be masked in group-level analysis but are pertinent when
investigating on the individual level.

2.1.5. Health Status

It is well established that different physiological and pathological states caused by
disease can lead to distinct metabolic profiles. Isherwood et al. [61] adds to this under-
standing by observing unique time of day variations accompanying specific phenotypes
(Table S11). Their study observed differences in metabolic profiles of individuals with type
2 diabetes mellitus (T2DM), overweight/obese (OW/OB) non-diabetic individuals, and
age-matched lean ‘healthy’ controls; the novel aspect of the study being the comparison of
metabolic profiles between non-diabetic/diabetic individuals (age- and weight-matched)
across multiple time points about a 24 h time course. In total, 50/130 (~38.5%) unique
metabolites displayed 24 h rhythmicity of which 35, 39, and 20 were observed in lean,
OW/OB and T2DM groups, respectively, from group-level analysis (Table S2). Of these 50
rhythmic metabolites, 5 (10%) were unique to OW/OB and T2DM groups and 11 (22%)
were unique to non-T2DM groups suggesting a change in metabolite rhythms associated
with the onset or continuation of T2DM (Table S2).

In a similar line of enquiry to Isherwood et al., Gehrman et al. [62] investigated how
diurnal rhythms may differ between participants confirmed to suffer with insomnia and
matched healthy individuals (‘good sleepers’). Unique metabolite profiles were observed
for both test groups (Table S11) with 29 metabolites being elevated/decreased in insomnia
patients in the morning and/or night. Of these 29 metabolites, 13 were rhythmic. In total,
11 metabolites exhibited diurnal rhythms in both groups with a further six and seven
unique rhythmic metabolites in healthy and insomniac participants, respectively. Phase
changes were also noted with a phase advance (peaking earlier in the day) of acetone,
proline, and a phase delay (peaking later in the day) of lactate, valine, isoleucine and
3-methyl-2-oxovalerate for the insomniac participants. It remains unclear how many of
these changes are associated with the underlying causes of insomnia as opposed to the
symptoms, i.e., poor sleep quality/duration.

Lusczek et al. [68], investigated whether intensive care unit (ICU) patients have their
24 h rhythms disrupted relative to healthy controls by profiling “circadian” rhythms in vital
signs and plasma metabolites by analysing 60 “circadian” metabolites based on the work
by Dallmann et al. [56] and Ang et al. [55] (who observed diurnal not circadian rhythms)
and concluded that ICU patients experience desynchrony, leading to a loss of metabolite
rhythmicity when compared to healthy non-ICU controls. The rhythmic metabolites
observed by Dallmann et al., and Ang et al., were observed in a different and specific
context, and do not serve as adequate or reliable markers for circadian desynchrony in the
context of the study by Lusczek et al. Further measures taken to assess patient “circadian”
rhythms included temperature, heart rate and blood pressure, and plasma cortisol of
which only cortisol was deemed significantly rhythmic for group-level analysis of the ICU
group. Lusczek et al., suggests that this is indicative of a lack of coherence in circadian
phases and amplitudes amongst the ICU patients. However, an alternative suggestion is
that coherence of cortisol rhythms, is indicative of a similar phase angle of entrainment
between participants and the variable temperature and blood pressure rhythms result from
patients’ unique circumstances with regard to their disease status (cardiac or respiratory),
physiology/trauma, concomitant medication and demographics [81,82], disease state and
physiology potentially leading to unique rhythmic metabolite profiles not necessarily
related to desynchrony as established above.

2.1.6. Diet Composition

The previously described studies have all collected blood samples at 2–5 h intervals
across a minimum 24 h time course to define and visualise detected metabolite rhythms
over a 24 h period via cosinor analysis (applies the least squares method to fit a sine wave to
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time series data) or MetaCycle (runs three separate algorithms to detect biological rhythms).
Some studies may opt to characterise time of day variation over a shorter time course
(<24 h) or with fewer samples per 24 h cycle (n ≤ 4 samples) and thus investigate variation
in a morning vs. evening fashion to discern ‘gradient’ metabolites (‘gradient’ referring to a
significant relative increase/decrease in concentration/abundance of a metabolite between
two time points) such as the work performed by Sato et al. [63]. To clarify, low resolution
sampling of n ≤ 4 samples per 24 h cycle is insufficient to characterise 24 h metabolite
rhythms and so morning vs. evening studies are inherently limited in determining time
of day variation with results typically limited to t-test/ANOVA analysis to determine
significant changes between time points. These ‘gradient’ metabolites may or may not
be rhythmic and a higher resolution (n > 4 samples per 24 h cycle) is required to discern
rhythmicity.

Sato et al. [63] investigated the impact of a high-carbohydrate diet (HCD) and high-fat
diet (HFD) of equal calorific content to observe the impact of nutritional challenge on the
serum and skeletal muscle metabolome, whilst noting diurnal changes. Many time of
day changes were observed as a result of the diet in the 1063 detected metabolite features
(Tables 2 and S12). For the HFD and HCD diet conditions 85/50 metabolites displayed
a gradient change at baseline only, 126/95 post-completion of diet conditions only, and
138/142 both before and after diet conditions, respectively. Metabolites relating to lipid
metabolism were enriched in the HFD group regardless of time of day—perhaps unsur-
prisingly. Conversely, half of all decreased metabolites in the evening as a result of HFD
were related to amino acid metabolism despite equal calorific intake from protein between
groups. Relative to HFD, HCD led to a decrease in metabolites relating to lipid metabolism,
regardless of time of day. The authors suggested that increased serum insulin concentra-
tions lead to suppressed lipolysis, explaining the observation, though the literature quoted
in support of this statement observed this effect during high-activity (exercise) conditions.
Sato et al. have demonstrated that diet composition, with regard to calorific intake from
major food groups, displays an interaction with time of day variation of the metabolome
altering specific metabolite rhythms; in the context of this study lipid metabolism was most
strongly impacted.

