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Abstract: One of the ultimate goals of plant breeding is the development of new crop cultivars capable
of withstanding increasing environmental stresses, to sustain the constantly growing population
and economic demands. Investigating the chemical composition of the above and underground
tissues of cultivars is crucial for the understanding of common and specific traits thereof. Using an
untargeted metabolomics approach together with appropriate chemometrics tools, the differential
metabolite profiles of leaf and root extracts from five cultivars of barley (‘Erica’, ‘Elim’, ‘Hessekwa’,
‘S16’ and ‘Agulhas’) were explored and potential signatory biomarkers were revealed. The study
was conducted on seedlings grown for 21 days under identical controlled conditions. An ultra-high
performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS)
was employed to analyse hydromethanolic leaf and root extracts of barley cultivars. Furthermore,
unsupervised and supervised learning algorithms were applied to mine the generated data and to
pinpoint cultivar-specific metabolites. Among all the classes of metabolites annotated, phenolic acids
and derivatives formed the largest group and also represented the most discriminatory metabolites. In
roots, saponarin, an important allelochemical differentially distributed across cultivars, was the only
flavonoid annotated. The application of an untargeted metabolomics approach in phenotyping grain
crops such as barley was demonstrated, and the metabolites responsible for differentiating between
the selected cultivars were revealed. The study provides insights into the chemical architecture of
barley, an agro-economically relevant cereal crop; and reiterates the importance of metabolomics
tools in plant breeding practices for crop improvement.

Keywords: barley; cultivar differentiation; Hordeum vulgare; liquid chromatography; mass
spectrometry; metabolomics; multivariate data analysis; phenotyping; secondary metabolites;
signatory metabolites

1. Introduction

Crop production can suffer from diverse environmental pressures, being abiotic or
biotic. These pressures are huge setbacks in the goal of meeting the increasing demand
for crops in general and barley grain in particular. Aiming to increase crop production,
different strategies are often explored. An example is the development of new cultivars,
presenting traits or phenotypes of interest, through plant breeding techniques. These
cultivars are developed for improved environmental stress resistance, yield and quality
traits. Although tremendous advancements have been made in breeding cultivars, one
important challenge remains; to develop a cultivar with all desirable phenotypes. Such a
task is difficult because of the pleiotropic effect of some genes, the structure of the genetic
population, and the linkages that exist between genes on the chromosomes [1]. Moreover,
the change of a selected trait may result in the anticipated or unanticipated change of
connected traits in either the desired or the opposite direction. Although progress in
understanding the systems biology of agronomic traits has been mainly attributed to
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genetics and genomics, recent plant breeding approaches take into consideration important
information provided by the multi-dimensional data related to the epi-genome, genome,
transcriptome, proteome, and metabolomes that collectively impact the phenotype.

There is a close relationship between the genotype, the phenotype, and the environ-
ment. Phenotypes are influenced by the genotype, the environment, and interactions
between the two. Inversely, the interaction between the phenotype and the environment
can also affect the genotype [2,3]. Moreover, the variation of the genome affects the
phenotype through a series of downstream events on the transcriptome, proteome, and
eventually the metabolome. The influence of the genotype on the phenotype facilitates
the use of DNA-based markers in plant breeding practices for the selection of important
traits. The challenge here is that some genes may be present in the biological system but
not fully expressed and therefore, results in ambiguous selection. This can be overcome
by the complementary use of metabolite-based markers, given that the plant metabolome
constitutes a bridge linking the genotype to the phenotype. In addition, the biochemical
actions of metabolites are extensive and include regulation of epigenetic mechanisms
and post-translational modifications. Moreover, metabolic information is a closer reflec-
tion of the physiological status of the plant as compared to that of the proteome and
transcriptome [4–6].

The phenotype can be directly modulated by the qualitative and quantitative vari-
ation of low-molecular-weight primary- and secondary metabolites, which in that case
will be considered as signatory markers for specific trait selection and cultivar identi-
fication or characterization [7]. Although plants produce an overwhelming number of
secondary metabolites, the application of metabolomics in plant breeding for trait selec-
tion or cultivar identification is still undervalued [6]. The use of metabolomic analyses,
involving technologically advanced analytical platforms and chemometric tools, offers
unique opportunities in elucidating plant biomarkers. Metabolic phenotyping focuses
on detecting and quantifying metabolites in a biological system, shedding light on the
biochemistry underlying plant metabolism, which also reveals the spatio-temporal distri-
bution of metabolites as well as routes or pathways undertaken (by these metabolites) to
perform specific biological functions [8].

As a metabolomics approach, metabolic phenotyping employed alone or in combina-
tion with other ‘omics’ technologies, greatly contributes to expand the current knowledge
on the important link between the metabolome and the phenotype and hence facilitates the
characterization of cultivars. Several studies have demonstrated such applications in cereal
crops [6,9–14]. One recent study on sorghum cultivars highlighted the use of metabolomics
to investigate the underlying biochemistry behind changes in seed colour [13]. Related to
the current study, untargeted metabolomics documented the differential metabolite profile
of oat cultivars at a seedling stage [14]. Classes of metabolites including amino acids, fatty
acids, carboxylic acids, and phenolic compounds were found to be discriminative among
the cultivars.

Barley is an important grain crop, ranked fourth among grains in quantity produced.
Its importance stems from its use in human food, animal fodder, and as a source of
fermentable starch for beer and some distilled beverages. Barley is a widely adaptable crop,
grown in temperate and tropical regions as a summer or winter crop respectively. Although
not particularly winter hardy, it is also cultivated under cooler conditions. Both total
yield by weight and malting quality, probably multigenic traits, are important agronomic
properties. Metabolomics can potentially provide a superior analysis of the phenotypic
plasticity, conferring different growth and response capacities to different cultivars [6].
In this study, an untargeted metabolomics approach, based on ultra-high performance
liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-MS), was
employed for chemo-profiling and discrimination between five genetically related (same
parents) or unrelated (different parents) cultivars of barley from the Western Cape winter
rainfall region of South Africa.
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2. Results
2.1. UHPLC-MS Analyses of Barley Leaf and Root Extracts

Metabolite profiling of five different cultivars of barley was investigated in the study.
Leaf and root tissues were harvested after 21 days and the following extraction with cold
aqueous methanol, samples were submitted for UHPLC-MS analysis in both positive
and negative electrospray ionisation (ESI) modes to provide information on the chemical
composition of the extracts. The base peak intensity (BPI) chromatograms from the leaf
and root samples are represented in Figure 1A,B respectively, and depict the complexity
and diversity of compounds ranging from polar to non-polar in both negative and positive
(Supplementary Figure S1A,B) ionisation modes. The visual comparison of chromato-
graphic profiles revealed more distinguishable quantitative as compared to qualitative
differences between samples. Examples of such quantitative variations are highlighted
with dotted rectangles. Geared toward a more holistic understanding of these cultivar-
and tissue-related differences, advanced data processing and chemometric analyses of the
complex and multidimensional data were required.

Figure 1. Ultra-high performance liquid chromatography–mass spectrometry (UHPLC-MS) base peak intensity (BPI)
chromatograms in negative electrospray ionisation (ESI) mode of (A) leaf and (B) root extracts from five different barley
cultivars (‘Erica’, ‘Elim’, ‘Hessekwa’, ‘S16’ and ‘Agulhas’) under controlled conditions and harvested after 21 days.
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2.2. Multivariate Data Analyses: Principal Component- and Hierarchical Clustering Analyses
(PCA and HiCA)

A total of 1077 and 1148 features were extracted from leaf data acquired from the
UHPLC-MS analyses in negative and positive ionisation modes respectively. For root
extracts, the corresponding values were 470 and 781. The extracted data were submitted to
multivariate data analyses (MVDA) to further evaluate the metabolite distribution across
samples. Two unsupervised chemometric methods, principal component analysis (PCA)
and hierarchical clustering analyses (HiCA) were applied to mine the complex and high-
dimensional datasets and provided an overview of patterns and trends therein. As seen
in Figure 2A (leaves) and Figure 2B (roots), the PCA scores plots showed clear sample
groupings with distinct differences between extracts from leaves vs. roots, indicating
cultivar-specific variation as well as tissue-specific differences (Figure 2A,B). In the ex-
tract from leaves, well-defined clustering was observed in both ESI(−) and ESI(+) data
(Figures 2A and S2A). For extracts from roots in ESI(−), two main groups were globally
observed: ‘Erica’ and ‘Agulhas’ vs. ‘Elim’-‘S16’-‘Hessekwa’ (Figure 2B). This corresponds
with what is known about the genealogy of the cultivars (Section 4.1). A similar observation
was not evident in ESI(+) mode, showing no distinct clustering (Figure S2B). Moreover,
HiCA displayed the same pattern observed in the corresponding PCA; and more defined
sub-clustering was underlined (Figure 2C,D and Supplementary Figure S2C,D).

