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Abstract: Bronchial asthma is a chronic disease that affects individuals of all ages. It has a high
prevalence and is associated with high morbidity and considerable levels of mortality. However,
asthma is not a single disease, and multiple subtypes or phenotypes (clinical, inflammatory or com-
binations thereof) can be detected, namely in aggregated clusters. Most studies have characterised
asthma phenotypes and clusters of phenotypes using mainly clinical and inflammatory parameters.
These studies are important because they may have clinical and prognostic implications and may
also help to tailor personalised treatment approaches. In addition, various metabolomics studies
have helped to further define the metabolic features of asthma, using electronic noses or targeted and
untargeted approaches. Besides discriminating between asthma and a healthy state, metabolomics
can detect the metabolic signatures associated with some asthma subtypes, namely eosinophilic
and non-eosinophilic phenotypes or the obese asthma phenotype, and this may prove very useful
in point-of-care application. Furthermore, metabolomics also discriminates between asthma and
other “phenotypes” of chronic obstructive airway diseases, such as chronic obstructive pulmonary
disease (COPD) or Asthma–COPD Overlap (ACO). However, there are still various aspects that
need to be more thoroughly investigated in the context of asthma phenotypes in adequately de-
signed, homogeneous, multicentre studies, using adequate tools and integrating metabolomics into a
multiple-level approach.

Keywords: metabolomics; asthma; phenotypes; endotypes

1. Introduction

Bronchial asthma is a chronic respiratory disease that affects individuals of all ages. It
commonly involves chronic airway inflammation and symptoms of varying magnitude
over time, which include dyspnea, chest tightness and cough [1]. It has a high prevalence,
high morbidity and considerable levels of mortality [2]. According to the Global Initiative
for Asthma (GINA), “Asthma is a heterogeneous disease, with different underlying disease
processes. Recognizable clusters of demographic, clinical and/or pathophysiological
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characteristics are often called ‘asthma phenotypes’ [1]. In fact, multiple studies have shown
that various subtypes of asthma can be reflected in external manifestations of the disease,
which are designated as “phenotypes”, and may involve both clinical and inflammatory
features, as well as others [3]. However, since asthma phenotypes do not imply any specific
underlying pathophysiological mechanisms, asthma can also be classified into subtypes
known as “endotypes” [4], which are based on specific pathophysiological mechanisms at
both cellular and molecular levels [5–7].

The detection of biomarkers is necessary in order to obtain more robust definitions
of phenotypes or endotypes of asthma [8–10]. This further helps to classify patients and
may allow a better personalised therapeutic approach to each phenotype or endotype [11].
Although different types of biomarkers have been described, metabolic pathways also have
components that are different between a healthy state and disease, and which may also be
relevant as asthma biomarkers. Thus, the thorough analysis of small molecules such as
amino acids, lipids, organic acids and nucleotides via metabolomics studies carried out
on different biological samples—exhaled breath condensate (EBC), peripheral blood or
urine—can be very important in the approach to asthma regarding diagnosis, monitoring,
tailored treatment and prognosis, but many issues still need to be addressed. In fact, more
specifically, metabolomics-associated biomarkers may be very useful for understanding
asthma pathophysiology as well as various other aspects of the disease, including the
prediction of exacerbation and response to treatment.

Metabolomics uses high-throughput analytic techniques which are combined with
bioinformatics to obtain a thorough and detailed overview of multiple metabolites in
biological sources, thereby being able to characterise healthy status- and disease-related
metabolic signatures. Fast, targeted metabolomics and untargeted metabolomics are the
two main study strategies in the area of metabolomics [12,13]. Both provide important in-
formation about changes in metabolism and quantification of metabolites in many chronic
pathological settings, with applications in the diagnosis, pathophysiology and manage-
ment of diseases, including asthma [14]. If, on the one hand, targeted metabolomics is
only concerned with identifying and semi- or fully quantifying pre-defined metabolites of
interest, the non-targeted strategy offers far more comprehensive results as to the identi-
fication and quantification of metabolites, since it does not restrict analysis to previously
defined target molecules [12]. The latter is possibly the best way to characterise a disease
from the metabolic point of view and identify new biomarkers [12,15]. However, the
untargeted metabolomics strategy can be problematic because it identifies a wide range of
metabolites that may be difficult to interpret and constitute a confounding factor. In fact,
the identification and validation of relevant metabolites using untargeted metabolomics
requires thoughtful analysis since only a subset of all metabolite features can be positively
ascribed to a molecular structure [16,17]. Furthermore, a high level of computational analy-
sis of big data is crucial for an adequate and standardised analysis and interpretation of
results that may avoid or highly significantly minimise the possibility of yielding erroneous
results [16,18–20]. This is very important because the metabolome can be influenced or
confounded by many aspects such as age, sex, circadian rhythm, medication and other
xenobiotics, microbiota, physical exercise, diet or even air pollution, both in healthy states
and in disease. In addition, sample source and types, sample collection and storage aspects,
analytical procedure aspects, as well as data analysis also influence results. Finally, external
validation using results from different patient cohort samples is crucial to making results
solid and generalisable; however, this aspect is lacking in many studies.

Methodologically, metabolomics strategies can be supported by several techniques,
namely nuclear magnetic resonance “spectroscopy” (NMR) [21], liquid chromatography
coupled to mass spectrometry (LC–MS) and gas chromatography coupled to mass spec-
trometry (GC–MS) [20,22]. LC–MS has possibly been the most used technique because it
offers greater sensitivity in the identification of metabolites [15,23]. In any case, NMR is also
an extremely useful technique, and the best and most thorough metabolomics approach
would probably entail combining both techniques. In fact, jointly using LC–MS and NMR
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(LC–NMR–MS systems) allows the combination of high throughput (via NMR) with high
sensitivity and resolution levels (via LC–MS) [24,25].

Electronic nose (eNose) devices can be used for global metabolite characterisation,
by detecting complex mixtures of Volatile Organic Compounds (VOCs) in exhaled breath
and providing associated breath-prints of such mixtures. eNose technologies are cheaper,
non-invasive and provide more rapid capabilities, allowing for the earlier detection of
metabolite changes compared to conventional analytical chemistry-based methods [26–29].

In the specific context of respiratory diseases, eNoses can detect changes in VOC
mixtures in asthma [30–32], COPD [33–35], as well as in various other respiratory diseases,
namely cystic fibrosis or tuberculosis [36–39]. Dual-technology eNoses are similar to
conventional chemical identification approaches in having chemical analysis capabilities
that allow them to identify VOCs as disease-specific biomarkers [30–35]. Finally, in this
context, the use of application-specific database libraries of VOC biomarkers can favour
early disease detection [29,40,41].

Overall, various metabolomics studies, focusing on small-molecule metabolites in
urine, peripheral blood or EBC, including VOCs, have shown that metabolite expression can
discriminate between (a) asthmatic and non-asthmatic individuals [32,42–51]; (b) asthmatic
patients and patients with chronic obstructive pulmonary disease (COPD) [52]; (c) asthma
exacerbations and stable asthma [53], (d) severe and non-severe asthma [54–58], (e) different
asthma phenotypes [59–61] and (f) assessment of treatment responses and effects, including
responsiveness or not to corticosteroids [13].

Most studies on biomarkers and phenotypes have mostly been performed in children
and non-elderly adult asthmatics. In fact, phenotyping studies in elderly asthmatics are
scarce and, to the best of our knowledge, no metabolomics approaches have been used in
this subgroup of patients. This constitutes a major gap in knowledge because, in the past
twenty years, there has been a clear increase in the percentage of the elderly population [62].
Furthermore, asthma is not always easy to diagnose or treat in such patients, due to multiple
comorbidities, polypharmacy, partially different clinical manifestations, lower symptom
awareness, failure to comply with medication or other problems [62,63]. Thus, having
metabolomics biomarkers that may increase the diagnostic, prognostic and therapeutic
capacity in personalised medicine approach becomes highly important in all age groups,
particularly in the elderly.

This review will focus on some of the main aspects of metabolomics in adult asthma,
particularly its use for the biomarker-based assessment of disease-characterising and differ-
entiating features, namely in the study of possible metabolic biomarkers of different clinical
or inflammatory asthma phenotypes and/or endotypes, discrimination between asthma
and other chronic obstructive airway diseases in relation to inflammatory and clinical phe-
notypes and the eventual existence of actual metabolic phenotypes based on metabolomics
signatures. The temporal stability and eventual prognostic capacity of metabolic signatures
will also be briefly analysed, as well as other aspects that may influence such signatures.
Results from studies in children will not be specifically mentioned since there have been
two recent reviews focusing on this subpopulation and asthma [64] or atopic diseases, in
general [65]. Since this is a narrative review, and not a systematic review, this document
does not aim to be an exhaustive, comprehensive analysis but rather a conceptual approach
to the issue of metabolomics signatures and asthma phenotypes.

2. Phenotypes and Endotypes in Adult Asthma

Several inflammatory and clinical phenotypes have been described in adult asthma,
underlying the heterogeneity that can be observed in the disease. Inflammatory pheno-
types are based on the main type of immune cells that are detected in association with
the pathophysiology of disease, e.g., eosinophils or neutrophils [66,67], whereas clinical
phenotypes are characterised according to symptoms, related diseases or responsiveness to
treatment [66].
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“Phenotypes” are external manifestations of asthma that result from the combination
of hereditary and environmental influences [3,7,68], and which may occur in varying com-
binations [5,69,70] and even concurrently [71]. Furthermore, asthma phenotypes are not
associated with a specific underlying pathophysiological mechanism, since different mecha-
nisms may lead to the same phenotypic features, particularly in clinical terms [5,68–70,72].