2.1.7. Morning vs. Evening Studies

Kim et al. [58] observed diurnal variation over 14 h in plasma (11 metabolites, 9%).
The proportion of variance attributable to time of day in plasma was minimal vs. that
attributed to patient ‘effects’ (age, sex, race, polycystic kidney disease ~40%) and residual
variance (>50%). Data on sleep patterns, chronotype, work and light/dark history were
not considered and so a proportion of this residual variance may well have a biological
source, e.g., associated with chronotype, when considering the confidence in consistency
and rigour by Kim et al. of their employed methodology.

Skarke et al. [60] observed diurnal variation in plasma (9/166, 5.4%) between 12 h
samples over 48 h. Notably, less rhythmicity was observed when compared to the stud-
ies discussed above and may potentially be the result of reduced sampling frequency
(12 hourly), the small cohort, or the purposeful monitoring of participants in their habitual
routine undergoing unique and varied daily cycles. Despite the introduced inter-individual
variation due to this setting, diurnal variation is still evident, suggestive of a high potency
in temporal regulation of specific metabolites driven by external and internal rhythms. The
reduced number of rhythmic metabolites from both of these studies compared to those
discussed earlier aptly illustrates the difficulties in monitoring time of day variation and
the required rigour in experimental design. To see beyond the noise and identify significant
changes as a factor of time (clocks and/or circadian time), it is of importance to control
environmental conditions, patient demographics and lifestyle.
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2.2. Urine

Urine is the second most investigated biofluid, after blood, to assess time of day varia-
tion of the metabolome with six studies discussed here with the earliest work performed by
Jerjes et al. [83], Walsh et al. [84] and Slupsky et al. [85], followed by several others [86,87]
(see Tables 3 and S3).

2.2.1. Sleep Deprivation and Prolonged Wakefulness

The participants in the Davies et al. study [51] also provided sequential urine samples
across a 48 h study period [86]. Rhythmic metabolites (5/32, 15.6%) during the baseline
sleep/wake cycle were observed, and 7/32 (22%), inclusive of the previous five, were
observed during 24 h prolonged wakefulness. Eight metabolites significantly increased and
a further eight decreased during sleep deprivation (Table S8) with a relative concentration
change ranging from −22.4% to +45.6%, the latter result comparable to Davies et al. [51]. Of
the seven rhythmic metabolites identified during prolonged wakefulness, four remained
significantly different to baseline around habitual wake time (07:00–09:00 h) but did not
persist thereafter. The authors concluded that time of day is a more potent influencer on
the urine metabolome than sleep deprivation; a similar conclusion given by Jerjes et al. [83]
that sleep disturbances did not alter urinary steroid metabolite rhythms on the next day.

2.2.2. Shift Work

Papantoniou et al. [87] set out to observe diurnal changes as well as define any signif-
icant differences between night and day shift workers in “sex hormones” for both male
and female workers potentially brought about by circadian disruption/misalignment as a
result of shift work (Table S10). The potential consequences are associated with increased
risk of developing breast and prostate cancer. Analysis of the full cohort revealed several
progestagens and androgens which were significantly elevated in night shift workers vs.
day shift workers, most notably observed within the subpopulation of pre-menopausal
women. In day vs. night shift worker comparisons, testosterone, 3a,5a-androstanediol,
16-androstenol and pregnanediol were significantly elevated in pre-menopausal women
and epitestosterone was elevated in post-menopausal women. There were no statisti-
cally significant differences in males. Peak time of androgens (epitestosterone, DHEA,
etiocholanolone and 6a-hydroxyandrostenedione) were significantly later in the day in
the night shift workers vs. day shift workers with the effect more pronounced in males
vs. females.
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Table 3. A brief summary of study design, cohort details and results with regard to observed time of day variation of metabolites for relevant studies analysing urine.

Author(s) Assay/Platform Time Course Details Study
Setting/Conditions Cohort Details

Rhythmic/Gradient
Metabolites/Features

Observed

Rhythmic/Gradient
Classes Primarily

Observed

Jerjes et al., (2006) [83] Targeted
GC-MS

Diurnal variation (24 h–3 h
intervals between samples)

N = 20
10 males

Age 32 ± 5.4
BMI 23.5 ± 2

9 Androgens
Cortisol metabolites

Walsh et al., (2006) [84] Untargeted
1H NMR

Diurnal variation
am vs. pm

‘Outpatient’
Standardised meals

N = 60
30 males

Age 19–69
1

Slupsky et al., (2007) [85] Targeted
1H NMR

Diurnal variation
am vs. pm ‘Outpatient’

N = 30
23 females

Age 24.7 ± 2.7
BMI 22.7 ± 0.97

6

Kim et al., (2014) [58]

Untargeted
LC—TOF MS

(Reversed
Phase)

Diurnal variation
Sampling 1, 3, 7, 9, 11, 14 h

post-wake, first
sample fasted.

‘Inpatient’
Standardised meals and

mealtimes

N = 26
14 males

Age 33 ± 10.9
BMI 24.3 ± 3.3

135 (46%)
Glycerophospholipids

LysoPCs
Phosphatidylinositol

Giskeødegård et al.,
(2015) [86]

Untargeted
1H NMR

Diurnal variation (48 h)
Samples at 2–4 h intervals

when awake, 8 h overnight

‘Inpatient’
Standardised meals and
mealtimes. Controlled
light/dark cycle and

activity/posture

N = 15
All male

Age 23.7 ± 5.4

5 (15.6%)—sleep/wake cycle
7 (22%) during 24 h

wakefulness
During sleep deprivation 8

increased, 8 decreased

Amino acids
Fatty acids

Papantoniou et al.,
(2015) [87]

Targeted
GC-MS Diurnal variation (24 h)

‘Outpatient’
Day vs. night shift

workers

N = 117
63 males

Age 22–64
BMI 22.6–30.6

5 (31.3%) significantly
different in premenopausal

day vs. night workers

Progestagens
Androgens

Footnotes: See Table 2. Abbreviations: GC-MS—gas chromatography mass spectrometry; LC-MS—liquid chromatography mass spectrometry; LysoPC—lysophosphatidylcholine; NMR—nuclear magnetic
resonance; TOF MS—time of flight mass spectrometry.
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2.2.3. Creatinine

Walsh et al. [84] observed diurnal variation in the urinary metabolome, with creatinine
being the prominent gradient metabolite and selectable marker within their constructed
PLS-DA (partial least squares-discriminant analysis) model to predict time of day for
collected samples, further commenting on the standardised diet reducing inter-individual
variability. These findings were corroborated by Slupsky et al. [85] who also reported
on a further five metabolites exhibiting diurnal variation and further supported by Kim
et al. [58] (as described above, see Section 2.1.7) concluding that urine is susceptible to
temporal and meal driven changes to the metabolome, more so than plasma. This increased
temporal sensitivity may derive from circadian rhythms driven by the peripheral clock of
the kidney resulting in time of day variation in renal function inclusive of diuresis [88],
the method of sample collection (with Slupsky et al. collecting only two urine samples
first void, and a second at 17:00 h) or the method of data normalisation to account for
volume/concentration differences in provided urine samples.