Figure 2. Principal component analysis (PCA) score plots and hierarchical cluster analysis (HiCA) dendrograms of ESI(−)
data from leaf and roots extracts of five cultivars of Hordeum vulgare. The data was mean-centred and Pareto scaled. The
calculated Hoteling’s T2 with a 95% confidence interval is represented by the ellipses present in each PCA scores plot. HiCAs
were computed on low-dimensional data derived from the corresponding PCA modelling and highlight sub-clustering
formed within the samples. The datasets used to compute these models consisted of 1077 features in leaves and 470 in roots.
(A) A scores plot (PC1 vs. PC2) of a 4-component (PCA) model explaining 60.3% variation and predicting 51.3% variation in
leaves; (B) A scores plot (PC1 vs. PC2) of a 5-component model explaining 72.3% variation and predicting 62.4% variation
in roots; (C) HiCA dendrogram corresponding to the PCA model in (A) for leaf extracts, and (D) HiCA dendrogram
corresponding to the PCA model in (B) for root extracts.
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2.3. Unravelling the Cultivar-Specific Metabolic Profile of Barley Leaves and Roots

Prior to the investigation of differences among the cultivars, global profiling of metabo-
lites was performed to provide a general background of the chemical composition of barley
leaf and root extracts irrespective of the cultivars. The UHPLC analyses of leaf and root
extracts were performed on combined quality control (QC) samples, which represented
the mixture of all cultivars included in the study. The typical workflow involved all the
MS features and the aim here was to annotate as many metabolites as possible to have a
general overview of the barley metabolome. Compound annotations were based on the
accurate masses (m/z) corresponding to the features obtained after data processing. The
empirical formulae generated by the MassLynxTM software (Sections 4.4 and 4.5) as well
as mass fragmentation patterns of these compounds (obtained at different MS collision
energies, MSE) were compared with those in the databases and literature. Except for horde-
nine identified with the help of an authentic standard, seventy-four (74) metabolites were
annotated as listed in Supplementary Table S1. Among these, 69 were found in the leaves
and 30 in the roots; together sharing 24 metabolites. The 75 metabolites were categorised
into different classes: phenolic acids and related derivatives, flavonoids, alkaloids, amino
acids and derivatives, organic acids and fatty acids (Figure 3).

Figure 3. Profiling of metabolites present in methanolic extracts from barley leaf and root extracts. (A,B) Doughnut charts
representing the proportion of all classes of annotated metabolites in leaf—(left) and root extracts (right); (C,D) Spider plots
showing the relative distribution of classes observed in (A,B) across the cultivars profiled.

Annotated metabolites included phenolic acids such as protocatechuic acid hexose,
benzylalcohol-hexose-pentose and gallic acids, all annotated in both leaf and root samples
as previously described [15,16]. In addition, ferulic-, caffeic- and sinapic acid conjugated
with quinic acid or hexose residues were also identified but only in leaf extracts [17–19].
In the same class, different isomers of hordatines (benzofurans specific to barley) were
identified and annotated in the leaf extracts together with their precursors (p-coumaroyl-,
feruloyl- and sinapoylagmatines), found in both leaf and root extracts [15,19–22]. The
flavones, luteolin, and apigenin, substituted with mono-, di- and triglycosides as well as
cinnamic acid moieties were the principal flavonoids annotated. The prenylated flavanone
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6-prenylnaringenin and a flavonoid derivative were also identified [19,20,23]. Saponarin or
isovitexin-7-O-glucoside was the only flavonoid annotated in extracts from roots. In both
leaf and root extracts, the alkaloid hordenine, as well as amino acids such phenylalanine
and tryptophan [15,23,24]; organic acids [15,20,25], and fatty acids [15,20,23,26–28] were
identified (Supplementary Table S1).

2.3.1. Distribution of Metabolite Classes in Leaf and Root Extracts of Barley Cultivars

From the profiling of the metabolites present in leaf and root extracts (resulting in
75 annotated metabolites), phenolic acids and derivatives were the major class of com-
pounds in the extracts from both leaves and roots of barley cultivars; representing 32%
and 40% respectively, of the total number of annotated metabolites. In leaf extracts, this
was followed by flavonoids representing 29% and then fatty acids making up 26% of all
metabolites (Figure 3A). In the roots, phenolic acids and derivatives were followed by fatty
acids which represented 34% of the total number of metabolites annotated (Figure 3B).
Only one flavonoid, saponarin, an allelochemical, was annotated in the roots. Organic
acids, amino acids, and an alkaloid present in both tissue types represented all-together
13% of metabolites in leaves and 23% in roots.

In addition to differences observed between leaf and root tissues, a differential distri-
bution of these classes of metabolites could also be depicted across cultivars (Figure 3C,D).
The distribution was evaluated based on the average relative concentrations (integrated
peak areas) of all metabolites constituting each class. In leaf extracts, phenolic acids, organic
acids, amino acids, and alkaloids were more prominent in ‘Elim’ as compared to ‘Agulhas’,
‘Erica’, ‘Hessekwa’, and ‘S16’. The highest relative concentration of flavonoids and fatty
acids was observed in ‘Erica’ and ‘S16’ respectively (Figure 3C). Similarly, in root extracts,
the ‘Elim’ cultivar had the highest level of amino acids and alkaloids, and ‘Erica’ the
highest level of flavonoids. Fatty acids and organic acids were relatively more abundant
in ‘Hessekwa’ and phenolic acids and derivatives in ‘Agulhas’ (Figure 3D). The diversity
observed in the classes of annotated metabolites was also remarkable when investigating
individual metabolites across cultivars. This was infographically illustrated in heatmap
format (Figure 4), highlighting the differential relative concentrations (average values) of
specific metabolites within each metabolite class among cultivars.

Figure 4. Heatmap overview of the distribution of annotated metabolites present in extracts from
(A) leaf and (B) roots of different barley cultivars: ‘Agulhas’, ‘Erica’, ‘S16’, ‘Elim’ and ‘Hessekwa’. The
colour scale was set to default ranging from red (high) to blue (low). L = leaf extracts, R = root extracts.
Each cell represents the average peak intensity values (n = 9) of specific metabolites within the
indicated specific groups.
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2.3.2. Partial Least Squares- and Orthogonal Partial Least Squares-Discriminant Analyses
(O)PLS-DA: Differential Metabolite Profiles and Potential Biomarkers

To select discriminating metabolites between the cultivars, statistical tools, i.e., par-
tial least squares discriminant analysis (PLS-DA) and orthogonal partial least squares-
discriminant analysis (OPLS-DA) were performed. PLS-DA is a regression method that can
provide descriptive and predictive models, and also discriminates among classes. PLS-DA
models for all five cultivars (Supplementary Figure S3) were evaluated using the 10-fold
cross-validation which calculated the performance parameters Q2 = 92.5%, R2 = 99.1% in
leaf datasets, and Q2 = 91.1%, R2 = 97.8% in root datasets. Permutation tests were also
applied to validate the generated models. The computed PLS-DA models for leaf and
root data were statistically better than the 100 permuted models. Discriminant features
identified by PLS-DA were selected based on the variable importance in projection (VIP)
scores. The latter estimates the contribution of each variable to the model and features with
VIP scores > 1 were considered as important discriminants. Accordingly, a total of 15 and
6 features in leaf and root data respectively, were selected as discriminatory metabolites
and are shown in Figure 5, with relative quantitative assessment of each metabolite across
the cultivars.