The main inflammatory phenotypes that have been described in adult asthma, mostly,
but not exclusively, involve eosinophilic, neutrophilic and paucigranulocytic types, and
apply to severe asthma [69,73,74]. Furthermore, more recent phenotypic classifications
have involved type-2 (T2) “high” inflammation, which is rich in T helper 2 (Th2) cells, in
an IL-4, IL-5 and IL13-rich setting, and is frequently associated with eosinophilia [67,75],
and T2 “low” inflammation, which is generally associated with IL-2, IFN-γ and/or IL-17
producing T cells and tends to be more frequently neutrophilic [67,76].

In addition, various phenotypes associated with disease features (onset of disease,
functional and clinical aspects, asthma severity, response to treatment, among other as-
pects), and combinations thereof, have also been described. For instance, early-onset
asthma (EOA) and late-onset asthma (LOA) are different onsets of disease-related “phe-
notypes”, with the former generally developing in childhood or early adulthood and the
latter sometime in adulthood [77,78]. On the other hand, atopic asthma and non-atopic
asthma are also regarded as different phenotypes, which are usually discriminated ac-
cording to an association or not with sensitisation to aeroallergens [79,80]. In addition,
severe asthma, steroid-resistant asthma, occupational asthma, aspirin-induced asthma,
exercise-induced asthma and obesity-associated asthma have also been regarded as asthma
phenotypes [69,79,81].

Finally, many studies have used cluster analysis for the detection of the aggregation of
multilevel features that discriminate subgroups of asthma patients and which may be more
relevant to real-world practice as well as in terms of prognostic significance. In this context,
the most robust evidence obtained from studies of “aggregations” of asthma features
involved the following phenotype “clusters”: (1) early-onset allergic asthma; (2) early-
onset allergic moderate-to-severe asthma; (3) late-onset nonallergic eosinophilic asthma
and (4) late-onset non-allergic non-eosinophilic asthma [82]. In addition, other biomarker
studies in asthma, involving international networks and studies such as ADEPT and U-
BIOPRED, found similar, but not completely superimposable, phenotype clusters: (1) “mild,
good lung function, early onset” asthma, associated with a low degree of predominantly
type-2 (T2) inflammation; (2) “moderate, hyper-responsive, eosinophilic” asthma, with
moderate asthma control, mild airflow obstruction and predominant type-2 inflammation;
(3) “mixed severity, predominantly fixed obstructive, non-eosinophilic and neutrophilic”
asthma, with moderate asthma control and low type-2 inflammation; (4) “severe uncon-
trolled, severe reversible obstruction, mixed granulocytic” asthma, with a moderate degree
of type-2 inflammation [83,84].

Several previously described asthma “phenotypes” have subsequently been proposed
as “endotypes”, and examples of these include adult allergic asthma, aspirin-sensitive
asthma, late-onset hypereosinophilic asthma, obesity-related asthma, neutrophilic asthma,
T2-high or T2-low (non-Th2-high) asthma [5,85,86]. In fact, as is the case of T2-high and
T2-low asthma, underlying immunopathophysiological mechanisms (involving cytokines)
have been identified and there is even effective medication targeted at these mechanisms
(e.g., anti-IgE, anti-IL-5, anti-IL-5 receptor or anti-IL4/IL3 receptor α-chain) [87]. Figure 1
shows examples of possible phenotypes and endotypes of asthma.
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Figure 1. General outline of some of the most frequently analysed asthma phenotypes, endotypes and phenotype clusters
in adults.

3. Main Metabolomic Signatures and Their Potential Implications in Adult Asthma

Besides the inflammatory aspects, metabolic changes are also an element that must
be taken into account as a basis for the molecular understanding of the underlying patho-
physiological processes in asthma. In fact, some metabolic pathways may be activated or
changed otherwise and studying such changes may help us to understand the metabolic
pathways that can be implicated in the pathogenic process, in association with inflam-
matory aspects. However, because metabolic processes are dynamic and reflect many
influences, namely genome–environmental interactions and the effects of asthma and
its severity on the metabolome, need to be distinguished from effects due to treatment
and other confounders. This is all the more important in persistent asthma that requires
regular inhaled corticosteroids (ICS), or in severe asthma, which may require short bursts
of oral corticosteroids, and it may also apply to other types of medication both for asthma
and for other concurrent diseases, as is the case in elderly individuals who frequently
have multimorbidity.

A correct diagnosis and optimal treatment approach for each asthma patient remain a
challenge for healthcare professionals. The heterogeneity of the disease, involving different
pathophysiological mechanisms and/or disease expression features, as can be inferred
from the various phenotypes and clusters of phenotypes, as well as endotypes, makes its
correct approach complex. In view of these difficulties, metabolomics emerges as a strategy
that allows the identification of altered metabolic pathways, as well as the metabolites
eliminated from these pathways in asthma, thereby improving their identification as
general biomarkers of the disease, and of asthma subtypes, response to treatment or even
as novel therapeutic targets [88,89].

This review will only briefly comment on how well metabolomics can differentiate
between asthmatic and non-asthmatic individuals, between asthma exacerbations and peri-
ods of stable asthma or between severe and non-severe asthma. It will rather concentrate
on how metabolomics can discriminate between asthma and other subtypes of chronic
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obstructive airway diseases, as well as between different clinical and/or inflammatory
asthma phenotypes and endotypes, including eosinophilic and non-eosinophilic asthma,
obesity-associated asthma or steroid-resistant asthma. The issues of phenotype stability
and the potential prognostic value of metabolomics-detected biomarkers in asthma will
also be addressed. Overall, there is heterogeneity across studies, for various reasons, and
some results have not been replicated or externally validated or data are simply scant or
even non-existent. These aspects imply that this exciting and interesting field warrants
further research.

Most metabolomics studies can detect asthmatic patients, although evidence is more
robust in terms of differentiating between healthy controls and patients with severe asthma
or patients with an exacerbation of the disease. Positive results have been described in
exhaled breath, via the study of VOCs and using either eNoses or targeted or untargeted
metabolomics analysis, in peripheral blood and in urine, using various NMR or GC
approaches [30–32,42–46,50].

It is possible to derive certain notions concerning a metabolic asthma profile in com-
parison with that of healthy controls, in spite of clear heterogeneity across different studies.
Such heterogeneity involves metabolomics analysis/detection methods (e.g., NMR versus
LC–MS or GC–MS versus other forms or combined forms of analysis), studied metabolites
(lipids versus amino acids, versus carbohydrates or multiple combinations thereof, as well
as other metabolites) and also the types of asthmatic patients that were included (diagnosed
according to different criteria, with different percentages of patients on inhaled treatment,
or with different levels of disease severity, among other factors) [30,42–46,50,51,54,90,91].
Since the analysis of metabolomics differences between asthmatic individuals and healthy
controls has been the focus of various reviews, we will only succinctly summarise some of
the main findings.

Ethane levels in exhaled breath may be higher in asthma but this difference may be
more robust or significant in steroid-free asthmatics [26,30]. In any case, elevated levels
may thus be a noninvasive marker of oxidative stress in asthma.

In addition, metabolic pathways such as glycolysis and gluconeogenesis may also be
altered in asthma, as suggested by the increased levels of carbohydrates such as glucose in
the airway epithelium of asthmatics [91]. This is relevant because glucose, for example, is
involved in the production of reactive oxygen species (ROS), which enables the activation
of the inflammasome in asthmatics.

Regarding lipidomics, lipid metabolites such as phosphatidylethanolamine (PE)
(18:1p/22:6), PE (22:0/18:1), PE (38:1), sphingomyelin (SM) (d18:1/18:1) and triglyceride
(TG) (16:0/16:0/18:1) may be increased in more severe asthmatics, whereas metabolites
such as phosphatidylinositol (PI) (16:0/20:4), TG (17:0/18:1/18:1), phosphatidylglycerol
(PG) (44:0), ceramide (Cer) (d16:0/27:2) and lysophosphatidylcholine (LPC) (22:4) may
be decreased [51]. Furthermore, PE (38:1) was the main lipid metabolite that better dis-
criminated between asthmatic individuals and healthy controls. Finally, targeted lipid
metabolomics showed that individuals with severe asthma have a higher content of phos-
phatidylcholines (PCs), LPCs, lysophosphatidylethanolamines (LPE) and bis
(-monoacylglycer) phosphates in bronchial epithelial cells, compared with non-asthmatic
individuals and those with mild and moderate asthma [90].

SM and cholesterol are of great importance in several functions, such as transmem-
brane signal transduction, which is involved in apoptosis, cell proliferation, differentiation,
inflammation and oxidative stress. On the other hand, elevated levels of PE (particularly
in oxidised forms) are indicative of programmed cell death via ferroptosis, since PE is
an important phospholipid of the glycerophospholipid class that constitutes the plasma
membrane (inner leaflet) of viable cells and is released when cells enter cell death [92].

Peripheral blood taurine, lathosterol, bile acids, nicotinamide and adenosine-5-phospate
levels have also been shown to be significantly higher in asthmatics than in healthy controls [54].

In summary, metabolomics can discriminate between healthy individuals and patients
with bronchial asthma. Globally, the most frequently identified metabolites, although with
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differences across studies, have involved energy homeostasis, lipid metabolism, tricar-
boxylic acid cycle, oxidative stress, hypoxia-associated molecules and various metabolites
associated with immunoinflammatory processes that may be relevant to the underlying
immunopathology of asthma [49,93,94]. Most of these affected metabolic pathways are
concordant with the fact that asthma is a chronic, inflammatory disease, which requires
changes in energy supply and possibly also metabolic reprogramming, namely in immune
cells involved in the process.