A concern raised by Walsh et al., and Slupsky et al., is that urinary metabolite abun-
dance is routinely normalised against creatinine, which shows inter-individual and diurnal
variation, driven by diet/food consumption. Furthermore, it requires the assumption that
the kinetics of excretion for metabolites of interest, which may change throughout the day,
match that of creatinine thus resulting measurements of this normalisation may be less
accurate than initially thought, as stated by Jerjes et al. [83]. Giskeødegård et al. [86], like
Walsh et al., and Slupsky et al., observed diurnal variation of creatinine whilst additionally
observing sleep deprivation to further impact creatinine levels thus undermining the role
of creatinine for the purpose of normalisation as previously described. These concerns
are supported by the findings of Jerjes et al. who concluded that creatinine did not un-
dergo a significant daily rhythm when analysed independently via cosinor analysis, but
androgen and cortisol metabolites did exhibit a significant daily rhythm thus by extension
the relative ratio of cortisol/androgen metabolites:creatinine also exhibits a daily rhythm.
This led Jerjes et al., to conclude that monitoring steroid/steroid or steroid/creatinine
ratios is uninformative unless collection periods are timed as performed by Papantoniou
et al. [87] and Giskeødegård et al. [86]. Other methods for normalisation of urine dilution
are available [89].

2.3. Saliva

Time of day variation in saliva has garnered some coverage within the literature, per-
haps due to ease of accessibility, with multiple laboratories reporting time of day variation
(see Table 4) and various identified metabolites (Table S4) across four independent studies.
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Table 4. A brief summary of study design, cohort details and results with regard to observed time of day variation of metabolites for relevant studies analysing saliva.

Authors Assay/Platform Time Course Details Study
Setting/Conditions Cohort Details

Rhythmic/Gradient
Metabolites/Features

Observed

Rhythmic/Gradient
Classes Primarily

Observed

Walsh et al., (2006) [84] Untargeted
1H NMR

Diurnal variation
am vs. pm

‘Outpatient’
Standardised meals

N = 60
30 males

Age 19–69
1 No gradient metabolite

classes identified

Dallmann et al.,
(2012) [56]

Untargeted
GC-MS
LC-MS

(Reversed
Phase)

Circadian variation
(constant routine 40 h, 4 h

intervals between samples)

‘Inpatient’
Standard constant
routine parameters

(see [41])

N = 10 (split into 2 equal
groups within which

samples were pooled for
each 4 h interval)

All male
Age 57.8 ± 1.0 &

61.0 ± 0.6
BMI 26.6 ± 0.6 &

25.1 ± 0.5

29 (15%) Amino acids

Dame et al., (2015) [90] Untargeted
1H NMR

Diurnal variation sampling
at prebreakfast vs. 2 h
post-breakfast vs. 2 h

post-lunch

N = 16
8 males & females

Age (24–42)
(only N = 2 took part in
observation of diurnal

variation)

8 (10.5%) Amino acids

Skarke et al., (2017) [60]
Targeted

LC-MS/MS
(HILIC)

Diurnal variation
am vs. pm (48 h, 5 samples

12 h apart)
‘Outpatient’

N = 6
All male

Age 32.3 ± 3.6
BMI 25.2 ± 3.4

14 (5.6%) Amino acids

Footnotes: See Table 2. Abbreviations: GC-MS—gas chromatography mass spectrometry; HILIC—hydrophilic interaction chromatography; LC-MS—liquid chromatography mass spectrometry; MS/MS—tandem
mass spectrometry; NMR—nuclear magnetic resonance.
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2.3.1. Circadian Variation

Dallmann et al. [56] (as described above, see Section 2.1.1) observed similar results in
saliva as with plasma with ~15% (29 of 178) of the salivary metabolites displaying rhythmic
variation, primarily consisting of amino acids and associated metabolites (Table S7). Amino
acids displayed a wide range of variation in abundance, up to ~400%, across 24 h. Their
study therefore provides strong evidence that the salivary metabolome is influenced
by circadian control, similar to their results with blood. Circadian variation should be
a consideration in study design when analysing saliva due to the large magnitude of
variation across the 24 h day. Despite the similar outcomes for blood/saliva samples,
no identified rhythmic metabolites were common between these sample types, despite
amino acids being a common rhythmic metabolite class observed in both sample types. It
should be noted that sleep deprivation/prolonged wakefulness, which takes place during
constant routine protocols, are associated with unique changes in the plasma metabolome
and therefore may have a similar impact on the saliva metabolome but this has not yet
been demonstrated.