Figure 5. The most important discriminant metabolites (identified by PLS-DA) ranked by variable
importance in projection (VIP) scores in component 1. The relative abundance of each important
metabolite from leaf (A) and root (B) samples are indicated with a colour code scaled from blue (low)
to red (high). The higher the VIP score, the higher the impact of the metabolite as a discriminant
feature among the cultivars. Only the metabolites with a VIP score > 1 were considered.
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Starting with extracts from leaves, ‘Agulhas’ had the highest level of tryptophan,
ferulic acid hexose, hordatine A and its hexosylated conjugate; and the lowest level of 9-
hydroxy-12-oxo-10(E),15(Z)-octadecadienoic acid (12K,9-HODE) isomer I and an isovitexin
derivative. In ‘S16’, 3-feruloylquinic acid, 3-caffeoylquinic acid, sinapic acid hexose, the
isovitexin derivative, and isomers I and III of linolenoylglycerol were relatively higher
compared to the rest of the cultivars. Ferulic acid hexose, hordatine A, isovitexin 6”- and
2”-O-glucosides, and tryptophan were the least abundant in the same cultivar. ‘Elim’
and ‘Hessekwa’ had the highest level of N-acetylaspartylglutamic acid and 12K,9-HODE
isomer II respectively. Except for the isovitexin derivative, higher in ‘S16’, ‘Erica’ had the
highest level of all other discriminant flavonoids (isovitexin 2”-O-glucoside, isovitexin 2”-O-
arabinoside isomer I, and isovitexin 6”-O-glucoside); and the lowest level of 3-caffeoyquinic
acid, sinapic acid hexose, and hordatine A glucose (Figure 5A).

In root extracts, except for saponarin, more predominant in ‘Erica’, ‘Agulhas’ presented
the relatively highest level of all discriminant metabolites (Figure 5B). These included:
benzylalcohol-hexose-pentose, p-coumaroylagmatine, sinapoylhydroxyagmatine, 12-oxo-
phytodienoic Acid (OPDA) conjugate isomer I, and linolenoylglycerol isomer I. ‘Hessekwa’
on the other hand had the smallest relative concentrations of OPDA conjugate isomer
I, p-coumaroylagmatine, sinapoylhydroxyagmatine, and saponarin. The two fatty acids
mentioned here displayed the highest VIP scores (>2) in comparison to the rest of the
selected metabolites: the higher the VIP score, the greater the contribution of the metabolite
to the model classification.

In addition to PLS-DA, its orthogonal variant, OPLS-DA, a supervised binary classifi-
cation method, was applied to discriminate between two cultivars at a time and extract
potential signatory metabolites corresponding to each cultivar; an example is displayed in
Figure 6. The score plot of the generated OPLS-DA model (‘Erica’ vs. ‘Elim’—Figure 6A)
displays a clear separation of the two classes of samples under investigation. Different
model validation procedures were employed as described in the experimental section.
Some of these validation methods include a seven-fold cross-validation (CV) procedure
(summarised by the value of quality parameters, cumulative R2 and Q2 metrics, for ex-
plained and predicted variation, respectively). Performance parameters calculated for all
the OPLS-DA models generated from leaf and root datasets are similarly presented in
Supplementary Table S2.

Furthermore, the receiver operator characteristic (ROC) was applied to evaluate the
classification ability of the model (Supplementary Figure S6B). The higher the area under
the curve (AUC) the better the model is at distinguishing between the two classes. The
high specificity and sensitivity of 100% observed on the curve validate the discriminatory
power of the model [29,30].

To select features responsible for the sample discrimination, an evaluation of the
OPLS-DA loading S-plots (Figure 6C) was carried out for each pairwise comparison of
cultivars. Features with both high correlation and covariation, [p(corr) ≥ 0.5, ≤ −0.5 and
(p1) ≥ 0.1, ≤ −0.1] were highlighted. The highlighted variables are significant elements for
the biochemical interpretation underlying sample grouping. For statistical purposes, the
measurement of the relevance of selected features was further performed with VIP score
plots (Figure 6D). Again, only variables with VIP scores higher than the cut-off threshold
of 1 were considered as important.

In the example provided (Figure 6), ‘Erica’ and ‘Elim’ were compared. From the S-plot
(Figure 6C), metabolites positively correlated to each cultivar were selected (as highlighted
in red). The VIP scores as well as the corresponding p-value and p(corr) of these metabolites
are provided in Table S3. The annotation of selected discriminant features was performed as
described in Sections 2.3 and 4.5. These were cross-checked with the metabolites annotated
initially which provided additional information on the metabolite composition of barley.
Figure 7 (leaf extract data) and Figure S4 (root extract data) summarise and represent all
the annotated discriminant metabolites obtained from the S-plots corresponding to each
comparison group. Following the same example (‘Erica’ vs. ‘Elim’), 3-feruloylquinic acid,
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lutonarin, isovitexin 2”-O-glucoside, isovitexin 2”-O-arabinoside isomer I, isovitexin 6”-O-
glucoside, isovitexin 7-O-[X”-feruloyl]-glucoside, isoorientin 7-O-[6”-sinapoyl]-glucoside
and a flavonoid-related compound were positively correlated to ‘Erica’ and negatively
correlated to ‘Elim’.

Figure 6. Supervised multivariate data analyses of ultra-high performance liquid chromatography—mass spectrometry
(UHPLC-MS) data. Orthogonal partial least squares discriminant analysis (OPLS-DA) modelling and feature selection were
performed, based on the unique metabolite profiles of ‘Erica’ and ‘Elim’ leaf extracts in negative ionisation mode. (A) OPLS-
DA score plots showing a clear separation between the two cultivars. The model is made of 1 predictive component and
1 orthogonal component (R2X = 66.4%, R2Y = 99.9%, Q2 = 99.7%, CV-ANOVA p-value = 7.78e−16). (B) Receiver operator
characteristic (ROC) plot summarising the performance of the binary classifier. Perfect discrimination is characterised by a
ROC plot showing 100% specificity and sensitivity as above. (C) Loading S-plots displaying the features responsible for
sample clustering, and are located at the ‘outlier’ ends of the S-plots, highlighted in red here. These features are statistically
significant candidates as biomarkers for both cultivars. (D) Variable importance in projection (VIP) plot corresponding to
the model above and pointing out the mathematical significance of each feature responsible for the discrimination of the
cultivars. A VIP score > 1 is considered as significant in the projection and the higher the score values, the more significant
the features are.

Twenty-six discriminant metabolites were annotated in the leaves and eleven in the
roots; together sharing three metabolites; saponarin, citric- and isocitric acids. In the
leaves, as part of the flavonoids, lutonarin was positively correlated to ‘Hessekwa’ and
negatively correlated to ‘Erica’, ‘S16’, and ‘Elim’. Saponarin, already mentioned as a
discriminant metabolite in roots, was also found discriminatory in leaves of all cultivars
with the highest intensity present in ‘Elim’. Comparing ‘Erica’ to other cultivars (‘S16’,
’Elim’, ‘Agulhas’ and ‘Hessekwa’) revealed that isovitexin 2”-O-glucoside and isovitexin
2”-O-arabinoside isomer I were positively correlated to the cultivar while isovitexin 7-
O-rhamnosylglucoside was negatively correlated. Isoscoparin-7-O-glucosides, isovitexin
arabinose isomer II, isovitexin-7-O-[X”-feruloyl] glucoside, isovitexin-7-O-[6”-sinapoyl]
glucoside, and the flavonoid-related compound were also found in the leaf extracts to be
discriminatory among cultivars. Regarding the fatty acids, the second isomer of OPDA
conjugate, 9K,12,13-diHODE, and linolenoylglycerol isomer IV discriminated leaves of
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‘Erica’, ‘S16’, ‘Agulhas’ and ‘Hessekwa’. In the roots, p-coumaroylhydroxyagmatine and
gallic acid monohydrate were selected as discriminant metabolites and positively correlated
to ‘Erica’ and ‘Elim’ respectively. 9,12,13-triHODE isomer II was negatively correlated to
‘Erica’ and more prominent in ‘Hessekwa’. In both leaves and roots, citric and isocitric
acids were positively correlated to ‘Elim’ and ‘Hessekwa’.

