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Abstract: Environmental factors including viruses, diet, and the metabolome have been linked with
the appearance of islet autoimmunity (IA) that precedes development of type 1 diabetes (T1D). We
measured global DNA methylation (DNAm) and untargeted metabolomics prior to IA and at the
time of seroconversion to IA in 92 IA cases and 91 controls from the Diabetes Autoimmunity Study in
the Young (DAISY). Causal mediation models were used to identify seven DNAm probe-metabolite
pairs in which the metabolite measured at IA mediated the protective effect of the DNAm probe
measured prior to IA against IA risk. These pairs included five DNAm probes mediated by histidine
(a metabolite known to affect T1D risk), one probe (cg01604946) mediated by phostidyl choline p-32:0
or o-32:1, and one probe (cg00390143) mediated by sphingomyelin d34:2. The top 100 DNAm probes
were over-represented in six reactome pathways at the FDR <0.1 level (q = 0.071), including transport
of small molecules and inositol phosphate metabolism. While the causal pathways in our mediation
models require further investigation to better understand the biological mechanisms, we identified
seven methylation sites that may improve our understanding of epigenetic protection against T1D as
mediated by the metabolome.

Keywords: DNA methylation; metabolomics; type 1 diabetes

1. Introduction

Type 1 diabetes (T1D) is an autoimmune disease characterized by the production of
antibodies which target pancreatic β-cells. The disease currently affects over 30 million
people worldwide [1] and is increasing by 3–4% per year on average [2].

Genetic predisposition accounts for some of the etiology of T1D (siblings of an individ-
ual with T1D have a relative risk 15 times higher than those without a sibling with T1D) [3]
and explains some geographic variation in incidence [2]. Human leukocyte antigen (HLA)
genes were the first to be linked to T1D and account for much of the genetic predisposition
to the disease, but genome-wide association studies (GWAS) have also identified more
than 40 other T1D-associated loci [4]. However, it is still unclear how these multiple loci [5]
interact with one another and the environment to produce a T1D diagnosis. In addition
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to the complex genetics of T1D, low monozygotic (MZ) twin concordance (approximately
50%) and the increasing incidence over time [2] support the theory that non-genetic factors
play an important role in T1D development [1].

Epigenetic differences may be important contributors to T1D etiology. Changes in
methylation have been associated with other autoimmune conditions, and monozygotic
twins can be epigenetically heterogeneous despite sharing an identical genetic code [1].
Rakyan et al. [1] and Stefan et al. [6] performed epigenome-wide association studies (EWAS)
in discordant and concordant twin pairs and found that methylation profiles were more
similar among participants with T1D than in unaffected twins. Epigenetics profiles were
also combined with GWAS data and differentially methylated sites were mapped to six
well-known T1D susceptibility genes, including two major histocompatibility complex
(MHC) genes and several HLA loci [1,6]. Finally, Johnson et al. found that T1D cases had
different longitudinal methylation patterns compared to controls prior to diagnosis [7].

Environmental factors including viruses, diet, and the metabolome have also been
linked with islet autoimmunity (IA) [8] and T1D etiology [4]. Previous studies have found
associations between T1D and differentially expressed phospholipids and sphingolipids,
excretion of modified amino acids, and vitamin D (and related compounds on its metabolic
pathway) [4,9].

To date, the effects of the metabolome and DNA methylation have been studied
separately in T1D; thus, the combined nutrigenomics of T1D remain unclear. Early in vitro
studies confirmed metabolome-dependent alterations in DNA methylation associated
with various cancers [10,11], and even identified oncometabolites associated with the
development of glioma [12]. More recent human studies also support the connection
between the metabolome and methylation in breast cancer [13], colorectal cancer [14], and
smoking-related diseases [15]. A 2018 study by Zaghlool et al. used linear models to link
metabolomics and DNA methylation with type 2 diabetes (T2D) and obesity and used
Mendelian randomization (MR) to provide evidence for “a causal effect of metabolite levels
on methylation of obesity-associated CpG sites” [16].