2.3.2. Morning vs. Evening Studies

Walsh et al. [84] (as described above, see Section 2.2.2), concluded that saliva exhibited
diurnal variation with acetate being the prominent gradient metabolite and selectable
marker within their constructed PLS-DA model to predict time of day for collected samples;
the presence of which is attributed to acetate accumulation throughout the day due to
carbohydrate fermentation in the mouth. No further gradient metabolites were reported
in this study. Dallmann et al., observed extensive 24 h circadian rhythmicity compared
to Walsh et al., who observed limited diurnal variation. This could be a result of Walsh
et al. using 1H NMR and only analysing two samples (morning vs. evening), presumably
~12 h apart, compared to the MS methods and constant routine methodology (10 samples
across 40 h) applied by Dallmann et al., Furthermore, Dallmann et al., employed various
pre-study parameters to control for environmental/behavioural cycles and to reduce inter-
individual variation which Walsh et al. reported was extensive within their study. Whilst
the data were not published within the paper, Dame et al. [90] observed diurnal variation
of acetate and amino acids across saliva samples collected in the morning and afternoon,
corroborating with the findings of Walsh et al., and Dallmann et al., Skarke et al. [60] (as
described above; see Section 2.1.7) reported 5.6% (14/250) of salivary metabolites display
diurnal variation, notably less than what Dallmann et al. [56] observed under constant
routine conditions, with suggested reasons for this disparity as previously described. It
is therefore likely that circadian-controlled metabolite rhythms are masked in the diurnal
setting of the Skarke et al., study; nevertheless, Skarke et al., shows time of day variation
persists and is pronounced in a ‘real-world’ setting with gradient changes in metabolites
still observable.

2.4. Breath

Of the five sample types discussed in this review, breath is the sparsest with regard to
data on rhythmic/gradient metabolites. Only three studies have investigated time of day
variation of breath (see Tables 5 and S5).
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Table 5. A brief summary of study design, cohort details and results with regard to observed time of day variation of metabolites for relevant studies analysing breath.

Authors Assay/Platform Time Course Details Study
Setting/Conditions Cohort Details

Rhythmic/Gradient
Metabolites/Features

Observed

Rhythmic/Gradient
Classes Primarily

Observed

Sinues et al., (2012) [91] Untargeted
SESI-MS

Diurnal variation
(4 time periods)

8:00–11:00, 11:00–13:00,
13:00–15:00, 15:00–18:00

‘Outpatient’ N = 12
7 males

Diurnal changes observed
but number of rhythmic

features not reported

No metabolites
structurally identified

Sinues et al., (2014) [92] Untargeted
SESI-MS

Diurnal variation (24 h, 1
h intervals, 5–7 repeats

per sample)

‘Inpatient’
Controlled laboratory

conditions: hourly
isocaloric meals,

constant wakefulness,
consistent light

conditions

N = 3
2 males

Age 33–38

40 (36%) of features
(49% in N = 1)

No metabolites
structurally identified

Wilkinson et al., (2019) [93] Untargeted GC-MS
Diurnal variation

(24 h—4 time points:
16:00, 22:00, 04:00, 10:00)

Standardised meals and
feeding schedule.

Maintained habitual
bedtime

Healthy
N = 10
7 males

Age 27.5–49.3
BMI 23.4–30.5

Asthma
N = 9
7 male

Age 26.0–49.5
BMI 22.3–27.2

Combined dataset
5/102 (4.9%) metabolites

Asthma 3/102 (~2.9%)
metabolites, 1 of which is

unique to this group in
addition to rhyth-micity of

exhaled nitric oxide fraction
Healthy 2/102 (~2%)

metabolites rhythmic and
unique to this group

Volatile organic
compounds

Footnotes: See Table 2. Abbreviations: GC-MS—gas chromatography mass spectrometry; SESI-MS – secondary electrospray ionisation.
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2.4.1. Morning vs. Evening Studies

Sinues et al. [91] observed diurnal changes in breath across four time points (08:00 h–
18:00 h) analysed via SESI-MS (secondary electrospray ionisation mass spectrometry) over
nine consecutive days. The distinction between time points was great enough for machine
learning approaches, in this case k-nearest neighbor validated via k-fold cross validation, to
correctly predict sample time points 84% of the time in a blind classification. Unfortunately,
the number of detected features, those which display gradient changes/exhibit diurnal
variation, and metabolite identities were not elucidated.

2.4.2. 24 h Diurnal Rhythms

A follow-up study saw Sinues et al. [92] observe diurnal variation in breath via a
controlled laboratory study and using SESI-MS, where a total 111 features were analysed,
of which 36–49% (average 40.3%) exhibited rhythmic behaviour. Pairwise comparisons
differed drastically with regard to common features, a fact made more obvious due to the
restricted size of the cohort (pilot study). A further limitation of this study, addressed by
the author, is lack of identification of the detected features similar to the prior study, though
some tentative metabolite identifications were provided but with no definitive conclusions
in terms of the most rhythmic metabolite classes within the analysis nor the nature of such
rhythms. Nevertheless, PCA score plots illustrate time of day variation within the samples.

Wilkinson et al. [93] monitored diurnal rhythms in volatile organic compounds within
a cohort comprised of healthy and asthmatic participants. The authors incorrectly describe
the observed rhythms as circadian; however, participants were not subject to a constant
routine protocol thus observed rhythms should be defined as diurnal. Semantics aside, a
key strength of this paper, compared to the work of Sinues et al. [92], is the identification of
analysed metabolites with two, three and five metabolites observed in healthy, asthmatic,
and combined groupings, respectively (Table S11). Wilkinson et al., similar to Isherwood
et al. [61] and Gehrman et al. [62], provides evidence for unique diurnal rhythms associated
with specific phenotypes, primarily between healthy vs. asthmatic individuals. Unlike
Isherwood et al., Wilkinson et al., did not observe any significantly rhythmic metabolites
common to both groups when analysed separately.

2.5. Skeletal Muscle

The most recent human tissue to be investigated for time of day variation of the
metabolome is skeletal muscle, with two of these three initial studies focussing on the
lipidome (Tables 6 and S6).
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Table 6. A brief summary of study design, cohort details and results with regard to observed time of day variation of metabolites for relevant studies analysing skeletal muscle.

Authors Performed Assay Time Course Details Study
Setting/Conditions Cohort Details

Rhythmic/Gradient
Metabolites/Features

Observed

Rhythmic/Gradient Classes
Primarily Observed

Loizides-Mangold et al.,
(2017) [94]

Targeted
(Lipidomics)

LC-MS

Diurnal variation (24 h—
4 h intervals between

samples)

‘Inpatient’
Controlled sleep/wake,

light/dark cycle,
temperature.