Figure 7. Discriminant metabolites selected from OPLS-DA loadings S-plots generated from the comparison of extracts from
leaves from the five cultivars with each other. The arrow indicates the positive correlation of the four groups of metabolites
with the corresponding cultivars, e.g., in the first column, comparing ‘Erica’ to ‘S16’, all metabolites in the dark purple
rectangle (corresponding to ‘S16’) are positively correlated with ‘Erica’ and negatively correlated with ‘S16’. Using the
example in Figure 6 comparing ‘Erica’ and ‘Elim’, eight metabolites were found to be positively correlated to the former,
and five were positively correlated to the latter.

The above-mentioned metabolites, extracted and evaluated using supervised (chemo-
metric) modelling, contribute to cultivar-specific differential metabolite profiles and also to
the discrimination between cultivars.

3. Discussion

Chromatographically distinct metabolite profiles obtained from barley plants har-
vested at their third leaf stage of development after 16 days of post-emergence growth
are indicative of metabolic variations across the cultivars and tissues. Although limited
and not clearly or fully informative, variations observed here throughout UHPLC-MS
chromatograms were the first indication of differential chemical compositions between
all cultivars. We attempted to annotate as many metabolites as possible to have a general
overview of the barley metabolome.

Six main classes of metabolites belonging to different metabolic pathways were an-
notated in the study. These include phenolic acids and related derivatives, flavonoids,
alkaloids, amino acids and derivatives, organic acids, and fatty acids. The biosynthesis of
metabolites is dependent on a myriad of factors varying from the plant’s existing genomic
and genetic make-up to environmental variation, which contribute to plant phenotypes.
Hence, metabolite production is often specific to the type of organism, family, genus,
species, cultivars, and the relatedness between those [6,10,31–33]. In addition, a differ-
ential composition and distribution throughout the plant tissues have also been clearly
demonstrated [14,34–37].

Leaves and roots are two morphologically and functionally different plant tissues.
Several studies demonstrated an increase in the production of phenolic acids and flavonoids
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following high light exposure. In this case, no stress was applied to the plants; however,
leaves are naturally more exposed to light as compared to roots [38]. This can explain the
presence of a higher number of phenolic compounds in leaves compared to roots. In fact,
the main function of leaves is to absorb light and provide energy during photosynthesis.
Roots, on the other hand, support the aerial shoot system by anchoring the plant into
the ground, and also absorb water and nutrient salts from the soil and conduct them to
the upper tissues. These dissimilarities alone can be good contributors to the differential
production of any compounds related to their specific functions.

Furthermore, descriptive analyses (PCA and HiCA) allowed us to assess the general
structure of the data, hence drew attention to cultivar-related grouping. Sample groupings
and cultivar branching observed on the PCA and HiCA respectively, emphasised the
existing differential metabolic distribution of barley cultivars. In general, cultivars grouping
or branching closely to each other are more related at the metabolome level compared to
those farther apart. This was evident in the case of extracts from roots, where two main
cluster groups were globally observed: ‘Erica’ and ‘Agulhas’ (sharing the ‘SSG’ parent) vs.
‘Elim’-‘S16’-‘Hessekwa’ that shares ‘Nemesia’ as a parent. However, in the case of the leaf
extracts from ‘Agulhas’ and ‘Hessekwa’, these two cultivars seemed to be metabolically
more related than the rest, while sample clustering of ‘Agulhas’ and ‘Erica’ (which share a
parent) implies differences in the metabolite composition of the extracts. In this context,
it is important to note that the metabolome of a biological system can be affected by
any variation occurring at transcriptomic—or proteomic levels [6]. As a result, similar
genotypes may produce different metabolite profiles. In all cases, differences between the
samples originating from the five cultivars were underlined.

From PCA and HiCA to PLS-DA models, clear separation of the five cultivars was
observed. This shows the ability to separate and classify multiple cultivars at once, and to
identify metabolites responsible for such classification. In addition, from OPLS-DA (where
the comparison was reduced to only two cultivars at a time), further metabolites were
provided as potential biomarkers. In addition, the chemometric models aided in revealing
metabolites (potential markers) that discriminate between cultivars (Figure 7—leaf extracts
and Supplementary Figure S4—root extracts). In agriculture and plant breeding practices,
such chemometric tools can be applied in quality control assessments and evaluation of
soil properties in the field [39,40]; or to detect specific phenotypes [41]. In addition, reports
on the application of unsupervised and supervised learning algorithms in metabolomics
studies are starting to emerge [10,12,14,42].

Irrespective of the plant tissue, phenolic acids were the major discriminant metabo-
lites, followed by fatty acids and flavonoids. Organic acids as well as amino acids and
derivatives were more tissue-dependent as they were the only found discriminants in leaf
extracts. Plant metabolites in their diversity can be associated with several agronomical
important phenotypic traits, i.e., the quantitative and qualitative occurrence of these partic-
ular metabolites is a prediction of specific biological states. These metabolic biomarkers can
be characteristic of crop performance traits such as grain or tissue yield, storage properties,
morphology, nutritional attributes, sensory qualities, water and nutrient usage, tolerance
or resistance to biotic and abiotic stresses, and technological properties traits [43–45]. These
are important attributes in plant breeding practices.

Phenolic compounds are widely spread throughout the plant kingdom and have
been extensively studied in the past years because of their abundance and importance in
protecting plants against environmental stresses [46]. Examples of such compounds in the
current study may include hordatine A and its precursor p-coumaroylagmatine which are
more prominent in ‘Agulhas’ leaves and roots respectively, and well known for their strong
antifungal properties [47,48]. In barley, the synthesis of phenolic compounds has also been
associated with antioxidant activity and allelopathy properties [49–51]. The ability of plants
to synthesise and release allelochemicals is an important selection characteristic for the
reduction of weeds spreading and for the fabrication of bio-pesticides [52–54]. Saponarin
was regarded as a candidate metabolite marker for the allelopathic characteristic in barley
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root exudates [51]. Here, the compound was annotated in both leaves and roots, and was
found more prominent in the leaves of cultivar ‘Elim’ and the roots of the cultivar ‘Erica’.
Flavonoids in general are structurally diverse plant phenolic compounds, playing impor-
tant roles in plant pigmentation, protection against UV, development, symbiosis, defence,
and signalling mechanisms [55,56]. These secondary metabolites were also suggested as
strong metabolite biomarkers for the detection of cultivars tolerant to salt stress [57]. In
addition to phenolic compounds, alkaloids are also well known as allelopathic metabolites
in barley. In fact, the most reported alkaloids in barley, hordenine (a phenethylamine
derivative), and gramine (an aminoalkylindole) [58] were the first to be proposed as main
contributors to the plant allelopathy [54,59].

C18 unsaturated fatty acids (UFAs) are economically important metabolites, essential
for human nutrition. In plants, they play important roles as membrane components, parts
of extracellular barriers (e.g., cutin), reservoirs of carbon and energy in triacylglycerol,
and modulators in the glycerolipids [60,61]. Moreover, C18 UFAs are also antioxidant
precursors and regulators of several bioactive molecules such as jasmonic acid; hence the
association to plant defence against biotic and abiotic stresses [61,62]. In wheat, alteration
to lipid metabolism was reported as a marker of induced resistance [63].

Organic acids play a central role in the metabolism of plants. They are well known
as intermediates in carbon metabolism and are produced through the TCA cycle and
glyoxylate metabolism [64,65]. In plants, malic acid is the most accumulated carboxylic
acid and plays an additional function as an osmolyte and an anion, balancing the excess of
cations in the plant [66]. Organic acids also promote nitrate intake; this was observed in
the root tissue of soybean plants in which malic acid was accumulated [64]. As central to
various metabolic pathways, organic acids are also precursors for the biosynthesis of many
metabolites such as amino acids and lipids [65]. The accumulation of free amino acids
is often associated with stress tolerance [67]. For example, amino acid metabolism was
reported to regulate the drought stress response in maize [68]. Relatedly, tryptophan was
classified as a discriminant metabolite in oat cultivars [14]. In the current study, tryptophan
was found discriminating the leaves of all cultivars with the highest concentration in the
‘Agulhas’ and the lowest in ‘S16’. Cultivars rich in amino acids could also be considered
during selection programs when interested in their nutritional value for the human diet [69].