Causal interpretations are of particular interest when integrating epigenetic and
metabolomics data. The counterfactual framework for mediation analyses is widely used in
statistics and epidemiology because it can allow for causal interpretations of observational
data. Additionally, it provides a relatively intuitive interpretation of mediation effects
by quantifying how much an outcome of interest would likely differ given a change in
either the exposure or mediator [17]. Because mediation is defined based on an assumed
causal model, it is important that causality assumptions are reasonable [18]. It is difficult to
evaluate causal assumptions across the epigenome, but longitudinal study designs allow
for mediation models in which the exposure variable is measured prior to the mediator.
To our knowledge, this is the first study to examine causal links between DNAm, the
metabolome, and T1D.

The Diabetes Autoimmunity Study in the Young (DAISY) follows 2547 high-risk
children in Colorado for the development of IA and T1D (ClinicalTrials.gov identifier:
NCT03205865). Follow-up includes blood sample collection at 9, 15, and 24 months, then
annual collection until one or more autoantibodies are detected. Participants who test
positive for one or more autoantibodies are asked to follow an accelerated protocol with
visits and blood sample collection every 3–6 months. IA is defined as two consecutive
visits at which a confirmed autoantibody to insulin, GAD65, IA-2, or ZnT8, was detected
(Figure 1) [19]. The children are followed over time, until they are diagnosed with T1D by
a physician using American Diabetes Association criteria. Thus, DAISY’s study design
allows us to include exposure and mediator variables that are temporally separated in
our mediation models because methylation was measured prior to seroconversion (PSV),
defined as the autoantibody-negative visit preceding the visit at which the child first tested
autoantibody positive (SV), and metabolite was measured at SV and vice versa. This aids in
interpretation of the results and in theory does not violate the assumptions of a mediation
analysis.

ClinicalTrials.gov
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Figure 1. (a) A flowchart depicting progression from birth to islet autoimmunity (IA) and the Diabetes 
Autoimmunity Study in the Young (DAISY) visits. To reduce computation time, we performed simple linear 
regression without covariate adjustment to identify pairs of DNA methylation (DNAm) probes and 
metabolites for mediation analysis. Candidate pairs were significantly associated at the p < 0.01 level, and both 
DNAm probe and metabolite were associated with development of IA at the p < 0.01 level. (b) We examined 
pairs with DNAm measured pre-seroconversion (PSV) and metabolite measured at seroconversion (SV). (c) 
We also examined pairs with metabolite measured at PSV and DNAm measured at SV in separate analyses. 

Out of a total 379,557,915 possible pairs, our linear regression filtering step identified 
1490 pairs with methylation measured at PSV and metabolite measured at SV where 
metabolite and methylation probe were significantly associated with one another, and 
both were associated with IA at the p < 0.01 level (Figure 1b). We also identified 600 pairs 
with metabolite measured at PSV and methylation measured at SV for mediation analysis 
(Figure 1c). Correlations between DNAm and metabolite for all candidates are shown in 
Figure 2. 

  
Figure 2. Heat maps depicting the correlation coefficient between DNA methylation 
(DNAm) probes in rows and metabolites in columns. Columns and rows were clustered 
using the complete linkage method. (a) Correlation between DNAm at pre-seroconversion 
(PSV) and metabolite measured at seroconversion (SV). (b) Correlation between DNAm 
at seroconversion (SV) and metabolite measured pre-seroconversion (PSV). 

After FCR adjustment, seven pairs had a confidence interval for the estimate of NIE 
that did not contain 0 on the log odds scale (Table 2). Each pair contained a unique probe, 
but the metabolite histidine was the mediator in five of the pairs. No pairs in which 

Figure 1. (a) A flowchart depicting progression from birth to islet autoimmunity (IA) and the Diabetes Autoimmunity
Study in the Young (DAISY) visits. To reduce computation time, we performed simple linear regression without covariate
adjustment to identify pairs of DNA methylation (DNAm) probes and metabolites for mediation analysis. Candidate pairs
were significantly associated at the p < 0.01 level, and both DNAm probe and metabolite were associated with development
of IA at the p < 0.01 level. (b) We examined pairs with DNAm measured pre-seroconversion (PSV) and metabolite measured
at seroconversion (SV). (c) We also examined pairs with metabolite measured at PSV and DNAm measured at SV in
separate analyses.

2. Results

A total of 183 participants had both metabolite and methylation data at their PSV
and SV study visits. Figure 1 outlines DAISY study visits. Participant characteristics are
shown in Table 1, and there were no statistically significant differences between IA cases
and controls with respect to age, sex, race/ethnicity, DR3/4 status, and first-degree relative
(FDR) status.