Isocaloric meals

N = 10, 9 males
Age 29.9 ± 9.8
BMI 24.1 ± 2.7

106 of 1058 metabolites
(10%)

TAGs, PCs, Pes
PIs, PSs, CLs

Cers, GlcCers, SMs

Sato et al., (2018) [63]
Untargeted

UHPLC-MS/MS
GC-MS

Diurnal variation
am vs. pm

‘Outpatient’
Standardised meals and

mealtimes

N = 8, All male
Age 30–45

BMI 27–32.5

163 & 19 of 625 features
(26% & 3%)

as a result of time of day
& diet, respectively

Amino acids
Fatty acyls

Glycerolipids
Glycerophospholipids

Sphingolipids
Carbohydrates

Xenobiotics

Held et al., (2020) [95]
Semi-targeted

Lipidomics UPLC/HRMS
(reversed & normal phase)

Diurnal variation (24 h—
5 h intervals between

samples)

‘Inpatient’
Controlled sleep/wake,

light/dark cycle.
Standardised meals and

mealtimes

N = 12, All male
Age 22.2 ± 2.3
BMI 22.4 ± 2.0

126 of 971 (13%)

Glycerophospholipids
TAGs

Sphingolipids
DAGs

Sterol Lipids
Footnotes: See Table 2. Abbreviations: Cer—ceramide; CL—cardiolipin; DAG—diglyceride; GC-MS—gas chromatography mass spectrometry; GlcCer—glucosylceramide; HRMS—high resolution mass spectrom-
etry; LC-MS—liquid chromatography mass spectrometry; MS/MS—tandem mass spectrometry; PC—phosphatidylcholine; Pe—phosphatidylethanolamine; PI—phosphatidylinositol; PS—phosphatidylserine;;
SM—sphingomyelin; TAG—triglyceride; U(H)PLC—ultra high performance liquid chromatography.
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2.5.1. Diet Composition

Sato et al. [63] (as described above, see Section 2.1.6) compared the impact of a nutri-
tional challenge on the skeletal muscle metabolome and concluded time of day (163/625 fea-
tures affected), and thus accompanying environmental/behavioural cycles, more strongly
influence the metabolome than diet composition (19/625 features affected). However, diet
still exerted a significant influence, with HFD dampening the gradient changes of 60% of
metabolites, predominantly related to lipid metabolism, with a further 19% of metabolites
acquiring an inverted ‘gradient’, i.e., 19 metabolites with a higher relative abundance in
the afternoon compared to the morning, or vice versa, displayed the opposite change
post-HFD. Alternatively, the HCD saw metabolites related to lipid metabolism decrease in
the morning and increase in the evening, creating a sharper gradient in relative abundance
with a further 22% of metabolites exhibiting a significant difference in morning vs. evening
samples (Table S12).

2.5.2. 24 h Diurnal Rhythms

Held et al. [95] performed a semi-targeted lipidomics assay showing that 13% of
detected lipids (126/971) displayed significant rhythmicity over the 24 h day, comprising
57 (45%) glycerophospholipids, 52 (41%) diglycerides, 10 (8%) triglycerides, six (5%) sph-
ingolipids and one (1%) sterol lipid(s). Loizides-Mangold et al. [94] also observed a high
degree of rhythmicity amongst glycerophospholipids, sphingolipids and triacylglycerides
though not diglycerides. An average of ~114 rhythmic metabolites (20.3% of detected lipids
per participant) were observed by Loizides-Mangold et al., comparable to Held et al., with
a reported 532 metabolites detected in all participants at all five time points and deemed
comparable to an in vitro study run in parallel that analysed human myotube cultures. Of
the rhythmic metabolites from the in vivo study it was reported that lipid levels altered by
>20% across the 24 h time course with the authors drawing comparisons to similar findings
in blood, saliva and urine reported elsewhere [51,53,56,86]. Of the rhythmic diglycerides
and triglycerides analysed by Held et al., 87% and 60%, respectively, peaked at 04:00 h
whilst 43% of the rhythmic sphingolipids peaked at 13:00 h, with similar observations made
by Chua et al. [53] when studying plasma taken under constant routine conditions (see
Section 2.1.2). Loizides-Mangold et al., however, reported sphingolipids peaking earlier at
04:00 h alongside phosphatidylcholines.

Further observations by Held et al. highlighted changes in rhythmicity of glycerophos-
pholipids and fatty acids based on chain length (<20 and >20 carbon number) and degree
of saturation, resulting in antiphase rhythms of fatty acids based on these parameters.
Fatty acid chain length and level of saturation was only associated with larger ampli-
tudes of observed rhythms with diglycerides, whilst sphingolipid and sterol lipid rhythms
were deemed independent of these factors. These observations were only partially cor-
roborated by Loizides-Mangold et al. who concluded the degree of saturation did not
influence lipid rhythmicity but did state that chain length influences the diurnal profile of
phosphatidylcholines and sphingomyelins.

The above studies clearly demonstrate that time of day variation is observed in the
human muscle metabolome. Furthermore, not all lipid groups are affected equally and
lipid chemical structure, in part, may impact how a given metabolite is regulated and
influence the phase of its daily rhythm. The potential enrichment of specific metabolite
groups at a given time of day should be a consideration both in study design as well as
in data analysis and interpretation as temporal partitioning of specific subclasses may be
misconstrued as relevant to the studied system when it is potentially an artefact resulting
from time of sampling.
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3. Discussion

Reviewing the literature has revealed the following key findings.

3.1. Key Findings

• The number of studies investigating time of day variation of the human metabolome,
to date, is small (n = 29).

• Endogenous metabolite rhythms, regulated by the circadian timing system, have been
observed via constant routine studies in blood and saliva.

• Diurnal 24 h metabolite rhythms potentially evoked by external cues, either envi-
ronmental (e.g., light/dark cycle) or behavioural (e.g., sleep/wake; feeding/fasting),
have been observed in blood, urine, saliva, breath, and skeletal muscle.

• Acute changes in external cues, e.g., sleep/wake, feeding/fasting, activity/rest cy-
cles and shift work, result in acute alterations to metabolite rhythms (timing and
amplitude) that can persist after cessation of the change.