Recent advances have confirmed a relationship existing between genetic variants and
metabolites that could be useful for metabolic engineering across various plant cultivars.
For instance, the biosynthesis of flavonoids in Arabidopsis has been associated with the
gene flavonol 7-O-rhamnosyltransferase. Increased accumulation of flavonoids in that plant
could be correlated with the increase in gene expression levels [70]. As essential compo-
nents of plant metabolism and phenotypic determinants, the investigation of metabolites is
important for the understanding of the biochemistry underlying plant physiological re-
sponses. As such, it contributes to the interpretation of interactions and connections which
exist between the plant system and the environment. The study showed that metabolomic
analyses were effective to observe variation between cultivars that are genetically related
as well as non-related cultivars. Uncovering cultivar-related metabolites or a group of
functionally related metabolites associated with known agronomical traits and economic
attributes would provide additional knowledge that can be useful for breeders in the se-
lection process and development of new cultivars. Although metabolomics provides very
insightful information, the combination with other systems biology approaches constitutes
a powerful strategy towards a comprehensive understanding of a plant [71,72]. To the best
of our knowledge, this study is the first to provide insight into the use of metabolomics
and chemometric tools for the identification and differentiation of barley cultivars at an
early growth stage. The study provides a global selection of potential biomarkers, and in
this specific case, no further assessment of individual metabolites was required. However,
for further studies, targeted metabolomics and univariate data analysis can be applied to
the multidimensional set of data to investigate the specific changes across cultivars.
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4. Materials and Methods
4.1. Barley Plant Material and Growth Conditions

Barley (Hordeum vulgare) seeds were provided by the South African Barley Breeding In-
stitute (SABBI, Bredasdorp, Western Cape, South Africa). Seeds from five different cultivars
or lines were from the Western Cape province and were developed as winter rainfall, dry-
land crops. These included commercial cultivars ‘Erica’ (‘SSG 532’ × ‘Cooper’) and ‘Agul-
has’ (‘SSG 532’ × ‘Kinukei 22’) as well as experimental lines ‘S16’ (‘Hessekwa’ × ‘Nemesia’),
‘Elim’ (‘S02/Ferment’ × ‘Nemesia’) and ‘Hessekwa’ (‘S02/Ferment’ × ‘Nemesia’). ‘Erica’
and ‘Agulhas’ thus share one parent (‘SSG 532’), while ‘Elim’ and ‘Hessekwa share both
parents (‘SO2/Ferment’ and ‘Nemesia’). ‘S16’ is related to the latter two through the parent
‘Nemesia’. Of the five cultivars, ‘Hessekwa’, ‘Elim’, and S16’ (all sharing ‘Nemesia’ as a
parent) are designated as ‘malting’ cultivars.

Plants were grown under optimal, controlled conditions with no applied stressors to
minimise biological variation that can be a detrimental factor for metabolomic studies. All
cultivars were grown at the same time in a plant growth room under controlled light and
temperature conditions: 12 h fluorescent light (≈85 µmol m−2 s−2) and 12 h dark cycle at
22–27 ◦C. Prior to cultivation, soil (professional germination mix, Culterra, Muldersdrift,
South Africa) was pasteurised at 70 ◦C and barley seeds were surfaced-sterilised with
70% ethanol for 5 min followed by several rinses with autoclaved distilled water. Following
sterilisation, seeds were soaked in autoclaved distilled water for 2 h for imbibition and then
planted in wet soil. Plants were watered twice a week; once with distilled water, alternating
with a water-soluble chemical fertiliser (Multisol ‘N’, Culterra, Muldersdrift, South Africa).
The study was designed to evaluate the metabolite profiles of leaf and root extracts of
the different cultivars 21 days after planting (16 days post-emergence). At that time,
plants were at their third leaf stage of development (principal stage 1 and secondary stage
3 according to the Zadoks scale, [73]. Three independent biological replicates consisting of
at least 3 seedlings of each cultivar were sampled. Upon harvesting, roots and shoots were
separated, snap frozen to quench metabolic activity and stored at −80 ◦C until processed.

4.2. Metabolite Extraction and Pre-Analytical Sample Preparation

Each replicate of harvested leaves and roots was extracted with 80% cold aqueous
methanol (1:10 w/v ratio). The mixture was homogenised using an Ultra-Turrax ho-
mogeniser and sonicated for 10 s with a probe sonicator (Bandelin Sonopuls, Berlin, Ger-
many) set at 55% power. Homogenates were centrifuged for 20 min at 5100× g and
4 ◦C. Using a rotary evaporator, the hydro-methanolic supernatants were concentrated to
1 mL by vacuum evaporation, transferred to Eppendorf tubes and evaporated at 45 ◦C
to complete dryness in a centrifugal vacuum concentrator (Eppendorf, Hamburg, Ger-
many). Dried extracts were reconstituted with 500 µL of 50% UHPLC-grade methanol
(Romil, Cambridge, UK) by vortexing and sonication. For ultra-high performance liquid
chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-qTOF-MS) analy-
sis, extracts were filtered through 0.22 µm nylon filters into chromatography vials fitted
with 500 µL inserts, capped and kept at −20 ◦C prior analysis. Each sample was analysed
in triplicate.

4.3. Sample Analysis Using Ultra-High Performance Liquid Chromatography—High Definition
Mass Spectrometry

The UHPLC-qTOF-MS analyses of extracts were performed on a Waters Acquity UH-
PLC hyphenated with Waters SYNAPT G1 high resolution, accurate mass spectrometer sys-
tem in V-optics (Waters Corporation, Milford, MA, USA) as a detector. Aqueous-methanol
extracts were separated using the Waters HSS T3 C18 column (150 mm × 2.1 mm × 1.8 µm),
thermostatted at 60 ◦C. The T3 column has the advantage of separating compounds ranging
from polar to non-polar despite its characteristic as a C18-based reverse-phase column. A
binary solvent system made up of water (eluent A) and acetonitrile (Romil Pure Chemistry,
Cambridge, UK; eluent B) both containing 0.1% formic acid, was used for the concave
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gradient elution at a flow rate of 0.4 mL.min−1. The elution initiated with 5% B for 1 min
and was gradually increased up to 95% B over 24 min. The concentration of B was kept
constant at 95% for 2 min and finally, changed back to initial conditions at 27 min. Before
the next injection, the conditions were set to allow the analytical column to calibrate for
3 min. The total run time was 30 min and the injection volume for each sample was 2 µL.
Each sample was analysed in triplicate. All sample extracts were randomised to reduce the
measurement bias. Blanks made of 50% MeOH were included to monitor the background
noise and quality control (QC—pooled) samples were used to assess the stability of the
LC-MS system. In Figure S5A, the BPI chromatograms of a blank and a QC sample are
illustrated in a linked Y-axis for the purpose mentioned above. The reliability and the
reproducibility of the analysis were confirmed on the PCA models (Figure S5B) where the
QC samples clustered closely to each other [74].

The high resolution, accurate mass MS analyses were operated in both negative and
positive electrospray ionisation (ESI) modes. The capillary voltage was set at 2.5 kV; the
sampling and extraction cone voltages were 40 V and 4.0 V, respectively. The source
temperature was fixed at 120 ◦C and the desolvation temperature at 450 ◦C. The cone
and desolvation gas flows were at 50 L.h−1 and 550 L.h−1 respectively. Nitrogen was
used as the nebulisation gas at a flow rate of 700 L.h−1. A mass range of 50 to 1200 m/z
was selected with a scan time of 0.1 s. The reference mass calibrant, leucine enkephalin
(50 pg. mL−1, [M–H]− = 554.2615 and [M + H]+ = 556.2766) was sampled every 15 s and
produced an average intensity of 350 counts per scan. The reference allows the processing
software (MassLynx XSTM, Waters Corporation, Milford, MA, USA) to automatically
perform correction of small deviation of centroid masses observed in the sample, from
exact mass measurements. This results in a typical mass accuracy of 1 to 3 mDa. In addition,
different collision energies (MSE, 0–40 eV) were applied to generate fragmentation data
to comprehensively extract structural information of detected metabolites. MarkerLynx
XSTM software has built-in mathematical functions assisting with noise filtering, peak
detection, peak matching, retention time (Rt) alignment and peak integration. These were
well described by [74,75].