Table 1. Participant characteristics at first visit.

Case (n = 92) Control (n = 91) Total (n = 183) p Value

Age 0.387 1

Mean (SD) 6.2 (4.3) 6.8 (4.2) 6.5 (4.3)

Range 0.7–18.3 0.7–20.3 0.7–20.3

Non-Hispanic White 0.756 2

No 22 (23.9%) 20 (22.0%) 42 (23.0%)

Yes 70 (76.1%) 71 (78.0%) 141 (77.0%)

DR3/4 0.172 2

No 67 (72.8%) 74 (81.3%) 141 (77.0%)

Yes 25 (27.2%) 17 (18.7%) 42 (23.0%)

Sex 0.599 2

Female 44 (47.8%) 40 (44.0%) 84 (45.9%)

Male 48 (52.2%) 51 (56.0%) 99 (54.1%)

FDR Status 0.819 2

First-degree relative with T1D 49 (53.3%) 50 (54.9%) 99 (54.1%)

General population (no first degree relative with T1D) 43 (46.7%) 41 (45.1%) 84 (45.9%)
1 Linear model ANOVA; 2 Pearson’s Chi-squared test.



Metabolites 2021, 11, 542 4 of 13

Out of a total 379,557,915 possible pairs, our linear regression filtering step identified
1490 pairs with methylation measured at PSV and metabolite measured at SV where
metabolite and methylation probe were significantly associated with one another, and
both were associated with IA at the p < 0.01 level (Figure 1b). We also identified 600 pairs
with metabolite measured at PSV and methylation measured at SV for mediation analysis
(Figure 1c). Correlations between DNAm and metabolite for all candidates are shown in
Figure 2.
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Figure 2. Heat maps depicting the correlation coefficient between DNA methylation (DNAm) probes in rows and metabolites
in columns. Columns and rows were clustered using the complete linkage method. (a) Correlation between DNAm at pre-
seroconversion (PSV) and metabolite measured at seroconversion (SV). (b) Correlation between DNAm at seroconversion
(SV) and metabolite measured pre-seroconversion (PSV).

After FCR adjustment, seven pairs had a confidence interval for the estimate of NIE
that did not contain 0 on the log odds scale (Table 2). Each pair contained a unique probe,
but the metabolite histidine was the mediator in five of the pairs. No pairs in which
metabolite was measured at PSV and methylation was measured at SV were significant
after FCR adjustment. All confidence intervals are presented after FCR adjustment. For
all seven pairs, the metabolite was positively associated with IA, while methylation was
negatively associated with both the outcome and respective metabolite. Thus, an indirect
effect less than one suggests that some of the protective effect of methylation is via reduction
in the metabolite levels.

Of the unique probes, six measure methylation at a site in a known gene, and four
genes are protein coding. Of the four probes linked to protein-coding genes, two are located
within a CpG dinucleotide island (cg00390143 and cg01172082), one on the southern shore
of the CpG island (cg07964219), and one in open sea (cg01604946). These probes are
associated with the GALNT9, KIF26A, COL18A1, and SH3TC2 genes, respectively. The
probe associated with HLA-DQB2 (cg19939773) was also located within a CpG island,
while cg15052330 (linked to the CYP26B1 gene) was in open sea and cg15688253 was on
the north shore of a CpG island. The metabolite histidine mediated the effect of the five
methylation sites associated with the CYP26B1, HLA-DQB2, KIF26A, and COL18A1 genes,
while a phosphatidyl choline (PC) identified as PC (p-32:0) or PC (o-32:1) mediated the
effect of cg01604946 (located in the SH3TC2 gene), and a sphingomyelin (SM) we identified
as SM (d34:2) mediated the effect of cg00390143 (GALNT9 gene).

Six reactome pathways were enriched (FDR q-value < 0.10) (Table 3), including plasma
lipoprotein assembly, remodeling, and clearance and inositol phosphate metabolism. All
pathways were enriched at least two-fold. Over-representation of the inositol phosphate
metabolism pathway was driven by the INPP5A and PLCH2 genes (associated with probes
cg13931663 and cg20468586, respectively, from our list of the top 100 probes). The plasma
lipoprotein assembly, remodeling, and clearance pathway over-representation was driven
by the LIPA and PCSK6 genes (probes cg24405248 and cg07375207, respectively).
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Table 2. Methylation–metabolite pairs with significant natural indirect effects.