However, it is important to ascertain whether metabolomics approaches can detect
any differences between various clinical and/or inflammatory asthma phenotypes and/or
endotypes, an aspect that may be crucial in providing non-invasive, point-of-care support
for clinical decisions regarding individual patients.

Figure 2 shows the main altered metabolic pathways and the main metabolites ob-
served in targeted and non-targeted metabolomics studies in asthma, as well as some
general implications for the disease.

Figure 2. Representation of the main altered metabolic pathways and the main metabolites observed in studies of targeted
and non-targeted metabolomics, as well as their relationship with some general implications for asthma. The left-hand
side of the figure includes the most important pathway (lipid metabolism) and some of its metabolites, also demonstrating
how these metabolites have implications for inflammatory processes, cell proliferation and signaling. In the centre, some
metabolites of carbohydrate metabolism and citric acid cycle (TCA) are shown. These have been shown to have implications
for activating the immune system and generating energy. On the right-hand side, some metabolites of the altered amino
acid pathway are identified. These are involved in the immune response and energy metabolism.

4. Assessment of Metabolic Changes in Inflammatory Asthma Phenotypes

Although asthma phenotypes can have some overlap, they may still have prognostic
implications. Thus, it would be interesting to analyse whether they are also associated
with different metabolic signatures—in other words, whether metabolomics can be used to
detect inflammatory asthma phenotypes.
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4.1. Global Metabolomic Signatures in Eosinophilic and Non-Eosinophilic Asthma Phenotypes

Various studies using eNoses [95–97] or other approaches [59] analysed VOCs in
exhaled breath to classify asthma in adults into different inflammatory phenotypes. This is
relevant in terms of point-of-care management of asthma patients, particularly those with
more severe disease [98]. In addition, other authors [54,91] used untargeted metabolomics
with the same purpose.

Plaza et al. [95] performed a metabolomics study of whether an eNose could differen-
tiate between eosinophilic, neutrophilic and paucigranulocytic inflammatory phenotypes
in 52 patients with persistent asthma. Such phenotypes were determined by cell counts in
induced sputum. VOCs breath-prints were analysed using discriminant analysis on princi-
pal component reduction, which allowed calculation of cross-validated accuracy values. In
addition, receiver operating characteristic (ROC) curves were calculated. Results showed
that the eNose-derived breath-prints were different in eosinophilic asthmatics compared
with neutrophilic as well as with paucigranulocytic asthma. Furthermore, the neutrophilic
and paucigranulocytic breath-prints were also significantly different. Thus, again, an
exhaled breath study of VOC could differentiate between inflammatory phenotypes in
patients with persistent asthma.

Fens et al. [96] carried out a more invasive bronchoscopic study that aimed to ascertain
whether an eNose could identify adult asthmatic patients with bronchoalveolar lavage
fluid (BALF) eosinophilia, in order for this metabolomics approach to be used as a point-of
care approach to differentiate between patients with eosinophilic and non-eosinophilic
asthma. Thirteen patients with mild asthma (6 females; 7 males) were recruited and all
were ex-smokers. Multiple regression analysis showed that the eNose breath-print was sig-
nificantly associated with BALF eosinophilia but not with BALF neutrophils, macrophages
or lymphocytes. The authors also performed exhaled breath nitric oxide (FeNO) anal-
ysis but no association was found with any inflammatory cell predominance. In fact,
this parameter has shown less consistent results across different studies [99–102]. In any
case, FeNO and eosinophilic inflammation in the bronchi may have at least partially dis-
tinct pathways and disease expression, although both can be markers of T2-high asthma
phenotype/endotype [10,103].

Brinkman et al. [97] performed a multicentre analysis of exhaled metabolomics finger-
prints from various eNoses in an adult U-BIOPRED cohort of severe asthma patients, in
order to ascertain whether it was possible to identify different inflammatory phenotypes
with such a metabolomics approach. The authors carried out unsupervised Ward clustering
enhanced by similarity profile analysis in conjunction with K-means clustering. Various
exploratory analyses were performed through partial least-square discriminant analysis
(PLS-DA). Importantly, three eNose-detected metabolomics clusters became apparent,
which discriminated between circulating and neutrophil percentages in peripheral blood.
These metabolomics clusters were as follows: cluster 1 (33% of patients) did not show
an evident unbalance towards preferential peripheral blood neutrophilia or eosinophilia;
cluster 2 (42% of patients) had the highest mean percentage of peripheral blood neutrophils
and included the highest percentage of patients on oral corticosteroids; cluster 3 (24%
of patients) had the highest mean percentage of peripheral blood eosinophils and the
lowest percentage of patients on oral corticosteroids. Eosinophilia and neutrophilia were
also analysed in induced sputum but no significant differences were found among the
clusters. Finally, although this study used three different clustering techniques that showed
consistent results, it did not include an external validation cohort or even a training and a
validation set within the same cohort.

A study by Ibrahim et al. [59], which adequately differentiated between healthy state
and asthma, was not able to accurately discriminate between an eosinophilic asthma
phenotype and non-eosinophilic phenotypes. This study analysed EBC metabolomics by
NMR in 82 elderly and non-elderly adult asthmatic patients (76% atopic; mostly female)
and in 35 healthy controls. Inflammatory phenotypes were defined according to induced
sputum eosinophilia and neutrophilia, and multivariate modelling was performed on
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70% of the total sample to obtain a discriminatory model that allowed discrimination
between asthmatics and healthy controls, and the model was then tested in the remaining
individuals. Further analyses were carried out to determine the most adequate models for
the identification of metabolic signatures (in NMR spectral regions) in eosinophilic and
neutrophilic inflammatory phenotypes as well as regarding asthma control and inhaled
corticosteroid use. However, the approach had variable success in classifying asthma
phenotypes, since it could discriminate patients with neutrophilic asthma but not those
with eosinophilic asthma.

In a different study, Comhair et al. [54] performed an ultra-HPLC/tandem MS
(MS/MS) untargeted as well as a focused analysis of plasma metabolomic profiles in
20 asthmatics (10 severe; 10 non severe, with severity defined in accordance with ATS
Refractory Asthma Workshop criteria) [104] and 10 healthy controls. In brief, these criteria
imply that, among other parameters, these patients were on regular or almost regular
oral corticosteroids as well as on regular ICS. Patients were stratified according to asthma
severity or by levels of fraction of exhaled nitric oxide (normal if FeNO < 35 parts per
million (ppm) or high if ≥35 ppm). Nine patients had normal FeNO levels and nine had
elevated levels. Besides discriminating between asthmatic patients and healthy individuals,
this study also showed that more severe patients expressed changes in steroid and amino
acid/protein metabolism in comparison with those with less severe asthma. In addition,
patients with high levels of FeNO (possibly expressing T2-type bronchial inflammation)
had higher plasma levels of branched chain amino acids, such as isoleucine, valine and
3-hydroxyisobutyrate, and bile acids such as glycocholate and cholate. In particular, this
report by Comhair et al. suggested that severe asthmatics and those with high FeNO levels
(possibly eosinophilic or T2) have metabolic signatures that indicate possible changes in
NO-related taurine transport and bile acid metabolism.

Finally, Pang et al. [91] studied the relationship between some previously described
inflammatory asthma phenotypes and metabolic features in mild asthmatic patients, diag-
nosed in accordance with the GINA 2016 guidelines. This study included 13 patients
with eosinophilic asthma and 16 with non-eosinophilic asthma, who were classified
into these phenotypes according to a score that included eosinophil/lymphocyte and
eosinophil/neutrophil peripheral blood ratios. In addition, 15 healthy controls were also
studied. Untargeted metabolomics analysis of peripheral blood involved ultra performance
liquid chromatography–tandem mass spectrometry (UPLC–MS/MS). Although with some
variability across different models based on principal component analysis (PCA), an or-
thogonal partial least squares data analysis (OPLS-DA) model showed that 18 different
metabolites were differentially expressed in the three groups, reflecting changes in various
metabolic pathways associated with immune regulation, energy and nutrients, the most
relevant of which were related to the metabolism of glycerophospholipids, sphingolipids
and retinol (which was decreased in asthmatics, particularly with the eosinophilic phe-
notype); these may eventually be used as biomarkers of these phenotypes. As examples,
monosaccharides, PC (18:1/2:0), PS (18:0/20:0) and arachidonic acid (AA) showed higher
levels in non-eosinophilic asthma, whereas PE (18:3/14:0), PC (16:0/18:1), LPC (18:1) and
lactosylceramide (d18:1/12:0) levels were higher in eosinophilic asthma. These results
are interesting but should be interpreted with caution since this study had a small-sized
sample for performing robust metabolomics analyses, and studies with higher numbers of
patients with different inflammatory phenotypes and controls are warranted.

In any case, low retinol levels in asthmatics may be associated with an inability to
suppress eosinophil differentiation and eosinophilic inflammation in asthma, because
retinol has anti-inflammatory and antioxidant properties, and helps to repair the airway
epithelium [105]. Since retinol is a precursor of retinoic acid, it is interesting to observe
the potential effects of these retinoids in inflammatory cell differentiation. In fact, an
in vitro study showed that retinoic acid reduced IL-4-induced eotaxin expression in human
bronchial epithelial cell line BEAS-2, suggesting that retinoic acid may reduce eosinophilic
airway inflammation in diseases such as asthma. Furthermore, at least in the bone marrow
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of non-atopic individuals, retinoic acid inhibits IL-5 receptor expression on eosinophil–
basophil precursors and the differentiation of these cells [106]. Thus, the observed decrease
in retinol levels in eosinophilic asthma may at least partially contribute to the pathophysi-
ology of this inflammatory phenotype.