4.4. Data Processing and Data Mining

Visualization and data processing were performed using MassLynx XS 4.1 software
(Waters Corporation, Manchester, UK). A visual assessment of mass chromatograms of
QC samples vs. blanks showed no ‘contaminant’ peaks from solvents or the system
(Figure S5). The centroid ESI positive and negative data were then pre-processed using
the MarkerLynx XS application manager tool of MassLynx XS software, creating thus data
matrices for further downstream statistical analyses. The application uses the patented
ApexPeakTrack algorithm to accurately detect and align peaks [75]. Prior to the calculation
of peak intensities, a modified Savitzky–Golay smoothing and integration was applied.
Sample normalisation was done based on total ion intensities corresponding to each peak.
The processing parameters were set at the retention time (Rt) range of 0.6–25.0 min of the
chromatogram, Rt window of 0.2 min, m/z mass range of 50–1200 Da, mass window of
0.05 Da and mass tolerance of 0.05 Da.

The resulting data matrices (with a noise level below 50%) obtained from processing
were exported to SIMCA (soft independent modelling of class analogy) software, ver-
sion 15 with the ‘Omics’ skin (Sartorius, Stedim Data Analytics AB, Umeå, Sweden) and
MetaboAnalyst 5.0 (www.metaboanalyst.ca—online processing of metabolomics data for
statistical, functional and integrative analysis, 15 December 2020) for multivariate statistical
analyses [76,77]. To maximise the metabolome coverage (and learn the structures in the
data), two approaches were carried out; a chemometric approach and a targeted profiling
approach. The former is where the compounds are not firstly identified (or annotated),
but their spectral patterns are statistically evaluated to extract relevant spectral features
that relate to key questions of the study (this was done using SIMCA software). The latter
is where most of the metabolites are firstly annotated (or identified) and then various

www.metaboanalyst.ca
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statistical methods are applied to extract information related to the study, changes and/or
valuable biomarkers (this was done using the MetaboAnalyst tool). The data was mean-
centred and Pareto scaled to balance all features and keep the data structure closed to the
original, reduce variable redundancy and correct measurement errors [78]. As a means
to explore and extract significant information from the multidimensional large dataset,
multivariate data analysis (MVDA) tools were used. These involved unsupervised and
supervised learning algorithms well defined by [79].

Principal component analysis (PCA, an unsupervised method) was executed for di-
mensionality reduction and data exploration; in addition, hierarchical clustering analysis
(HiCA) was used as a substructure reduction and allowed to further assess similarities and
dissimilarities of trends observed between the five barley cultivars. The cumulative model
variation in the matrix X, R2X (cum) also known as the ‘goodness of fit’ parameter and the
predictive ability, Q2 were used to assess models generated in SIMCA software ver. 15 (Sar-
torius, Stedim Data Analytics AB, Umeå, Sweden). The goodness of fit parameter describes
the disparity between the expected values under a statistical model and the observed ones
in the datasets. In other words, it describes how well the model fits observations in the
dataset. Estimated using cross-validation, the predictive ability describes how accurate the
model is in predicting future behaviour [80–82]. Models with an R2X (cum) and Q2 > 50%
were considered robust.

As part of supervised learning algorithms, partial least squares-discriminant analysis
(PLS-DA) was performed on MetaboAnalyst 5.0 software, and orthogonal projection to
partial least squares-discriminant analysis (also known as an orthogonal projection to
latent structures-discriminant analysis, OPLS-DA) modelling performed on SIMCA were
employed to identify significant/discriminatory ions. PLS-DA provided variable impor-
tance in projection scores corresponding to top discriminatory metabolites (VIP score > 1)
among the 5 cultivars. With OPLS-DA modelling, comparing two cultivars at a time,
the loadings S-plots generated showed the magnitude of each ion’s contribution to the
separation |p(1)| in relationship to its significance |p(corr)|. This allowed the selection of
metabolites responsible for the differentiation of cultivars when individually compared to
each other. Outlier ions at the extremes of the S-plots, the outermost ions with p(corr) ≥ 0.5,
≤ −0.5 and (p1) ≥ 0.1, ≤ −0.1 were investigated as potential biomarkers. Additionally,
the analysis of variance testing of cross-validated predictive residuals (CV-ANOVA) was
considered to statistically assess the reliability of the computed OPLS-DA models. A good
model was indicated with a p-value ≤ 0.05. Receiver operator characteristic (ROC) plots
were constructed to evaluate the performance of the binary classifiers [30] and VIP plots
were generated to assess the statistical significance of the selected discriminant ions [83].
The quality of the MVDA models were determined by diagnostics tools as described in the
captions to the figures. Lastly, S-plot-derived potential markers were further investigated
using different tests and tools such as the variable importance in projection (VIP) plots,
variable trends and descriptive statistics (Table S3).

4.5. Metabolite Annotation

The accurate mass as generated by the SYNAPT qTOF MS system was used to derive
empirical formulae with the Masslynx XSTM software that were searched against databases
for the identification of possible compound matches. These databases included, amongst
others, the Dictionary of Natural Products [15], ChemSpider [20], PubChem [23] and
the MassBank of North America [26]. Furthermore, MS data were acquired using five
different collision energies (MSE), varying from 0 to 40 eV to cause fragmentation of the
initial ions. This was done to ensure that as much information regarding the structures of
the respective compounds could be obtained for downstream structural elucidation and
metabolite annotation. MS-based compound annotation, based on accurate mass and mass
fragmentation patterns, was as detailed [17], at a metabolite identification level-2 annotation
(tentative identification) according to the Metabolomics Standards [84]. Hordenine was
identified with the help of an authentic standard (Sigma–Aldrich, Muenchen, Germany).
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Using average peak intensity values, the coefficient of variation (CV) was calculated for
each annotated metabolite to estimate the dispersion around the mean (Table S1).

5. Conclusions

The field of plant research has witnessed tremendous advancement over the past
years with the development of new technologies capable of generating an impressive
amount of interpretable information. Metabolomics is increasingly contributing towards
such progress by its application in diverse agricultural domains including plant breeding
practices. Aiming to comprehensively uncover and understand the metabolome of a sys-
tem, metabolomics is indispensable for the understanding of plant metabolism. Using a
high-throughput analytical platform (UHPLC-MS), an untargeted metabolomics approach
was employed in the study to comprehensively profile methanolic extracts of leaves and
roots of barley cultivars grown in areas with colder temperatures and winter rainfall. The
annotated metabolites belonged to classes of phenolic compounds, alkaloids, fatty acids,
amino acids and derivatives and organic acids. Cultivar- and tissue-specific metabolites oc-
currence was visible on the mass chromatograms as well as on the generated unsupervised
models (PCA and HiCA) used for explorative analysis. The use of supervised, predictive
learning algorithms (PLS-DA and OPLS-DA) allowed the successful extraction/selection of
metabolic features (or variables) contributing to the differentiation of the cultivars. Annota-
tion of these features provided a list of metabolites that may serve as biomarkers. These
metabolite markers may be regarded as links to characteristic performance traits desired in
barley breeding for crop improvement and may be incorporated into targeted metabolomics
profiling in the case of assessing metabolome phenotypes (metabo-phenotyping) of specific
crosses. Considering the complexity of plant metabolism for growth and survival, the in-
vestigation of the synergistic and possible antagonistic effects of these metabolites will also
contribute to the current knowledge. Lastly, the metabolomic workflow and the identified
biomarkers can serve as a foundation for similar studies on diverse barley cultivars grown
in different climatic regions.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/metabo11090578/s1, Figure S1: Ultra-high performance liquid chromatography—mass
spectrometry (UHPLC-MS) base peak intensity (BPI) chromatograms (ESI+ mode) of the leaf and root
extracts from five different barley cultivars from the Western Cape region of South Africa, Figure S2:
Principal component analysis (PCA) score plot models and hierarchical cluster analysis (HiCA)
dendrograms of leaf and root extracts of five cultivars of Hordeum vulgare, Figure S3: Partial least
squares discriminant analyses (PLS-DA) score plots, showing group separation for leaf (A) and root
(B) extracts from barley cultivars ‘Erica’, ‘Agulhas’, ‘S16’, ‘Elim’ and ‘Hessekwa’, Figure S4: Discrimi-
nant metabolites selected on OPLS-DA S-plots generated from the comparison of extracts from roots
of cultivars with each other, Figure S5: (A) Ultra-high performance liquid chromatography—mass
spectrometry (UHPLC-MS) base peak intensity (BPI) chromatograms (ESI− mode) of blank and
Western Cape quality control (WCQC1) samples. (B) A scores plot (PC1 vs. PC2) with QC samples,
Table S1: List of all annotated identified metabolites extracted from leaves and roots of the barley
cultivars ‘Erica’, ‘Agulhas’, ‘S16’, ‘Elim’ and ‘Hessekwa’, Table S2: Performance parameters calculated
for all the OPLS-DA models generated from leaf and root datasets, Table S3: Statistical parameters for
the annotated discriminant metabolites selected from OPLS-DA models comparing ‘Erica’ vs. ‘Elim’.