Metabolite Probe Position Relation to
Island Gene Type Description NIE NIE CI Low NIE CI High

Histidine cg15688253 chr1:1096717 N_Shore 0.766 0.418 0.993

Histidine cg15052330 chr2:72360243 OpenSea CYP26B1 0.714 0.339 0.950

PC (p-32:0) or PC
(o-32:1) cg01604946 chr5:148398804 OpenSea SH3TC2 Protein Coding

SH3 Domain;
Tetratricopep-
tide Repeats 2;

SH3TC2
Divergent
Transcript

0.663 0.342 0.895

Histidine cg19939773 chr6:32729876 Island HLA-DQB2 0.785 0.439 0.994

SM (d34:2)
[M+HAc-H]- &

[M+Cl]-
_YLWSJLLZUHSIEA-
CKSUKHGVSA-N

cg00390143 chr12:132842539 Island GALNT9 Protein Coding
Polypeptide N-

Acetylgalactosaminyl
transferase 9

0.777 0.494 0.999

Histidine cg01172082 chr14:104645732 Island KIF26A Protein Coding Kinesin Family
Member 26A 0.759 0.390 0.989

Histidine cg07964219 chr21:46847898 S_Shore COL18A1 Protein Coding

Collagen Type
XVIII Alpha 1

Chain;
COL18A1

Antisense RNA
1; COL18A1

Antisense RNA
2

0.795 0.447 0.986



Metabolites 2021, 11, 542 6 of 13

Table 3. Reactome pathway enrichment.

Term
Number of

Genes in Top
100 Probes

Number of
Genes in

Reference List
Expected Fold

Enrichment
p

Value FDR q Value

Formation of the
cornified envelope
(R-HSA-6809371)

3 105 0.32 9.24 0.004 0.071

Inositol phosphate
metabolism

(R-HSA-1483249)
2 43 0.13 15.04 0.008 0.071

Ion transport by P-type
ATPases (R-HSA-936837) 2 49 0.15 13.2 0.011 0.071

Keratinization
(R-HSA-6805567) 3 159 0.49 6.1 0.014 0.071

Transport of small
molecules

(R-HSA-382551)
6 668 2.07 2.91 0.017 0.071

Plasma lipoprotein
assembly, remodeling,

and clearance
(R-HSA-174824)

2 63 0.19 10.27 0.017 0.071

None of the biopathways were significant after p-value adjustment (Table 4). How-
ever, several immune-system-related pathways were significant at an unadjusted p < 0.05
level, including interleukin signaling and transmembrane transport of small molecules.
Interestingly, transport and metabolism of small molecules appeared in both the over-
representation and enrichment analyses.

Table 4. Bioplanet enrichment (top ten).

Term
Number of

Genes in Top
100 Probes

Number of
Genes in

Reference List
p Value FDR q Value Fold

Enrichment Genes

Interleukin receptor
SHC signaling 2 28 0.0031816 0.2497991 26.411141 IL3;IL5RA

Ion transport by
P-type ATPases 2 36 0.0052218 0.2497991 20.188641 ATP4B;ATP2B2

Interleukin-3
signaling pathway 2 45 0.0080651 0.2497991 15.955894 IL3;IL5RA

Interleukin-3,
interleukin-5, and
GM-CSF signaling

2 45 0.0080651 0.2497991 15.955894 IL3;IL5RA

Regulation of
NFAT transcription

factors
2 47 0.0087727 0.2497991 15.245211 IL3;IKZF1

Ion channel
transport 2 61 0.0144583 0.2497991 11.619521 ATP4B;ATP2B2
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Table 4. Cont.

Term
Number of

Genes in Top
100 Probes

Number of
Genes in

Reference List
p Value FDR q Value Fold

Enrichment Genes

Sodium-coupled
sulphate, di- and

tri-carboxylate
transporters

1 5 0.0149116 0.2497991 84.474576 SLC13A2

Cytochrome P450
metabolism of

vitamins
1 6 0.0178676 0.2497991 67.576271 CYP26B1

Phase I of
biological
oxidations:

non-cytochrome
P450 enzymes

1 7 0.0208149 0.2497991 56.310735 LIPA

Eosinophils in the
chemokine network

of allergy
1 8 0.0237535 0.2497991 48.263922 IL3

Small cell lung
cancer 2 84 0.0263601 0.2497991 8.350715 LAMA2;TRAF5

Hematopoietic cell
lineage 2 88 0.0287269 0.2497991 7.960706 IL3;IL5RA

Transmembrane
transport of small

molecules
4 432 0.0405993 0.2497991 3.256342 ATP4B;SLC13A2;