4.2. Lipidomics in Eosinophilic and Non-Eosinophilic Asthma Phenotypes

A study by Wang et al. [107] used high-performance liquid chromatography with
quadruple time-of-flight mass spectrometry (HPLC-QTOF-MS) to analyse peripheral blood
lipidomics in 24 asthmatic patients and in 20 healthy controls. This study showed that, be-
sides lipid metabolism being different between asthmatics and non-asthmatics, differences
were also detected between eosinophilic and non-eosinophilic asthma. More specifically,
there were significantly higher levels of phosphatidic acids and phosphatidylglycerols—PG
(19:0/22:0), PG (P-18:0/18:4), PG (19:1/22:0) and PG (18:00/20:00)—in eosinophilic than in
non-eosinophilic asthma.

Another recent, study that focused on sphingolipid metabolism analysed serum
samples from 51 adult asthmatic patients and 9 healthy individuals by LC–MS-based target
metabolomics [108]. Results also showed that the peripheral blood levels of various types of
sphyngomyelin (SM), including SM 34:2, SM 38:1 and SM 40:1, were significantly decreased
in asthmatics in comparison with healthy controls. More importantly, in the context of
phenotypic analysis, patients with non-eosinophilic asthma had significantly lower levels
of these SM subtypes than those with the eosinophilic phenotype. This finding was even
more interesting since a negative correlation was found between specific SM levels and
sputum IL-17 levels. Since IL-17 is a neutrophilic cytokine, this suggests that some SM may
be potential biomarkers that act as protective factors in asthma and are more involved in
decreasing non-eosinophilic (non-T2 high) than eosinophilic (T2 high) inflammation.

It is not clear whether the results from the previous studies by Pang et al. [91] and
Guo et al. [108] are discrepant or concordant regarding sphingolipid-associated metabolism
in different inflammatory asthma phenotypes, since the analysed sphingolipids were dif-
ferent. In any case, there is evidence that there is involvement of sphingolipids in the
pathogenesis of asthma, since they play a role in cell growth, survival, inflammation
and tissue remodelling. This is also suggested by a previous study in 22 adult house
dust mite (HDM)-allergic asthmatics and 11 HDM-allergic rhinitis patients, who were
challenged intrabronchially with a HDM (Dermatophagoides pteronyssinus) extract; targeted
metabolomics (HPLC) was used to analyse the concentrations of various sphingolipids (sph-
inganine, sphinganine-1-phosphate, ceramides, sphingosine and sphingosine-1-phosphate)
in peripheral blood [109]. Baseline lung function and severity of allergen-induced hyperre-
activity correlated significantly with sphinganine-1-phosphate (SFA1P) and sphingosine-1-
phosphate (S1P) levels, although there was no correlation with FeNO levels. Furthermore,
S1P levels significantly increased in patients who developed both an early-phase and a
late-phase response to allergen-specific bronchial challenge. Thus, sphingolipid-related
changes may be associated with inflammatory changes induced by aeroallergen-induced
bronchial hyperreactivity. Furthermore, an exploratory study in children, using untargeted
metabolomics by LC–MS, showed that lower concentrations of ceramides (d:16:1/24:1 and
d19:1/18:0) and sphingomyelins (and reduced concentrations of serine palmitoyl-CoA
transferase, the rate-limiting enzyme in de novo sphingolipid synthesis) at the age of
6 months were associated with an increased risk of developing asthma before 3 years of
age [110]. This study may be relevant because such low levels of these sphingolipids are
associated with increased airway resistance, and the authors suggest that this may indicate
a childhood asthma endotype with early onset and increased airway resistance, linked to
reduced sphingolipid concentrations. Whether a similar pattern can also be found in adult
(or elderly) asthma still needs to be ascertained.

Another study focusing on lipidomics in asthma showed that the imbalance between
certain sphingolipids may be associated with different inflammatory phenotypes in patients
with uncontrolled asthma [111]. This study recruited 137 adult patients with asthma and
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20 healthy controls and analysed the serum levels of sphingolipids by LC–MS/MS, as
well as cytokines using ELISA, besides also studying targeted gene polymorphisms to
further characterise asthma inflammatory phenotypes. Asthmatics with neutrophilic
asthma (determined by higher levels of CD66+ neutrophils) had lower lung function
(lower FEV1%), higher Asthma Control Questionnaire (ACQ) scores (indicating worse
asthma symptom control), lower Asthma Quality of Life Questionnaire (AQLQ) scores and
higher sphingosine and C16:0 ceramide levels compared with those without neutrophilia.
In contrast, patients with eosinophilic asthma (determined by higher levels of platelet-
adherent eosinophils) had higher S1P levels compared with those without eosinophilia.
This study thus showed that, in uncontrolled asthma, lipidomics may discriminate, by
studying the ceramide/S1P ratio, between neutrophilic and eosinophilic asthma, with the
associated implications.

A few metabolomics studies focused on lipidomics and oxidative stress, lipid perox-
idation and asthma inflammatory aspects [44,55,112]. In this context, Ibrahim et al. [44]
demonstrated that GC–MS analysis of exhaled breath VOCs could classify clinically rele-
vant asthma phenotypes defined by inflammatory cells in induced sputum and asthma
control, although there were no clear patterns regarding classes of metabolites (aldehydes,
alkanes). This study included 35 patients with asthma and 23 healthy controls and the
high accuracy of the predictive role of VOCs regarding three different asthma phenotypes
(eosinophilic, neutrophilic and uncontrolled asthma) was confirmed by different models,
although a validation cohort was not used.

Another study carried out by Loureiro et al. [55] aimed to analyse the relationship
between oxidative stress, eosinophilic inflammation and disease severity in a sample of
57, predominantly female and atopic, non-elderly adult asthmatic patients (17 were obese,
33 had severe asthma, overwhelming majority were in GINA Steps 4 and 5), and ap-
plied comprehensive two-dimensional gas chromatography coupled to mass spectrometry
(GCxGC-ToFMS) in a targeted metabolomics study of aliphatic aldehydes and alkanes
in urine. This study showed that the urine of non-obese asthmatics had increased lipid
metabolites that were positively associated (PLS regression) with eosinophilic inflamma-
tion, as well as with lung function and disease severity, indicating that lipidic peroxidation
positively indicated an eosinophilic phenotype in these asthmatic patients. Interestingly,
some biomarkers differently predicted results concerning non-metabolomics biomarkers
such as FeNO or peripheral blood eosinophil numbers. In particular, the identification of
metabolites such as hexane, heptane, 2,4-dimethylheptane, 2,2,4,6,6 pentamethylheptane,
heptadecane, 2-methylbutanal, heptanal, 2-ethylhexanal and octanal may be associated
with the presence of FeNO in the exhaled air, and the presence of heptane, octane, decane,
tetradecane, pentadecane, hexadecane, octadecane, 2 methylbutanal, decanal, undecanal
and hexadecanal was related to the presence of eosinophils in peripheral blood. Again, this
study showed that using metabolomics may help to detect eosinophilic asthma, although
the study design did not include direct comparison with non-eosinophilic asthma.

Similar results were observed by Schleich et al. [112] in a study in 521 patients with
asthma, which showed that GC–MS-based metabolomics analysis of VOCs (7 potential
biomarkers) in exhaled breath could differentiate among different inflammatory phenotypes.
In addition, a replication study in 245 asthmatic patients confirmed four VOCs as capable
of discriminating among such phenotypes. More specifically, hexane and 2-hexanone pref-
erentially predicted eosinophilic asthma with an accuracy degree that was similar to that
of FeNO and peripheral blood eosinophil numbers. In contrast, a combination of nonanal,
1-propanolol and hexane were found at higher levels in neutrophilic asthma.

Figure 3 shows the possible relationship between inflammatory asthma phenotypes
and metabolic signatures.
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Figure 3. Representation of the main altered metabolic pathways and metabolites observed in metabolomics studies and
their association with some of the most frequently analysed asthma phenotypes in adults. ACO—Asthma–COPD Overlap;
COPD—chronic obstructive pulmonary disease; ↑-increased; ↓-decreased.

5. Assessment of Metabolic Changes in Clinical Asthma Phenotypes or Endotypes
5.1. Metabolomics Signature in the Atopic Asthma Phenotype

Individuals were recruited from four asthma cohorts, including two adult cohorts
of patients—BreathCloud (n = 407) and U-BIOPRED adults (n = 96)—in a study aimed
at investigating whether eNoses could detect atopy (defined by positive skin prick tests
and/or positive specific IgE levels) in pediatric and adult patients with moderate to severe
asthma [113]. VOC mixtures were measured in exhaled breath using eNose technology
(SpiroNose or eNose platform), and supervised data analysis was performed using three
different machine learning algorithms to discriminate between atopic and non-atopic
patients in training and validation sets. In addition, an unsupervised analysis was also
performed using a Bayesian network, to study the relationship between eNose VOC profiles
and asthma features and analyse factors that might affect it. This study showed that the
characterisation of VOCs using eNoses accurately detected atopic asthma both in children
and in adults, even when patients who were sensitised to non-aeroallergens (e.g., food
allergens) were excluded. However, these results still need to be confirmed in other studies,
namely in elderly individuals, and also using other metabolomics approaches in order to
ascertain which metabolites best predict atopic asthma and allow a better understanding
of the pathophysiology.