Author Contributions: Conceptualisation: I.A.D.; methodology: C.Y.H.D., F.T. and P.A.S.; validation:
C.Y.H.D.; formal analysis: C.Y.H.D. and P.A.S.; investigation: C.Y.H.D. and I.A.D.; data curation:
C.Y.H.D.; writing—original draft preparation: C.Y.H.D.; writing—review and editing: I.A.D., F.T. and
L.A.P.; supervision: I.A.D.; project administration: I.A.D. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

https://www.mdpi.com/article/10.3390/metabo11090578/s1
https://www.mdpi.com/article/10.3390/metabo11090578/s1


Metabolites 2021, 11, 578 17 of 20

Data Availability Statement: The study design information, LC-MS data, data processing and
analyses are reported on and incorporated into the main text. Raw data, analyses and data processing
information, and the meta-data are being deposited to the EMBL-EBI metabolomics repository—
MetaboLights50, with the identifier MTBLS3142 (http://www.ebi.ac.uk/metabolights/MTBLS3142
accessed date 19 July 2021).

Acknowledgments: The South African Barley Breeding Institute (SABBI) is thanked for the provision
of seeds.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Breseghello, F.; Coelho, A.S.G. Traditional and modern plant breeding methods with examples in rice (Oryza sativa L.). J. Agric.

Food Chem. 2013, 61, 8277–8286. [CrossRef]
2. Gienapp, P.; Laine, V.N.; Mateman, A.C.; van Oers, K.; Visser, M.E. Environment-dependent genotype-phenotype associations in

avian breeding time. Front. Genet. 2017, 8, 102. [CrossRef] [PubMed]
3. Aslam, M.M.; Karanja, J.K. Genotype by environment interactions modulate sugarcane response to mechanical wounding stress.

Physiol. Mol. Plant Path. 2020, 109, 101443. [CrossRef]
4. Hall, R.D. Plant metabolomics: From holistic hope, to hype, to hot topic. New Phytol. 2006, 169, 453–468. [CrossRef] [PubMed]
5. Harrigan, G.G.; Martino-Catt, S.; Glenn, K.C. Metabolomics, metabolic diversity and genetic variation in crops. Metabolomics

2007, 3, 259–272. [CrossRef]
6. Hamany Djande, C.Y.; Pretorius, C.; Tugizimana, F.; Piater, L.A.; Dubery, I.A. Metabolomics: A tool for cultivar phenotyping and

investigation of grain crops. Agronomy 2020, 10, 831. [CrossRef]
7. Diola, V.; Menezes Daloso de, D.; Antunes, W.C. Metabolomics. In Omics in Plant Breeding; Borém, A., Fritsche-Neto, R., Eds.;

Wiley: New York, NY, USA, 2014; pp. 1–11.
8. Deda, O.; Gika, H.; Raikos, N.; Theodoridis, G. GC-MS-based metabolic phenotyping. In The Handbook of Metabolic Phenotyping;

Lindon, J.C., Nicholson, J.K., Holmes, E., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 137–169.
9. Lawas, L.M.F.; Li, X.; Erban, A.; Kopka, J.; Jagadish, S.K.; Zuther, E.; Hincha, D.K. Metabolic responses of rice cultivars with

different tolerance to combined drought and heat stress under field conditions. Gigascience 2019, 8, giz050. [CrossRef]
10. Mareya, C.R.; Tugizimana, F.; Piater, L.A.; Madala, N.E.; Steenkamp, P.A.; Dubery, I.A. Untargeted metabolomics reveal

defensome-related metabolic reprogramming in Sorghum bicolor against infection by Burkholderia andropogonis. Metabolites 2019,
9, 8. [CrossRef] [PubMed]

11. Tugizimana, F.; Djami-Tchatchou, A.T.; Steenkamp, P.A.; Piater, L.A.; Dubery, I.A. Metabolomic analysis of defense-related
reprogramming in Sorghum bicolor in response to Colletotrichum sublineolum infection reveals a functional metabolic web of
phenylpropanoid and flavonoid pathways. Front. Plant Sci. 2019, 9, 1840. [CrossRef] [PubMed]

12. Wang, Y.; Zeng, X.; Xu, Q.; Mei, X.; Yuan, H.; Jiabu, D.; Sang, Z.; Nyima, T. Metabolite profiling in two contrasting Tibetan
hulless barley cultivars revealed the core salt-responsive metabolome and key salt-tolerance biomarkers. AoB Plants 2019, 11, 21.
[CrossRef]

13. Zhou, Y.; Wang, Z.; Li, Y.; Li, Z.; Liu, H.; Zhou, W. Metabolite profiling of sorghum seeds of different colors from different sweet
sorghum cultivars using a widely targeted metabolomics approach. Int. J. Genom. 2020, 2020, 6247429. [CrossRef]

14. Pretorius, C.J.; Tugizimana, F.; Steenkamp, P.A.; Piater, L.A.; Dubery, I.A. Metabolomics for biomarker discovery: Key signatory
metabolic profiles for the identification and discrimination of oat cultivars. Metabolites 2021, 11, 165. [CrossRef] [PubMed]

15. Dictionary of Natural Products. Available online: https://dnp.chemnetbase.com (accessed on 31 May 2021).
16. Hamany Djande, C.Y.; Steenkamp, P.A.; Piater, L.A.; Madala, N.E.; Dubery, I.A. Habituated Moringa oleifera callus retains metabolic

responsiveness to external plant growth regulators. Plant Cell Tissue Organ. Cult. 2019, 137, 249–264. [CrossRef]
17. Ramabulana, A.T.; Steenkamp, P.; Madala, N.; Dubery, I.A. Profiling of chlorogenic acids from Bidens pilosa and differentiation

of closely related positional isomers with the aid of UHPLC-QTOF-MS/MS-based in-source collision-induced dissociation.
Metabolites 2020, 10, 178. [CrossRef] [PubMed]

18. Clifford, M.N.; Kelly, L.J.; Susan, K.; Nikolai, K. Hierarchical scheme for LC-MSn identification of chlorogenic acids. J. Agric. Food
Chem. 2003, 51, 2900–2911. [CrossRef] [PubMed]

19. Piasecka, A.; Sawikowska, A.; Krajewski, P.; Kachlicki, P. Combined mass spectrometric and chromatographic methods for
in-depth analysis of phenolic secondary metabolites in barley leaves. J. Mass Spectrom. 2015, 50, 513–532. [CrossRef]

20. Chemspider—Search and Share Chemistry. Available online: www.chemspider.com (accessed on 31 May 2021).
21. Gorzolka, K.; Bednarz, H.; Niehaus, K. Detection and localization of novel hordatine-like compounds and glycosylated derivates

of hordatines by imaging mass spectrometry of barley seeds. Planta 2014, 239, 1321–1335. [CrossRef]
22. Pihlava, J.M.; Kurtelius, T.; Hurme, T. Total hordatine content in different types of beers. J. Inst. Brew. 2016, 122, 212–217.