STEAP3;ATP2B2

3. Discussion

We found seven unique pairs of CpG dinucleotide sites and metabolites with signifi-
cant natural indirect mediation effects. These pairs included five DNAm probes mediated
by histidine (a metabolite known to affect T1D risk), one probe (cg01604946) mediated by
phostidyl choline p-32:0 or o-32:1, and one probe (cg00390143) mediated by sphingomyelin
d34:2. For all seven pairs, the metabolite was positively associated with IA, and the methy-
lation of the CpG site was negatively associated with both the metabolite and IA. Thus, an
indirect effect less than one suggests that some of the protective effect of the CpG site is via
reduction in metabolite levels.

We previously discovered nominally significant positive associations between his-
tidine and the risk of progression from IA to T1D [20], and other studies indicated that
the histidine–glutamate–glutamine pathway can be corrected by improving glycemic con-
trol [21]. Additionally, histidine is a precursor to histamine, a monoamine that plays an
important role in inflammation and has been linked to the development of T1D and other
immune responses [22,23]. A knock-out mouse experiment for the gene encoding histidine
decarboxylase (the enzyme that converts histidine to histamine) showed that decreased
histamine levels were associated with a lower incidence of T1D and decreased levels of
circulating IL-12 and IFN-γ [22].

While the connection between histamine and T1D is relatively well studied, it remains
unclear how it might mediate the protective effects of the CpG sites we identified, and
how the methylation of those CpG sites might affect T1D etiology. The association of IA
and the CpG site profiled by probe cg19939773, located approximately 1.4 kb upstream
of the second exon of the HLA-DQB2 gene, was mediated by histidine. HLA-DQB1 is
an important risk gene in development of T1D, but the literature on HLA-DQB2 is less
clear [24]. Interestingly, methylation of the KIF26A gene (probe cg01172082), which was
also mediated by histidine, was found to be affected by a 5-day high-fat high-energy diet
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in young men, and these changes could potentially contribute to the insulin resistance seen
in some of the study participants with T2D [25].

Das et al. found using whole-exome sequencing (WES) that the COL18A gene (which
we found was mediated by histidine) is protective against diabetic retinopathy, but the
sample size was small, and these results warrant replication [26]. A relatively large study
also found that polymorphisms in the collagen protein encoded by COL18A may be
related to increased obesity in patients with T2D [27]. COL18A antisense RNA is also not
well understood, but mouse models have provided some evidence that other antisense
RNAs, namely GLUT-2, can increase risk of diabetes, [28] so it is possible that increased
methylation results in lower expression of risk-increasing antisense RNA.

For the phosphatidyl choline (PC) identified as either PC (p-32:0) or PC (o-32:1) and
the sphingomyelin (SM) identified as SM (d34:2), a study by Oresic et al. found that
participants who went on to develop T1D had lower levels of PCs at birth, but that “the
lysoPC PC(18:0/0:0) was increased 1.5-fold within 9–18 mo before seroconversion” [8].
Elevated lysoPCs are believed to be a marker of oxidative stress prior to the development of
islet autoantibodies [29], but our group also found that PC (16:0_18:1(9Z)) was the strongest
single metabolite predictor of IA reversion. The CpG site profiled by the cg01604946 probe
is located within the SH3TC2 gene and its association with IA is mediated by the compound
identified as PC (p-32:0) or PC (o-32:1). This phosphatidyl choline is generally associated
with demyelinating motor and sensory neuropathy, and its connection to T1D requires
more research [30].

Like PCs, the research regarding SMs generally suggests that they have a protective
effect against developing T1D [8,31] and mouse models have shown that SM patches on
pancreatic β-cells correlate well with insulin production capacity [32]. However, SMs are
also strongly associated with rapid eGFR decline [33] and general nephropathy [34] in
those who already have T1D. Both SMs and PCs have also been linked to renal impairment
and all-cause mortality in T1D, [35] which indicates that understanding of their role in
T1D etiology remains incomplete and specific SMs and PCs may not be protective. Like
the COL18A and KIF26A genes, which were mediated by histidine, the CpG probed by
cg00390143 was associated with the GALNT9 gene, which has been implicated in T2D but
remains understudied [36].