5.2. Metabolomics Signature in the Obese Asthma “Phenotype”

Metabolomics may also have a crucial role in allowing a better understanding of
metabolic dysfunction in a broader context in asthma, by analysing the involved metabolic
pathways and metabolites together with other aspects that characterise some disease
phenotypes. In this setting, a recent review has dissected the role of metabolomics-driven
studies of the metabolic syndrome (dyslipidemia, hypertension, insulin-resistance/type 2
diabetes mellitus) in obese asthma [88].
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Overall, studies focusing on the characterisation of metabolomics signatures in exhaled
breath and urine from obese patients with asthma have indicated that not only are these
different from healthy controls but, importantly, they are also different from what is
observed in non-obese asthmatics [61,88,114,115]. Thus, obesity-related asthma may be
regarded not only as a specific phenotype but possibly also as a specific endotype, with a
unique underlying pathophysiological mechanism.

Maniscalco et al. [61] studied two sets of adult volunteers: an initial, experimental set
of 25 patients with obese asthma (OA), 30 patients with lean, non-obese asthma (NOA/LA)
and 30 obese non-asthmatic (ONA) individuals, and a subsequent validation set involving
23 OA, 24 NOA/LA and 25 ONA. Metabolomics studies were carried out using NMR
spectroscopy of exhaled breath samples and studied by discrimination of subject classes by
spectral and statistical analysis, which allowed the identification of class-specific metabo-
types, after metabolite profiling and metabolic pathway analysis. Obese patients had Body
Mass Index (BMI) ≥ 30 Kg/m2 (classified as classes I, II and III obesity) and were being
considered for bariatric surgery. In this study, NMR profiles showed strong regression
models that allowed discrimination between OA from ONA but, very importantly, between
OA and NOA/LA. Furthermore, specific biomarkers were identified which allowed this
between-class separation and which are involved in methane, pyruvate and glyoxylate
and dicarboxylate metabolic pathways, with many of the altered metabolites being sugges-
tive of inflammation. More specifically, obese asthmatics had increased levels of glucose,
n-valerate, lactate and various saturated fatty acids. Importantly, the model derived from
the experimental test adequately identified 21 of the 12 OA patients and 22 of NOA/LA
patients in the validation set, with high levels of accuracy, sensitivity and specificity. This
study thus strongly suggested that an obese asthma metabotype may allow patient stratifi-
cation reliant upon unbiased biomarkers and this may have diagnostic, therapeutic and
eventually also prognostic implications.

A small, pilot study is also quite relevant in the context of a possible metabolic
signature of obese asthma, and involved 11 OA and 11 NOA/LA patients and a GC–
TOF–MS-based metabolomics characterisation of sputum, serum and peripheral blood
mononuclear cells, with subsequent OPLS-DA and pathway topology enrichment analy-
ses [114]. Furthermore, the researchers also studied various other immunoinflammatory
parameters such as IL-1β, IL-4, IL-5, IL-6. IL-13 and TNF-α in sputum, as well as leptin,
adiponectin and C-reactive protein (CRP). Overall, this study showed that there were
28 metabolites that discriminated between OA and NOA/LA. Furthermore, validation
analysis identified 18 potential metabolic signatures of obese asthma. Finally, pathway
topology enrichment analysis clearly showed that a broad variety of metabolic pathways
were associated with obese asthma and these included cyanoamino acid metabolism, caf-
feine metabolism, alanine, aspartate and glutamate metabolism, phenylalanine, tyrosine
and tryptophan biosynthesis and the pentose phosphate pathway in sputum, as well as
glyoxylate and dicarboxylate metabolism, glycerolipid metabolism and pentose phosphate
in serum. Thus, this study also confirmed obese asthma as a possible endotype with a
clearly different metabotype from that observed in non-obese asthma, and which involves,
among other aspects, anomalous pathways that may unbalance energy metabolism as well
as oxidative stress.

5.3. Assessment of Metabolomics in the Steroid-Resistant Asthma “Phenotype”

Steroid-resistant asthma is generally a subtype of severe asthma and has been de-
scribed in many clinical, pharmacological and immunoinflammation-focused studies in
asthma. Two aspects need to be addressed in this context. The first one involves the
influence that medication can have on the assessment of metabolites and asthma-related
metabolic signatures, and the second one has to do with the use of metabolomics to study
the response to medication.

In terms of the first issue, more persistent asthma requires treatment with ICS and, as
expected, the levels of endogenous steroid molecules were found to correlate with ICS dose
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in a study involving a group of 54 asthmatic patients (12 mild, 20 moderate and 22 severe),
and this correlation was even clearer in five patients who were on oral corticosteroids [57].
Thus, metabolomics studies on asthma and metabolic aspects of steroid metabolism will
have to control for this confounding factor in order to discriminate between disease- and
treatment-related effects. In any case, a study carried out in asthmatic children, using
untargeted LC–MS analysis of EBC, showed that, in comparison with pre-treatment, a
3-week-long administration of ICS was not associated with significant changes in analysed
metabolites [116]. Overall, metabolomics has also been shown to be a relevant tool for the
study of the response (or lack of response) to corticosteroids or even the side effects of this
type of medication in asthmatic patients.

Regarding the second issue, it is possible to address corticosteroid resistance, which is a
hallmark of many cases of severe asthma, particularly of the neutrophilic, non-T2 type [117].
In this context, it is likely that, as was found in children [118], severe, corticosteroid-resistant
asthma in adults has some specific metabolic biomarkers, although studies are lacking.

Figure 3 summarises the possible relationship between clinical asthma phenotypes
and metabolic signatures, with a particular focus on discrimination between eosinophilic
and neutrophilic asthma, as well as on the obesity-related asthma phenotype/endotype.

6. Revisiting the “Dutch Hypothesis”: Discriminating between the “Phenotypes” of
Asthma and Other Chronic Obstructive Airways Diseases

It is important to ascertain whether there is any robust evidence that metabolomics
can discriminate between patients with asthma and patients with other chronic obstructive
diseases, namely COPD and the Asthma–COPD Overlap (ACO). This is relevant because
asthma, COPD and ACO are heterogeneous, which makes differential diagnosis difficult in
a significant proportion of patients. This question is even more crucial in elderly patients
in whom it is more difficult to diagnose asthma in the presence of various features that are
coincident with those that are present in COPD and who may also have other confounding
factors, such as cardiac insufficiency.

It is possible to conceptualise asthma and COPD (and ACO) as being different ex-
pressions of the same disease (“chronic non-specific lung/airway disease”), modulated by
different environmental factors, thereby eventually leading to different and/or partially
overlapping forms of disease [119]. This is known as the “Dutch hypothesis”, which
has been most often applied to asthma and COPD but has also more recently included
ACO [120,121]. In fact, these are all “chronic obstructive airway diseases” and, in this
context, asthma can be analysed as a “phenotype” of this continuum of disease expression,
although this is an oversimplification since asthma, COPD and ACO have various underly-
ing phenotypes, even with some overlap [122]. A few studies have addressed the capacity
of metabolomics to discriminate between asthma, COPD and ACO, in adults.

Maniscalco et al. [52] studied 31 asthma and 44 COPD patients (ages ranging from
34 to 61 years) newly diagnosed in accordance with GINA and GOLD guidelines. These
patients had relatively mild disease, and patients with cardiovascular and endocrinological
comorbidities were excluded since these comorbidities might act as confounding factors.
Approximately 25% of patients in each group were current smokers. NMR analysis of
EBC was carried out and results were analysed in terms of orthogonal projections to
latent structures discriminant analysis (OPLS-DA), a form of PCA. This study showed
that it was possible to discriminate between asthma and COPD patients on the basis of
OPLS-DA analysis of EBC profiles. More specifically, asthma patients had lower levels
of ethanol and methanol and significantly higher levels of formate and acetone/acetoin
than COPD patients. Importantly, in a second, validation cohort involving 13 asthma and
20 COPD patients, application of OPLS-DA classification confirmed the model as valid since
it correctly identified 12 of 13 asthmatics and 19 of 30 COPD patients. The lower levels of
methanol in asthma than in COPD may be relevant since this pro-inflammatory metabolite
is increased in lung cancer patients and COPD, but not asthma, and has an increased risk
of such cancer [123]. On the other hand, the higher levels of formate in asthma may be
associated with specific inflammatory aspects of the disease, particularly in cases with higher
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bronchial reactivity to allergens [124] and with more severe disease [125]. Overall, this study
by Maniscalco et al. showed that NMR metabolic profiles in EBC can be used to differentiate
asthma from COPD even in smoking individuals, but this should be confirmed in patients
with more severe disease and also regarding the different inflammatory phenotypes of
asthma. It should be stressed that the specific subgroup analysis excluded the possibility of
the asthma-related results being due to underlying atopy.

A similar discriminatory capacity between asthma and COPD was also observed in
other metabolomics studies, using an electronic nose [126] and peripheral blood [127,128].
In this context, a study involving metabolomic analysis of exhaled air using an eNose
in 60 asthma patients (21 with fixed airway obstruction, 39 with “classical”, reversible
airway obstruction) and 40 COPD (GOLD stages II–III) showed that external validation
of global breath-prints had high accuracy (88% between fixed asthma and COPD; 83%
between classical asthma and COPD) for discriminating between the two diseases [126].
Importantly, the discriminatory capacity was not affected by smoking.

Another report analysed metabolomics-related differences in peripheral blood, be-
tween asthma and COPD [127]. Using an untargeted metabolomics approach and LC–MS,
Liang et al. compared serum metabolic profiles among 17 mild persistent asthmatic pa-
tients, 17 individuals with stable COPD (2 current smokers) and 15 healthy individuals.
None of the recruited individuals had significant comorbidities that might have acted
as confounding factors. Overall, 19 differential metabolites were identified but the most
robust results were observed with hypoxanthine, whose levels were markedly higher in
asthmatic individuals than in COPD patients (and healthy controls), suggesting that purine
metabolism is different between these two airway diseases.