• Metabolite rhythms (timing and amplitude) may be sex dependent although sex has
not been regularly investigated with regard to differences in 24 h metabolite rhythms.

• Specific physiological phenotypes and healthy vs. diseased state are shown to result in
unique diurnal rhythms alongside the expected metabolite profiles of each phenotype.

• Lipids, in particular glycerophospholipids, and amino acids are the most frequently
observed rhythmic metabolite classes. Lipid rhythms have shown the most variation
between individuals with differences in phase (timing).

• Lipid rhythms may feature class-dependent temporal separation based upon carbon
chain length and degree of saturation.

• A subset of metabolites are repeatedly reported as undergoing significant time of day
variation across studies. A total of 35 putatively identified metabolites having been
observed in at least five studies (Table 7) out of a total of 400 putatively identified
across all studies.

Table 7. Putatively identified metabolites, observed in five or more human metabolomics time course studies, that
underwent significant time of day variation (rhythmic/gradient metabolites) in ranked order.

Rank Putative Identification of
Rhythmic/Gradient Metabolites InChIKey

Number of Studies
Significant Changes were

Observed in
1 Proline ONIBWKKTOPOVIA-BYPYZUCNSA-N 11
2 Leucine ROHFNLRQFUQHCH-YFKPBYRVSA-N 10
3 PC(32:0) - 10
4 Phenylalanine COLNVLDHVKWLRT-QMMMGPOBSA-N 9
5 Ornithine 9
6 Tyrosine OUYCCCASQSFEME-QMMMGPOBSA-N 9
7 Glutamic acid WHUUTDBJXJRKMK-VKHMYHEASA-N 8
8 Isoleucine AGPKZVBTJJNPAG-WHFBIAKZSA-N 8
9 LysoPC(18:2) and/or LysoPE (18:2) - 8

10 PC(34:3) - 8
11 Citrulline RHGKLRLOHDJJDR-BYPYZUCNSA-N 7
12 Taurine XOAAWQZATWQOTB-UHFFFAOYSA-N 7
13 Tryptophan QIVBCDIJIAJPQS-VIFPVBQESA-N 7
14 Valine KZSNJWFQEVHDMF-BYPYZUCNSA-N 7
15 LysoPC(18:1) - 6
16 LysoPC(16:0) - 6
17 Aminoadipic acid OYIFNHCXNCRBQI-BYPYZUCNSA-N 6
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Table 7. Cont.

Rank Putative Identification of
Rhythmic/Gradient Metabolites InChIKey

Number of Studies
Significant Changes were

Observed in
18 Citric acid KRKNYBCHXYNGOX-UHFFFAOYSA-N 6
19 Cortisone MFYSYFVPBJMHGN-ZPOLXVRWSA-N 6
20 Creatinine DDRJAANPRJIHGJ-UHFFFAOYSA-N 6
21 Glycine DHMQDGOQFOQNFH-UHFFFAOYSA-N 6
22 Kynurenine YGPSJZOEDVAXAB-UHFFFAOYSA-N 6
23 PC C36:2 - 6
24 Alanine QNAYBMKLOCPYGJ-REOHCLBHSA-N 5
25 Cortisol JYGXADMDTFJGBT-VWUMJDOOSA-N 5
26 Lysine KDXKERNSBIXSRK-YFKPBYRVSA-N 5
27 LysoPC(17:0) - 5
28 PC C34:1 - 5
29 PC C34:2 - 5
30 PC(32:1) - 5
31 Pregnenolone sulfate DIJBBUIOWGGQOP-OZIWPBGVSA-N 5
32 Sarcosine FSYKKLYZXJSNPZ-UHFFFAOYSA-N 5
33 SM(20:2) - 5
34 Threonine AYFVYJQAPQTCCC-GBXIJSLDSA-N 5
35 Trimethylamine N-oxide (TMAO) UYPYRKYUKCHHIB-UHFFFAOYSA-N 5

Footnotes: Common names have been assigned to act for synonyms reported in the literature; see Table S1 for further details. Putative iden-
tifications are ordered based on the frequency in which they are reported within the literature, with metabolites only listed here if observed
in n ≥ 5 studies; InChlKeys are provided where applicable. Abbreviations: PC—phosphatidylcholine; LysoPC—lysophosphatidylcholine;
LysoPE—lysophosphatidylethanolamine; SM—sphingomyelin.