This study has identified several potential causal pathways in the etiology of IA. The
seven methylation sites that were significantly mediated by metabolites are potentially
interesting candidates for elucidating epigenetic protection against T1D. While the causal
pathways in our mediation models are temporally reasonable in the sense that the exposure
was measured prior to the mediator, a better understanding of the biological pathways is
necessary to confirm these exploratory analyses.

A limitation of this work is that metabolites were measured in non-fasting samples,
and these analyses did not account for dietary intake, which is the single biggest source
of exposure to chemicals and nutrients [37]. Although DAISY has collected dietary in-
formation, these data are available on only a subset of the relevant timepoints herein;
therefore, adjustment for dietary intake would have significantly decreased our sample
size. However, case/control status for each participant is unknown at the time of metabo-
lite measurement, so participants are effectively randomized with respect to outcome.
Thus, we would not expect there to be a systematic difference in diet that would affect
these results.

Enrichment and over-representation tools are not designed for the integration of
methylation and metabolomics data. To our knowledge, there are no integrated enrichment
or over-representation tools that can incorporate multiple omics datasets, so our biological
interpretation relied on an ad hoc choice of the 100 most significant DNAm probes.

Additionally, we did not adjust the candidate selection step for multiple testing, and
only adjusted p values at the second stage, which could potentially lead to false positives.
However, the best approach to p-value adjustment for correlated variables in this filtering
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step remains an active area of statistical research and we suggest that this approach is
unlikely to result in many false positives due to the adjustments used in the later stages [38].

However, despite these limitations we believe that our approach is a novel method for
the integration of omics data in epidemiological studies. The combination of a longitudinal
study design and mediation analysis allows for causal interpretation of our results, which
will hopefully guide additional research into biological mechanisms. Additionally, this
approach is not limited to DNAm and metabolite studies and could in theory be applied to
any longitudinal study with multiple omics datasets.

4. Materials and Methods
4.1. Study Design and Participants

Study participants were recruited via newborn screening at St. Joseph’s Hospital
in Denver, CO, USA and from unaffected first-degree relatives (FDR) of type 1 diabetes
patients. For the DAISY nested case–control study, IA cases were frequency-matched to
controls by age at SV, race/ethnicity, and sample availability. The majority of participants
were Non-Hispanic White (NHW), and race/ethnicity was categorized into NHW and
Other for matching and analysis. All research was performed in accordance with relevant
guidelines and regulations [7,39,40]. Participants with both methylation and metabolomic
measures at the visit at PSV and SV were selected for these analyses (n = 183).

4.2. DNA Methylation

IA cases and frequency-matched controls were randomly assigned to either the 450 K
group (which included duplicate samples for quality control) or EPIC group (which in-
cluded replicates from the 450 K set for quality control). DNA methylation was profiled in
peripheral whole blood using the Infinium HumanMethylation450K Beadchip (Illumina,
San Diego, CA, USA, “450 K”) for the 450 K set, and the Infinium HumanMethylation EPIC
Beadchip (“EPIC”) was used for the EPIC set. Both sets underwent identical pre-processing
using the SeSAMe pipeline [41], and measurement platform was included as a covariate in
all statistical models in order to account for technological batch effects. Johnson and col-
leagues performed quality control and removed poor-quality samples and DNAm probes
(see Johnson et al. [7] for details). This resulted in 199,243 quality DNA methylation probes
and 183 subjects having DNAm at both PSV and SV timepoints. Normalized M values
were used in all statistical analyses. We use the term DNAm probe and the probe identifier
when referring to the data in the results. However, each probe is designed to measure
methylation at a CpG site which is used as a more general term in the discussion.

4.3. Metabolomics

Untargeted metabolomics were obtained using gas chromatography–time-of-flight
mass spectrometry (GC–TOF MS), charged surface hybrid column quadrupole time-of-
flight mass spectrometry (CSH–QTOF MS), and hydrophilic interaction chromatography
quadrupole time-of-flight mass spectrometry (HILIC–QTOF MS) at the UC Davis West
Coast Metabolomics Center. Non-fasting plasma samples were prepared and analyzed as
previously described in Johnson et al. [20].