In another study, Ghosh et al. [128] studied metabolic and immunological profiles
in ACO, asthma and COPD. As previously mentioned, identification of metabolites was
performed using non-targeted metabolomics with the GC–MS technique. Individuals with
a diagnosis of moderate or severe asthma meeting the GINA criteria (n = 34), individuals
with severe and moderate COPD according to GOLD 2014 criteria (n = 30), individuals
diagnosed with ACO (n = 40) and a healthy group of smokers of the same age (n = 33)
were recruited. Patients with exacerbations, viral infections and who were undergoing
treatment with oral corticosteroids were excluded, to avoid these confounding factors.
Importantly, for the identification of the metabolic profile, the study was carried out in two
different cohorts, one for the initial, discovery phase (metabolomics and immunological
profiles) and one for the validation phase (metabolomics). Metabolites such as serine,
threonine, ethanolamine, glucose, D-mannose and succinic acid were downregulated in
ACO compared with asthma and COPD. In contrast, the levels of 2-palmatoylglycerol
and cholesterol were decreased in asthmatic individuals when compared with ACO and
COPD, and the COPD group had a higher amount of these metabolites. Cholesterol is a
metabolite that is intrinsically linked to inflammation and is increased in individuals with
severe COPD and decreased in asthmatics. Finally, this study also showed that stearic
acid expression was increased in asthma when compared with ACO and COPD, which
indirectly may suggest that, similarly to linoleic acid, stearic acid may be a biomarker of
involvement in the differentiation of T helper 2 (Th2) cells and T2-related inflammatory
response in asthmatic individuals. Furthermore, a heatmap 2D correlation matrix in the
previous study showed a significant negative correlation between serine, ethanolamine,
threonine, glucose, cholesterol and succinic acid with tumor necrosis factor α (TNF-α),
and non-significant negative correlations between interleukin-1β (IL-1β) and neutrophil
gelatinase-associated lipocalin (NGAL) with threonine, MCP-1, YKL-40, IFN-γ and IL-6
with serine and cholesterol [128]. On the other hand, stearic acid and linoleic acid have
been shown to positively correlate with TNF-α and this may be relevant since this is a pro-
inflammatory cytokine that can also have increased expression not only in COPD but also
in some asthmatic patients, namely in severe asthma, including refractory asthma [101] and
neutrophilic severe asthma (which may be refractory or not), where, in fact, this cytokine
may contribute to the neutrophilic infiltrate in the airways [129].
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Thus, the metabolic profile of individuals with asthma is different from that observed
in patients with other chronic obstructive respiratory disease “phenotypes” such as COPD
and ACO, although further studies are warranted, involving patients with different disease
phenotypes, disease severity and also, in particular, elderly patients, in whom it is even
more essential to adequately diagnose these patients.

Figure 3 shows the possible relationship between asthma, ACO and COPD “pheno-
types” of chronic obstructive respiratory diseases.

In order to have a general perspective of the use of different types of metabolomics
approaches in asthma, Table 1 shows the main pathways and metabolites identified in
such studies applied to asthma phenotypes, as well as between asthma and other chronic
obstructive airways “phenotypes” such as COPD and ACO, and the techniques used in
each approach.
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Table 1. Most representative metabolomics studies in adult asthma, including relationship with inflammatory or clinical phenotypes.

Metabolomics Studies in Relation to Asthma Inflammatory Phenotypes

Age/Sample Size/Ref. Sample Biology/
Technique Used Clinical Characteristics Main Metabolites Identified Main Metabolic Pathways Involved Observations

36.4 years
N = 20 (BA) + 10 (HC)

[54]

Peripheral blood;
3 detection platforms

(UHPLC- MS/MS,
optimised for
basic species;

UHPLC/MS/MS
optimised for acidic

species; GC/MS.

Patients with controlled
severe asthma, patients with

non-severe asthma
and a healthy group (HC)

Taurine, Aspartic Acid, Glutamic Acid,
Asparagine, Serine, Glutamine, Histidine,
Glycine, Citrulline, Threonine, Alanine,

Arginine, Tyrosine, Amino, Butyric Acid,
Methionine, Valine, Tryptophan,

Phenylalanine, Isoleucine, Leucine,
Ornithine, Lysine

7-α-hydroxy-3-oxo-4- cholestenoate,
Androsterone sulfate, Epiandrosterone

sulfate, Glycerophosphorylcholine (GPC),
Phosphoethanolamine, arachidonate,

Oleamide Sphingosine,
Glycodeoxycholate, Taurocholate,

Lathosterol
Adenosine 5-monophosphate

Amino acid,
Carbohydrate,

Lipid (Fatty acid, Sphingolipid),
Bile acid, Cholesterol,

Nucleotides

Biochemical differences were
found between asthmatics

and non-asthmatics, and also
between severe and

non-severe asthma; in
addition, FeNo-high,

possibly T2-type asthma
phenotype patients had

higher levels of branched
amino acids and bile acids

(glycholate and cholate)

57.7 years
N = 82 (BA) + 35 (HC)

[59]

Exhaled breath
condensate (EBC);
Nuclear magnetic
resonance (NMR)

spectroscopy

Patients with asthma-EA, NA,
and a healthy control group (HC) NMR spectral regions Not applicable

NMR spectral regions
showed potential to

discriminate asthmatics from
healthy controls but poorly

discriminated asthma
phenotypes (only NA, but

not EA, could be identified)

38 years
N = 13 (EA) + 16 (NEA) + 15

(HC)
[91]

Peripheral blood and
serum;

UPLC-MS/MS

Mild and moderate asthma:
2 subgroups—EA and NEA, and a

healthy control group (HC)

Glycerolphosphocholine,
Monosaccharides,

Phosphatidylserine (PS),
Cholesterol glucuronide,

Lactosylceramide,
Phytosphingosine,

Lysophosphatidylcholine (LPC),
Retinyl ester, Retinols,

Phosphatidylcholine (PC),
Arachidonic acid (AA),

Phosphatidylethanolamine (PE)

Glycerophospholipid, Retinol,
Sphingolipid, Lipid ether, Galactose,
AA, Inosite phosphate, Starch and
Sucrose, Linoleic acid, Glycolysis,

Gluconeogenesis

Lipid metabolism is affected
in asthmatics; higher levels

of monosaccharides, PC
(18:1/2:0), PS (18:0/20:0) and

arachidonic acid in
NEA; higher levels of PC

(16:0/18:1), PE (18:3/14:0),
LPC (18:1) and

lactosylceramide (d18:1/12:0)
in EA
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Table 1. Cont.

Metabolomics Studies in Relation to Asthma Inflammatory Phenotypes

Age/Sample Size/Ref. Sample Biology/
Technique Used Clinical Characteristics Main Metabolites Identified Main Metabolic Pathways Involved Observations

48.5 years
N = 52

[95]

Exhaled breath;
Cyranose 320

eNose

Patients with persistent bronchial
asthma (BA)-eosinophilic asthma

(EA), various forms of
non-eosinophilic asthma

(NEA)—neutrophilic asthma (NA)
and paucigranulocytic asthma (PGA)

phenotypes

VOC breath-prints Not applicable

Electronic nose can
discriminate EA, NA and

PGA inflammatory
phenotypes in patients with
persistent asthma in a regular

clinical setting

35.4 years
N = 20

[96]

Bronchoalveolar lavage
(BAL)

Exhaled breath;
eNoses

Patients with mild, allergic
eosinophilic asthma (EA), who were

non-smokers and not on
corticosteroid therapy

eNose breath-print Not applicable

eNose breath-prints were
significantly associated with

BALF eosinophil-rich
inflammation

55 years
N = 78

[97]

Exhaled breath;
eNose

Severe asthma patients-EA and NA
subgroups (U-BIOPRED cohort)

Metabolomic fingerprints obtained from
eNoses Not applicable

eNose technology adequately
discriminated between EA

and NA (as classifed
according to eosinophil and

neutrophil numbers in
peripheral blood, but not in

induced sputum).

Lipid metabolism

46.1 years
N = 35 (BA) + 23 (HC)

[44]

Exhaled breath
VOC;

GC–MS

Patients with intermittent or
persistent asthma: EA and NA, and a

healthy control group (HC)
Alkanes, Aldehydes Lipid

(lipid peroxidation)

Respiratory VOCs can
discriminate asthmatics from
non-asthmatics and identify
inflammation-related disease

phenotypes

45.6 Years
N = 57 (40 non-obese; 17

obese)
[55]

Urine;
GC×GC-ToFMS

Patients with severe EA and aspirin
hypersensitivity Alkanes, Aldehydes Lipid

(lipid peroxidation)

Peroxydised lipid
metabolites are increased in
non-obese asthmatics and
may be related to EA and

disease severity.
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Table 1. Cont.