3.2. Potential Consequences Resulting from Time of Day Variation

The above findings present a number of factors to consider in future metabolomics
studies. Firstly, an individual participant can produce unique metabolic profiles with
numerous significant differences between individual metabolites, even under constant
conditions, from samples collected on the same day and only hours apart [53,56]. Time of
day variation can confound intra- and inter-individual variation and may be significant
enough to influence biological conclusions and biomarker identification. This example
could also occur between two studies should samples have been collected at different
times of day in turn affecting inter-study comparisons. Sampling participants at the same
social/clock time is insufficient to circumvent this issue, e.g., as seen within the Chua et al.
study [53] and discussed above in the introduction [44–46], individual participants can be
sampled at the same social/clock time but still display inter-individual variation in their
observed biological times due to genetic differences or differences in SCN and peripheral
clock timing. Another topical example comes from recent studies proposing metabolite
COVID-19 biomarkers [96]. While it remains to be shown whether daily variation has a
significant impact on the proposed prognostic biomarkers, it should be noted that 28/77
metabolites identified as COVID-19 related are also reported in this review, and six of
these have been observed undergoing time of day variation in at least five studies reported
here (i.e., glutamic acid, isoleucine, kynurenine, leucine, ornithine, phenylalanine). With
these issues in mind one should question to what extent biological rhythms are responsible
for the observed results in studies applying metabolomics platforms such as a biomarker
panel. That is not to say these studies are void for not considering biological time, however.
Consider well-characterised rhythmic metabolites such as serotonin, tryptophan or mela-
tonin and their use as biomarkers [97]. Serotonin and tryptophan concentration ranges are
0.04–0.74 µM and 35.60–121.67 µM (mean ± SEM 0.19 ± 0.01/72.24 ± 2.07), respectively,
during a 24 h period (inclusive of 8 h sleep) [51]. Thus, controlling for biological/circadian
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time provides a means to disentangle variation brought about either by time of day or
biological class (age, sex, disease state) or observe co-variance, as shown in this exam-
ple [98]. Studies have shown that the timing of internal body clocks may differ between
individuals by up to 12 h in urban areas of industrialised countries where shift work is
common [99]. Therefore, scientific discoveries require further validation, in the context
of biological time and variation across the 24 h day, before they can truly be relied upon.
The work presented here is certainly not defining studies which do not include controls for
diurnal and/or circadian rhythms as invalid, rather that when biomarkers are validated
the time of day (clock time) and biological time (circadian time) of sample collection should
be considered. The question to be asked is ‘Is the biomarker performance independent of
the time of day and biological time the sample is collected’ or should specific requests for
when a sample should be collected be applied? Providing context for biological time and
acknowledgment that circadian timing systems impact on biological processes has started
within other fields such as chronopharmacology [100]. It should be noted that the impact
of time of day variation would be dependent upon the study design and method in which
samples were collected, for example currently employed methods such as pooled 24 h urine
samples circumvent time of day variation whilst blood samples collected in the morning
following an overnight fast would reduce time of day variation, mitigate postprandial
changes and minimise inter-individual variation with regard to biological time of the
participants (assuming sampling occurred at a similar time, relative to waking up, for each
participant/similar chronotypes between participants). These practices may not always
be employed, however, an issue previously considered [101]. If sample collection occurs
randomly throughout the day then the time of day variation in metabolites would lead to
increased variation observed across all classes; larger cohort studies may exhibit a similar
distribution of chronotypes and sampling time between classes translating to a comparable
degree of variance between them with the caveat being that the investigated classes are
independent, i.e., do not influence, chronotype distribution/sampling time. In such a
scenario, the influence of time of day variation would be less, relative to a smaller cohort
where assumptions on distributions could not be made, but there would still be a reduction
in the sensitivity of any resulting statistical analysis to discern true significant differences
between groups due to the introduced variation between/within groups as a result of
time of day and potential covariance between the variable of interest and time. Therefore,
smaller (pilot/discovery) studies not accounting for time of day variation are likely to
be more strongly affected by the introduced variation. The metabolomics community
could advance its research in a similar format through small additions and considerations
during the study design process and updates to minimum reporting guidelines during
publication. We hope with this review that time of day variation (driven by external factors
and/or internal circadian timing) is given serious consideration in the future design of
metabolomics and biomarkers studies so this effect is minimised or accounted for, thus,
strengthening the design and interpretation of these studies.

3.3. Proposed Updates to Minimum Reporting Guidelines in Human Metabolomics Studies

Minimum reporting criteria were proposed by the Metabolomics Standards Initiative
(MSI) [102] for various metabolomics studies and data analyses [103–105]. Whilst it was
recognised that diurnal rhythms can influence the metabolome [103], this evidence was
derived from animal studies with no pre-established protocols for human studies from
which to derive a standardised workflow and guidelines. An underlying principle of the
MSI guidelines is that all metadata that can reasonably be provided and that informs the
metabolomics dataset must be made available [105]. Since the metabolome is influenced by
circadian and diurnal rhythms, it is reasonable to, as a minimum, collect time data pertinent
to these rhythms for the purpose of transparency and independent reproducibility, the
purpose that these minimum standards were initially proposed for. This requirement for
additional time information should also extend to in vitro studies with mammalian cell
cultures responding to entraining agents [106,107] to express monitorable rhythms similar
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to in vivo studies [94] and prokaryotes also demonstrating 24 h rhythms [108,109] but is not
discussed further in this paper. For studies in which single samples are being collected from
participants self-reported questionnaires, such as the Munich Chronotype Questionnaire,
should be administered to collect data on habitual sleep and assign participants their
chronotype, in addition to recording work history specifically of those who are working
non-traditional shifts outside 09:00–17:00 h work patterns (may differ with cultural context)
or rotating shifts. These data may then inform cohort screening, e.g., exclusion of shift
workers, or be retained simply for future reference. Most importantly, upon collecting a
sample, elapsed time since participant wake up, complete calendar data, time of day, and
approximate geographical location/coordinates at which samples were collected should
be recorded. This latter measurement is important to assess the prevailing photoperiod
(sunrise/sunset times) and is linked to an individual’s chronotype, their phase angle of
entrainment, being more strongly linked to the sun clock (local time based on relative
position of the sun) than the social clock (locally assigned time (time zones)). Context on
the natural light/dark cycle that participants are entrained to therefore changes based on
season and/or geographic location [99].

It has been suggested throughout the studies presented that observed diurnal rhythms
(timing and amplitude) may differ based upon: age, sex and body mass, further empha-
sising the need for age/BMI/sex matched participants between test groups as is already
common practice for many studies. Moreover, based on the findings of Honma et al. [50],
diurnal rhythms and their response to an intervention (e.g., total sleep deprivation) can
differ greatly between males and females and so facilitation should be made in the planning
stages of data analysis to allow for sex-dependent comparisons within/between test groups
to gauge such differences.

If opting to collect multiple samples over a time course then additional methodology,
beyond that noted above, should be adopted from chronobiology studies such as monitor-
ing and recording rest/activity and sleep/wake patterns, ideally for a week prior to sam-
pling collected via actigraphy/sleep diary or monitoring a circadian-phase marker such as
melatonin (plasma or saliva) or its derivative metabolite, aMT6s (6-sulphatoxymelatonin);
methods of measuring such markers are reviewed here [110]. Having a circadian-phase
marker, such as melatonin, allows for metabolite data collected over the time course to be
plotted against biological time (e.g., against melatonin onset) as opposed to social time as
demonstrated here [98,111]. Use of cosinor analysis and MetaCycle to determine rhythmic-
ity is the standard approach within the field [112,113], though defining the amplitude of
such rhythms is of equal importance. The amplitude of a 24 h metabolite rhythm and the
minimum and maximum values represents the range of values a metabolite is present at
in a sample. These data are therefore of great value and the publishing of such data for
groups researching metabolite rhythms is encouraged with Davies et al. [51] setting an
excellent example within their supplementary material by including minimum and maxi-
mum metabolite concentration values across their 48 h time course study which employed
a targeted metabolomics assay.