For GC–TOF data, peak picking and annotation was performed using BinBase [42].
CSH–QTOF MS and HILIC–QTOF MS were processed using MS-Dial [43], complex lipids
were annotated with LipidBlast [44] and Massbank of North America (http://mona.
fiehnlab.ucdavis.edu/, accessed on 6 August 2021), and erroneous peaks were removed
using MSFLO [45].

After collection, annotation, and post-processing, metabolomics data were normalized
using SERRF [46], a QC-based method designed to account for batch effects. Samples
with low abundance (n = 2) and metabolites with a coefficient of variation more than two
absolute deviations from the median (n = 344) were excluded, and data were transformed
using the Box-Cox method [47]. After processing and quality checks, 2457 untargeted

http://mona.fiehnlab.ucdavis.edu/
http://mona.fiehnlab.ucdavis.edu/


Metabolites 2021, 11, 542 10 of 13

metabolites remained, of which 1905 metabolites were annotated with either a lab-specific
or InChIKey identifier [20]. Only annotated metabolites were considered for these analyses.

4.4. Statistical Analysis

All analyses were performed using the R programming environment [48] version 4.0.0
and included only participants with methylation and metabolomics data at both their SV
and PSV study visits (n = 183). To reduce the number of methylation probe–metabolite pairs
examined in the mediation analysis, we performed simple linear regression to find probes
and metabolites that were correlated at a nominal p < 0.01 level. Next, we performed two
independent logistic regressions on all significantly correlated pairs (one model for DNAm
probe and one for metabolite) to determine pairs in which both were significantly associated
with the IA outcome, again at a nominal 0.01 level. Pairs in which both metabolite and
probe were correlated with one another, and both variables were associated with the
outcome, were selected for the mediation analysis. These p values were not adjusted
for multiple comparisons because this was a candidate-filtering step intended to save
computing time for later steps.

Model-based mediation analyses were performed using the regmedint package [49]
version 0.2.1, an R implementation of Valeri and VanderWeele’s SAS macros [50]. We report
the natural indirect effect (NIE). The natural indirect effect is interpreted on the odds scale
and represents the average change in outcome if the exposure a (methylation at PSV) was
fixed at 1, but the mediator t (metabolite at SV) were changed from the level it would take
if a = 0 to the level it would take if a = 1 [17]. In other words, it is the effect of the exposure
on the outcome that operates through changing the mediator [17].

All regression models were adjusted for HLA-DR3/4 haplotype, age at PSV, time from
PSV to SV, and sex, and included exposure mediator interaction terms as recommended by
VanderWeele [17]. Confidence intervals for the NIE were calculated based on 10,000 boot-
strap simulations using the percentile method and adjusted using Benjamini and Yekutieli’s
False Coverage–Statement Rate (FCR) method [51] at the q = 0.05 level (equivalent selection
based on a false discovery rate-adjusted p value < 0.05). Because DAISY is a case–control
study, cases are oversampled relative to the general population. To account for this, the
regmedint package fits the mediator model using only the control participants, which
approximates the results from a cohort study when the outcome is rare [17].

4.5. Biological Interpretation

Pathway over-representation was performed using PANTHER’s [52] implementation
of reactome pathways [53] and included 60 unique genes associated with the top 100 probes
from the mediation step of the analysis. These p values were based on the standard error
of the NIE estimated using the multivariate delta method, as opposed to being converted
from bootstrap confidence intervals [17]. CpG sites were converted to Entrez IDs using the
missMethyl R package [54] and the 199,243 original probes were used as the reference list.
Pathways with less than 5 genes in the reference list and less than two genes in the analysis
list were excluded.

Pathway enrichment analysis was performed using the Enrichr (https://maayanlab.
cloud/Enrichr/, accessed on 6 August 2021) [55] Biopathways 2019 module [56], again
with the 60 unique genes associated with the top 100 candidate probes.

We also searched for known genotypes at certain loci with allele-specific methylation
using the BIOS QTL browser (https://genenetwork.nl/biosqtlbrowser/, accessed on 6
August 2021) [57]. These methylation quantitative trait loci (meQTLs) can alter methyla-
tion patterns across genomic regions [58]. We then used the biomaRt R package [59] to
obtain gene symbols, which were annotated using GeneCards [60] via the GeneBook R
package [61].
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