Metabolomics Studies in Relation to Asthma Inflammatory Phenotypes

Age/Sample Size/Ref. Sample Biology/
Technique Used Clinical Characteristics Main Metabolites Identified Main Metabolic Pathways Involved Observations

41 years
N = 24 (BA) + 20 (HC)

[107]

Peripheral blood;
HPLC-QTOF

Patients with asthma: 2
subgroups-EA and NEA (airway

hyperresponsiveness), and a healthy
control group (HC)

Fatty acyls, Glycerolipids,
Glycerophospholipids, Sphingolipids,

Sterol lipids and Prenol lipids
Lipid

Lipid metabolism is affected
in asthmatics; significantly

higher levels of phosphatidic
acids and

phosphatidylglycerols-PG
(19:0/22:0), PG (P-18:0/18:4),

PG (19:1/20:0) and PG
(18:0/20:0) in EA than in

NEA

Age not indicated
N = 51 (BA) + 9 (HC)

[108]

Serum;
LC–MS

Patients with asthma: EA and NEA,
early-onset asthma and late-onset

asthma,
and a healthy control group (HC)

Sphingomyelin (SM) Sphingolipids

SM levels were reduced in
asthma; SM (SM 34:2; SM

38:1 and SM 40:1) levels were
significantly more reduced in

NEA than in EA

N = 421 (149 EA; 71 GA; 155
NA; 46 PGA)

[111]

Peripheral blood;
LC–MS/MS

Patients with asthma: EA and various
types of NEA—mixed granulocytic

(GA), NA and PGA phenotypes

Various ceramides,
Sphingosine-1-phosphate (S1P),
Sphingolipids, Sphingomyelin

Lipid

Asthmatics with NA had
higher sphingosine and
C16:0 ceramide levels

compared with those without
neutrophilia; in contrast,

patients with EA had higher
S1P levels compared with

those without eosinophilia.

54 years
N = 245

[112]

Exhaled breath;
UHGC/MS;

GCxGC-HRTOFMS

Patients with EA, NA and PGC
asthma phenotypes Alkanes, Aldehydes Lipid

(Lipid peroxidation)

VOCs discriminate between
EA and NA, with hexane and
2-hexanone better identifying

EA, and a combination of
nonanal, 1-propanol and

hexane better identifying NA

Metabolomics studies in relation to atopic asthma phenotypes

55 years
N = 96
[113]

Exhaled breath;
eNoses

Patients with mild, moderate asthma
(from two adult

cohorts—U-BIOPRED, BreathCloud);
atopy detected by positive skin prick

tests and/or allergen-specific IgE

VOC breath-prints Not applicable

e-Nose technology can
accurately and robustly

differentiate between asthma
patients by atopic status
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Table 1. Cont.

Metabolomics Studies in Relation to Asthma Inflammatory Phenotypes

Age/Sample Size/Ref. Sample Biology/
Technique Used Clinical Characteristics Main Metabolites Identified Main Metabolic Pathways Involved Observations

Metabolomics studies in relation to obesity-associated asthma phenotype/endotype

38 years
N = 25 (OA) + 30 (LA) + 30

(ONA)/
[61]

Exhaled breath
condensate (EBC);

NMR

Obese asthmatic patients (OA), lean
asthmatic (LA) and obese

non-asthmatic controls (ONA)

Glucose, butyrate, acetoin levels, formate,
tyrosine, ethanol, ethylene glycol,

methanol, acetate, saturated fatty acids,
propionate levels acetoin, isovalerate,
1,2-propanediol, methanol, acetone,

propionate, lactate

Carbohydrate, Lipid, Amino acid

Patients with obesity and
asthma have a specific

respiratory metabotype
(increased levels of glucose,

n-valerate, lactate, and
various fatty acids), which is
different from that of patients
with obesity or asthma alone

49 years
N = 11 (OA) + 22 (LA)

[114]

Peripheral blood and
serum

Sputum supernatant;
GC–TOF–MS

Obese asthmatic patients (OA), lean
asthmatic (LA)

Valine, N-Methyl-DL-alanine, Uric acid,
D-Glyceric acid, Asparagine 1,

Beta-Glycerophosphoric acid, Benzoic
acid, 3-Hydroxybutyric acid,

Hydrocinnamic acid, Aspartic acid 2,
Xanthine, 4-Aminobutyric acid 1, Glutaric

acid, Indole-3-acetic acid, Gly-pro, D
Glucoheptose, Gluconic lactone 2,

L-Glutamic acid, Phytosphingosine,
Shikimic acid, Beta-Glutamic acid 1,

Pyrrole-2-Carboxylic, Pyrophosphate 3;
3-Aminopropionitrile 1,
3-Hydroxybutyric acid,

3-Hydroxynorvaline 2, Linolenic acid,
Isoleucine

Lipid, Amino acid, Carbohydrate,
Fatty acid

Metabolomics based on
GC–TOF–MS discriminated
between obese asthmatics

and lean asthmatics

Metabolomics studies in asthma compared with COPD and ACO

48 years
N = 31 (BA) + 44 (COPD)

[52]

Exhaled breath
condensate (EBC)

Proton NMR spectra

Patients with newly diagnosed
asthma or COPD Methanol, ethanol, acetone, acetaldehyde Lipid

Asthmatics had lower levels
of ethanol and methanol and
significantly higher levels of
formate and acetone/acetoin

than COPD patients

54 years
N = 60 (BA)-21 (FA)) + 39

(CA) + 40 (COPD)
[126]

Exhaled air
eNose

Patients with asthma (BA) with fixed
airway obstruction (FA) or with
classic, reversible asthma (CA);

patients with COPD
Breath-prints Not applicable

The molecular profile of
exhaled breath shows high
accuracy in distinguishing

between FAO and COPD, as
well as between CA and

COPD
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Table 1. Cont.

Metabolomics Studies in Relation to Asthma Inflammatory Phenotypes

Age/Sample Size/Ref. Sample Biology/
Technique Used Clinical Characteristics Main Metabolites Identified Main Metabolic Pathways Involved Observations

60.5 years
N = 17 (PA) + 17 (COPD) +

15 (HC)
[127]

Peripheral blood
and serum;

LC–MS

Patients with mild, persistent asthma
(PA), COPD patients and healthy

controls (HC)

Hypoxanthine; P-chlorophenylalanine;
L-Glutamine; Glycerophosphocholine;

Inosine; Negative ion mode (ESI-);
Hypoxanthine, Succinate; Xanthine;
Arachidonic Acid (peroxide free);

L-Pyroglutamic acid; Indoxyl sulfate;
Theophylline; L-Valine; L-Norleucine;
Bilirubin; L-Leucine; Inosine; Palmitic

acid; L-Phenylalanine

Lipid, Nucleic acid, Amino acid

Asthma patients have a
unique serum metabolome,
which can distinguish them
from individuals with COPD
and healthy individuals; in
particular, asthmatics had

significantly higher levels of
hypoxanthine than COPD

patients and HC

52.7 years (Cohort 1)
53.6 years (Cohort 2)

N = 34 (BA)+ 30 (COPD)+
35 (ACO)+ 33 (HC) (Cohort

1)
N = 32 (BA) + 32 (COPD) +

40 (ACO) (Cohort 2)
[128]

Peripheral blood;
GC–MS

Patients with moderate and severe
asthma (BA), patients with stage II
and III COPD, patients with ACO

and a healthy group (HC)

L-Serine, L-threonine, Ethanolamine
Glucose, D-mannose, Cholesterol,

2-palmitoylglycerol, Stearic acid, Lactic
acid, Linoleic acid, Succinic acid

Carbohydrate
Lipid

Amino acid

2-palmatoylglycerol and
cholesterol were decreased in

BA when compared with
ACO and COPD; in contrast,
stearic acid expression was

increased in BA in
comparison with ACO and

COPD

ACO—Asthma–COPD Overlap; BA—bronchial asthma; COPD—chronic obstructive pulmonary disease; EA—eosinophilic asthma; GC×GC-ToFMS—two-dimensional gas chromatography coupled to mass
spectrometry with a high-resolution time-of-flight analyser; GC-TOF-MS—gas chromatography time of flight mass spectrometry; HPLC-QTOF—high-performance liquid chromatography with quadrupole
flight time mass spectrometry; LC–MS—liquid chromatography–mass spectrometry; NA—neutrophilic asthma; NEA—non-eosinophilic asthma; PGA—paucigranulocytic asthma; UHLC/MS/MS—ultra-
HPLC/tandem mass spectrometry; UPLC-MS/MS—ultra performance liquid chromatography–tandem mass spectrometry.
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7. Reproducibility and Stability of Asthma-Related Metabolic Signatures: Of
Validation Cohorts, Time Stability, Age, Sex and Other Factors

The reproducibility and stability of asthma-related metabolic signatures is an issue
that needs to be addressed. Such stability can be conceptualised according to various
aspects: across different patient samples (external validity), over time, in different age
ranges (also taking into account the elderly population), in both sexes and also in the
context of comorbidities, among others.

External validity has been progressively applied in metabolomics studies in asthma,
by using both an initial, primary test sample of patients and healthy controls, and a
second, validation sample. Many, but not all, detected changes in primary samples were
able to detect asthmatic patients in the validation sample. This has occurred not only
in the discrimination of asthma versus healthy states, but also regarding severe versus
milder asthma, eosinophilic versus non-eosinophilic asthma as well as asthma versus
other chronic obstructive respiratory diseases. However, again, more robust evidence
is necessary regarding possible links to some asthma phenotypes and this needs to be
addressed in asthma endotypes other than obese-related asthma (e.g., aspirin-induced
asthma or various forms of T2-high asthma).

Stability over time is also very important since it would strengthen the diagnostic and
monitoring capacity of metabolomics, under similar testing conditions. Why should such
stability be expected, since so many factors influence metabolic signatures? In other words,
if the same cohort is studied at different timepoints, without there being significant changes
in the most relevant potential confounders, it is expected that metabolomics profiles from
such different timepoints will be similar? In contrast to studies regarding inflammatory or
clinical phenotypes, as well as cluster analysis of such phenotypes together with relevant
parameters, for which a certain degree of stability may be verified, at least for a proportion
of clusters, no such studies seem to have been sufficiently carried out in metabolomics
approaches to asthma. In a different setting, a small cohort study involving only healthy
volunteers showed some stability in LC–MS-detected serum metabolites over time [130],
but whether such temporal stability in metabolomics also applies to asthma patients still
has to be adequately studied.