3.4. Investigating Metabolite Rhythms—The Next Steps

A common outcome for many of the studies reviewed above was the identification
of rhythmic/gradient metabolites; with a second common feature for many studies being
the analytical platform employed. Upon observing the methods of the reviewed studies
it becomes quickly apparent that particular assays have been collectively favoured with
variations of LC-MS the most commonly used across 19 studies (two of which applied
HILIC assay and 17 applied reversed- and/or normal-phase assays) followed by NMR
(six studies), GC-MS (gas chromatography mass spectrometry) (six studies), FIA-MS (Flow
injection analysis mass spectrometry) (four studies), SESI-MS (two studies), DI-MS (direct
infusion mass spectrometry) (one study). Each of these platforms possesses its own ad-
vantages and limitations with regard to what metabolites can be detected thus influencing
the collected dataset and metabolome coverage, resulting analysis and interpretation [1].
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With this in mind, the curated list of metabolites undergoing time of day variation is
somewhat limited and indeed biased towards lipids and non-polar metabolites which
see better retention within reversed-phase assays. By contrast polar metabolites may be
underrepresented since they exhibit poor retention in these assays and are better retained
and detected within HILIC assays. Further utilisation of HILIC methodology may yield
additional rhythmic metabolites similar to the outcomes of the study by Grant et al. [65].
It is also of interest to note that whilst various studies used multiple analytical platforms
and assays in tandem, no study has yet to incorporate both HILIC and reversed-phase
assays in parallel producing a more ‘complete’ dataset and coverage of the metabolome.
Further untargeted studies employing a greater diversity of U(H)PLC (ultra high perfor-
mance liquid chromatography) assays would benefit this growing body of work moving
forward. Despite this potential limitation over 400 metabolites have been observed to be
either significantly rhythmic or undergo significant time of day changes in a morning vs.
evening fashion (Table S1) based upon putative or definitive metabolite identification. Of
these metabolites, 35 have been observed in at least five studies (Table 7). This compiled
information provides insight into metabolic pathways likely influenced by time of day vari-
ation with amino acids and their derivatives being amongst the most frequently observed
rhythmic/gradient metabolites. This information provides an adequate starting point
for the development of bespoke targeted assays to investigate such pathways, quantify
observed rhythms in metabolite concentrations similar to Davies et al. [51] and consider
the biological significance of the rhythm, or lack thereof, under particular conditions such
as shift work or disease state [61,64,67]. Expanding upon the number of biofluids/tissues
investigated to observe diurnal/circadian variation presents a challenge due to the need
for repeated and regular sampling over a 24 h time course, methods used for single sample
collection, such as a biopsy, may thus prove too invasive or impractical for repeated and
regular sampling. However, ambulatory microdialysis sampling techniques capable of
high resolution sampling in humans hold promise [114]. In the near future it may be more
practical then to expand upon the base of work on the five currently investigated sample
types of which serum/plasma have been favoured leaving saliva, urine, skeletal muscle,
and breath under investigated by relative comparison.

A general challenge for identifying and validating biological rhythms in -omic datasets
across studies is the distinction between rhythmic and non-rhythmic time series. Many
detection algorithms or combination of algorithms have been proposed. Two of these have
already been mentioned above (i.e., cosinor and MetaCycle) but many other workflows
and applications such as Multi-Omics Selection with Amplitude Independent Criteria (MO-
SAIC) [115], Rhythmicity Analysis Incorporating Non-parametric methods (RAIN) [116],
Extended Circadian Harmonic Oscillator (ECHO) [117] and others [118,119] are available.
As any one method is open to critique, MetaCycle, for example, is already combining a
number of different methods to determine different regulation of rhythmicity in different
groups of a study or between studies. Venn diagram analysis (VDA) employs any one of the
methods above, e.g., RAIN, to identify changes in rhythmic items (transcripts/metabolites)
between test groups. Recent findings, however, highlight inter-group and even inter-study
comparisons where VDA has overestimated differences in rhythmic items [120]. The au-
thors highlight the shortcomings of VDA and propose a novel approach to circumvent these
issues implemented in the R package compareRhythms that compares circadian parameters
(amplitude and phase) between the groups under comparison. This allows compareRhythms
to discern between metabolites that have remained the ”same” (rhythmic across test con-
ditions) and have undergone a ”change” (still rhythmic but phase/amplitude change
between test conditions) whilst VDA cannot.

3.5. Summary

In summary, the primary objective of this review was to establish the sample types
in which time of day variation of metabolite concentrations have been reported using a
metabolomics platform, with a focus on identifying rhythmic metabolites. The extent of
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this time of day variation on the complete metabolome has also been reported to highlight
the number of detected metabolites which have been shown to vary with time. The
metabolome of blood, urine, saliva, breath, and skeletal muscle are influenced by diurnal
and/or circadian rhythms. This most likely extends to other human biofluids and tissues
in a similar fashion to how gene transcripts are rhythmic across a range of tissues in
mammals [34,121]. Changes to external time cues (Zeitgeber), such as the light/dark and
feeding/fasting cycle, result in changes to these rhythms and should thus be considered
potential controllable variables, e.g., enforcing a specified light/dark, sleep/wake protocol
for all participants, or setting meal times, excluding shift workers, dependent on the
nature of the study being performed. Moving forward, additional data are suggested to be
collected and shared within the metadata of metabolomics studies pertaining to history
of shift work in participants, sleep/wake times and a person’s chronotype, complete
time/calendar date and geographical location in which samples were taken, all of which
may influence the metabolite profiles, the resulting analysis and biological interpretation.
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Table S2: Blood plasma study data, Table S3: Urine study data, Table S4: Saliva study data, Table S5:
Breath study data, Table S6: Muscle study data. Rhythmic/gradient metabolite lists organised by
subtheme, Table S7: Circadian, Table S8: Sleep deprivation, Table S9: Sex differences, Table S10. Shift
work, Table S11: Health, Table S12. Diet composition.
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