The reproducibility of metabolomics signatures in asthma may also be checked by
comparing results between children and adult studies, since finding similar results will
strengthen the possible relevance of detected changes. In fact, several studies in children
and in adults have coincided in the main metabolites, at least regarding discrimination be-
tween asthma and a healthy state [32,64,88,92,94]. However, comparative studies regarding
the capacity to discriminate between asthma inflammatory and/or clinical phenotypes are
necessary, although the previously mentioned study by Abdel-Aziz [113], which showed
the capacity of eNose metabolomics in exhaled breath to predict an atopic asthma pheno-
type in adults and children, is a good example of reproducibility.

In this context, it should be stated that metabolomics studies in elderly asthmatics are
needed since such studies are practically non-existent since elderly patients are generally
excluded from these studies, possibly because they frequently display many confounding
factors, namely multimorbidity and polypharmacy.

Finally, it is also possible for gender-focused metabolomics analyses to be incorporated
into future studies, since this aspect has possibly not been specifically addressed in most
metabolomics reports. In other words, we cannot currently state, with a relevant degree of
certainty, whether women and men have similar or different asthma metabolic signatures,
although most current studies seem not to detect gender as a possible influencing factor.
Nevertheless, there is some information that suggests that such gender differences in
metabolic profiles may occur.

A study that used GC–MS to retrospectively analyse the metabolome in preserved
umbilical cord blood from 44 children (who were 8 years old at the time of the study)
showed that, among several modulatory factors, sex also had a significant influence on
observed differences in metabolic pathways and their possible impact on the subsequent
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development of allergy [131]. This study showed that sex significantly influenced branched
amino acid metabolism and vitamin B6 metabolism. In particular, the female sex was
associated with significantly higher levels of leucine, isoleucine, galactitol, hydroxybutyric
acid, uric acid, sucrose and mannose, and lower levels of erythritol and 2-exoisocaproic
acid. Thus, this study would favour the need to differentially study metabolome signatures
in men and women.

In contrast, another study applied untargeted shotgun and LC–MS methods to analyse
lipidomics profiles in the lung epithelial lining fluid (obtained using induced sputum)
in 41 healthy, non-smoking, adult volunteers [132]. The observed lipidome was quite
diverse, including many glycerophospholipids, sphingolipids, some steroid lipids and
neutral glycerolipids, and the authors were able to detect two expression phenotypes, with
one of them being significantly associated with a higher BMI. However, no sex-related
differences were observed. Thus, at least in healthy individuals, sex may not be a significant
modulatory factor in the expression of lipidomics in the bronchial epithelium.

Finally, in a study carried out in 51 patients with asthma (17 men, 34 women), the
glycerophospholipid profile was analysed in serum using an LC–MS metabolomics ap-
proach [133]. This study observed significantly different glycerophospholipid levels be-
tween men and women, with PE, PC acetal phospholipid, LPE and alkyl PE being higher
in women and LPC and lysophosphatidylserine being higher in men.

Thus, it may be useful to carry out sex-specific analyses of metabolic signatures in asthma
patients and determine whether any observed differences are clinically significant, namely in
terms of better predicting clinical and/or inflammatory asthma phenotypes in one of the sexes.
This is all the more relevant since there is epidemiological and clinical evidence showing
sex-related differences in asthma, at least in part related to sex hormones, which also affect
many immunophysiological parameters (reviewed by Zhang and Zein) [134].

Globally, the reproducibility and temporal stability of metabolic signatures of asthma
and asthma phenotypes can only be adequately gauged by comparing the different ap-
proaches (targeted versus untargeted), the various methods that were used (e.g., NMR,
various forms of MS) and the analytical parameters incorporated into validation models in
each study, as well as by assessing confounding factors, the specificity of each model that
was used and data obtained from different organic fluids, among other aspects.

8. Prognostic Value of Asthma-Related Metabolic Signatures

In order to analyse the predictive or prognostic value of asthma-related metabolic
signatures, it is fundamental to consider all models used for predictive analysis, mod-
els obtained from supervised (e.g., PLS-DA, support vector machine (SVM), k-nearest
neighbors algorithm (k-NN), logistic regression) and unsupervised (PCA; cluster analysis
or hierarchical cluster analysis) multivariate techniques for metabolomics data analysis,
since the selection of these analytic techniques influences the capacity to detect patterns,
trends or potential biomarkers [135]. In particular, parameters such as classification rate,
sensitivity and specificity are also important for model assessment and the relevance of
their predictive potential.

Metabolomics, applied to asthma in children in several studies, has been shown
to be able to predict future wheezing and exacerbations, as well as to identify different
metabolites in different age groups with the same clinical profile. Thus, with the help of
metabolomics, it is possible to predict an outcome for asthmatic children and eventually
prevent an unfavourable exacerbation scenario [64,136,137]. However, there are compar-
atively fewer studies in adult asthma that have addressed this issue, in a longitudinal,
cohort study. A previously mentioned, a preliminary cross-sectional study aimed at assess-
ing urinary metabolic changes associated with asthma exacerbations was carried out by
Loureiro et al. [138]. This study used targeted metabolomics involving GCxGC-ToFMS to
analyse aldehydes and alkanes, and NMR to assess global changes in the major metabolites
involved in the main metabolic pathways, in the urine of 10 adult asthmatic patients
undergoing asthma exacerbations. It showed that asthma exacerbations were associated
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with increased levels of alkanes and aldehydes, which are end-products of peroxidation
of unsaturated lipids and indicate underlying inflammation and high levels of oxidative
stress, compared with the stable state.

Two longitudinal studies are also relevant in this context. The first one was carried
out by Olopade et al. [139] and included a cross-sectional and a longitudinal component.
The authors used GC-FID and showed that exhaled pentane levels increased in asthmatics
undergoing an acute exacerbation, in comparison with healthy controls, and then decreased
to normal levels with acute asthma treatment.

The second, longitudinal study was performed by Brinkman et al. [140] using a
composite platform eNose and GC–MS in 23 currently non-smoking patients on ICS who
had partially controlled, mild to persistent asthma. This study showed that a VOC model
discriminated patients with baseline, stable asthma, from exacerbations, as measured by
loss of control of asthma, as well as recovery. In this context, the eNose breath-print showed
high accuracy, clearly higher than that of GC–MS analysis. Finally, using ANCOVA analysis,
GC–MS identified two compounds (acetonitrile and bicyclo [2.2.2] octan-1-ol, 4-methyl)
that positively correlated with the numbers of eosinophils (but not neutrophils) in induced
sputum. Acetronitrile is a common molecule in exhaled breath and is usually associated
with pathogenic bacteria [141]. In contrast, bicyclo [2.2.2] octan-1-ol, 4-methyl is akin
to the 3,7,7-trimethyl-Bicyclo [4.1.0] hept-2-ene compound (also known as (+) -3-Carene)
described in the study by Ibrahim et al. as being correlated with sputum eosinophils [59].

Overall, the potential role of metabolic profiles in predicting asthma exacerbations
should be more thoroughly determined (also using untargeted metabolomics) in additional
longitudinal studies. Furthermore, the study of other predictive features, namely in terms
of prognosis (e.g., responses to treatment or lung function decline and/or non-reversibility
of bronchial obstruction), is still lacking. Finally, all of these aspects should be studied in
different asthma phenotypes.

9. Concluding Remarks and Future Challenges

Various studies have shown that metabolomics can help to distinguish between asthma
and a healthy state, between severe and non-severe asthma and between asthma and other
chronic obstructive respiratory diseases. In particular, and as previously mentioned in this
review and also reviewed in depth by others [49,87,92,93], some metabolic pathways seem
to be more consistently changed in asthma versus a healthy state.

Additionally, it also seems clear that some of the asthma inflammatory phenotypes
(e.g., eosinophilic asthma) may be preferentially associated with certain metabolic signa-
tures. However, fully demonstrable and reproducible asthma-related metabolic “pheno-
types” cannot be robustly defined, with the possible exception of obesity-related asthma,
which may constitute an endotype of its own and also involve a clearer metabolic pheno-
type with specific underlying features—that is, a “metabolic endotype”.

Thus, it is currently probably more appropriate to mention the metabolic signatures
of asthma rather than actual metabolic phenotypes or endotypes. In any case, the situation
will be further clarified once some of the future challenges have been dealt with. These
may involve aspects such as the actual definition of clear molecular metabolic pheno-
types, based on unbiased, multiple-level, integrated clustering analyses. In addition, the
adequate assessment of reliable relationships between metabolic phenotypes and inte-
grated multi-parameter phenotype clusters of asthma will be relevant in the hope that
non-invasive, point-of care assessment of metabolic aspects of asthma may accurately
reflect the specificities of various asthma phenotype clusters and endotypes. For this
to occur, more multicentre, multinational metabolomics studies are needed, using the
same techniques and similar targeted and untargeted approaches. Furthermore, the re-
producibility of the metabolic signatures of asthma needs to be better defined in different
settings as well as over time, in further longitudinal studies, so that the limits of variability
and stability are understood for the most relevant metabolites and pathways. In addi-
tion, at least some further aspects that may affect the expression of asthma and asthma
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phenotype-related metabotypes should also be studied, namely nutritional aspects [142],
microbiome-associated metabolic aspects [143] or air pollution parameters [144,145].

Further research is warranted and the integration of metabolomics with multi-omics
and clinical–functional parameters, with subsequent artificial intelligence (AI)-driven,
complex, algorithm-based analysis of “big data”, may allow a more thorough and complete
analysis of integrative/global phenotype clusters of not only asthma but also within the
context of chronic obstructive respiratory diseases, thereby allowing higher diagnostic
yield, tailored approaches and prognostic capacity.
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