[CrossRef]
23. PubChem. Available online: http://pubchem.ncbi.nlm.nih.gov (accessed on 31 May 2021).

http://www.ebi.ac.uk/metabolights/MTBLS3142
http://doi.org/10.1021/jf305531j
http://doi.org/10.3389/fgene.2017.00102
http://www.ncbi.nlm.nih.gov/pubmed/28824697
http://doi.org/10.1016/j.pmpp.2019.101443
http://doi.org/10.1111/j.1469-8137.2005.01632.x
http://www.ncbi.nlm.nih.gov/pubmed/16411949
http://doi.org/10.1007/s11306-007-0076-0
http://doi.org/10.3390/agronomy10060831
http://doi.org/10.1093/gigascience/giz050
http://doi.org/10.3390/metabo9010008
http://www.ncbi.nlm.nih.gov/pubmed/30609758
http://doi.org/10.3389/fpls.2018.01840
http://www.ncbi.nlm.nih.gov/pubmed/30662445
http://doi.org/10.1093/aobpla/plz021
http://doi.org/10.1155/2020/6247429
http://doi.org/10.3390/metabo11030165
http://www.ncbi.nlm.nih.gov/pubmed/33809127
https://dnp.chemnetbase.com
http://doi.org/10.1007/s11240-019-01565-y
http://doi.org/10.3390/metabo10050178
http://www.ncbi.nlm.nih.gov/pubmed/32365739
http://doi.org/10.1021/jf026187q
http://www.ncbi.nlm.nih.gov/pubmed/12720369
http://doi.org/10.1002/jms.3557
www.chemspider.com
http://doi.org/10.1007/s00425-014-2061-y
http://doi.org/10.1002/jib.311
http://pubchem.ncbi.nlm.nih.gov


Metabolites 2021, 11, 578 18 of 20

24. Zhang, P.; Chan, W.; Ang, I.L.; Wei, R.; Lam, M.M.; Lei, K.M.; Poon, T.C. Revisiting fragmentation reactions of protonated α-amino
acids by high-resolution electrospray ionization tandem mass spectrometry with collision-induced dissociation. Sci. Rep. 2019,
9, 6453. [CrossRef]

25. Al Kadhi, O.; Melchini, A.; Mithen, R.; Saha, S. Development of a LC-MS/MS method for the simultaneous detection of
tricarboxylic acid cycle intermediates in a range of biological matrices. J. Anal. Methods. Chem. 2017, 2017, 5391832. [CrossRef]

26. MassBank of North America. Available online: https://mona.fiehnlab.ucdavis.edu/spectra/search (accessed on 31 May 2021).
27. Enomoto, H.; Sensu, T.; Sato, K.; Sato, F.; Paxton, T.; Yumoto, E.; Miyamoto, K.; Asahina, M.; Yokota, T.; Yamane, H. Visualisation

of abscisic acid and 12-oxo-phytodienoic acid in immature Phaseolus vulgaris L. seeds using desorption electrospray ionisation-
imaging mass spectrometry. Sci. Rep. 2017, 7, 42977. [CrossRef]

28. Oliw, E.H.; Hamberg, M. Biosynthesis of jasmonates from linoleic acid by the fungus Fusarium oxysporum. Evidence for a novel
allene oxide cyclase. Lipids 2019, 54, 543–556. [CrossRef] [PubMed]

29. Tasche, D. Validation of internal rating systems and PD estimates. In The Analytics of Risk Model Validation; Christodoulakis, G.,
Satchell, S., Eds.; Academic Press: Cambridge, MA, USA, 2008; pp. 169–196.

30. Westerhuis, J.A.; Hoefsloot, H.C.; Smit, S.; Vis, D.J.; Smilde, A.K.; van Velzen, E.J.; van Duijnhoven, J.P.; van Dorsten, F.A.
Assessment of PLSDA cross validation. Metabolomics 2008, 4, 81–89. [CrossRef]

31. Kim, S.C.; Lee, J.H.; Kim, M.H.; Lee, J.A.; Kim, Y.B.; Jung, E.; Kim, Y.S.; Lee, J.; Park, D. Hordenine, a single compound produced
during barley germination, inhibits melanogenesis in human melanocytes. Food Chem. 2013, 141, 174–181. [CrossRef] [PubMed]

32. Dong, X.; Chen, W.; Wang, W.; Zhang, H.; Liu, X.; Luo, J. Comprehensive profiling and natural variation of flavonoids in rice. J.
Integr. Plant Biol. 2014, 56, 876–886. [CrossRef]

33. Singh, R.; Dubey, A.K. Differential synthesis of secondary metabolites by Streptomyces chrestomyceticus strain ADP4 in response to
modulation in nitrogen source and its anti-Candida activity. Proceedings 2020, 66, 5. [CrossRef]

34. Liu, J.; Liu, Y.; Jia, M.; Kang, X.; Wang, S.; Sun, H.; Liu, M.; Wang, A.; Strappe, P.; Zhou, Z. Association of enriched metabolites
profile with the corresponding volatile characteristics induced by rice yellowing process. Food Chem. 2021, 349, 129173. [CrossRef]

35. Dong, X.; Gao, Y.; Chen, W.; Wang, W.; Gong, L.; Liu, X.; Luo, J. Spatiotemporal distribution of phenolamides and the genetics of
natural variation of hydroxycinnamoyl spermidine in rice. Mol. Plant 2015, 8, 111–121. [CrossRef]

36. Ullah, N.; Yüce, M.; Gökçe, Z.N.Ö.; Budak, H. Comparative metabolite profiling of drought stress in roots and leaves of seven
Triticeae species. BMC Genom. 2017, 18, 969. [CrossRef]

37. Zeiss, D.R.; Mhlongo, M.I.; Tugizimana, F.; Steenkamp, P.A.; Dubery, I.A. Metabolomic profiling of the host response of tomato
(Solanum lycopersicum) following infection by Ralstonia solanacearum. Int. J. Mol. Sci. 2019, 20, 3945. [CrossRef]

38. Linatoc, A.C.; Idris, A.; Bakar, M.F.A. Influence of light intensity on the photosynthesis and phenolic contents of Mangifera indica.
J. Sci. Technol. 2018, 10, 47–54. [CrossRef]

39. Ludwig, B.; Murugan, R.; Parama, V.R.; Vohland, M. Use of different chemometric approaches for an estimation of soil properties
at field scale with near infrared spectroscopy. J. Plant Nutr. Soil Sci. 2018, 181, 704–713. [CrossRef]

40. Büchele, D.; Chao, M.; Ostermann, M.; Leenen, M.; Bald, I. Multivariate chemometrics as a key tool for prediction of K and Fe in a
diverse German agricultural soil-set using EDXRF. Sci. Rep. 2019, 9, 17588. [CrossRef]

41. Xing, J.; Saeys, W.; De Baerdemaeker, J. Combination of chemometric tools and image processing for bruise detection on apples.
Comput. Electron. Agric. 2007, 56, 1–13. [CrossRef]

42. Zarei, I.; Luna, E.; Leach, J.E.; McClung, A.; Vilchez, S.; Koita, O.; Ryan, E.P. Comparative rice bran metabolomics across diverse
cultivars and functional rice gene–bran metabolite relationships. Metabolites 2018, 8, 63. [CrossRef] [PubMed]

43. Heuberger, A.L.; Broeckling, C.D.; Kirkpatrick, K.R.; Prenni, J.E. Application of nontargeted metabolite profiling to discover novel
markers of quality traits in an advanced population of malting barley. Plant Biotechnol. J. 2014, 12, 147–160. [CrossRef]

44. Fernandez, C.; Monnier, Y.; Santonja, M.; Gallet, C.; Weston, L.A.; Prévosto, B.; Saunier, A.; Baldy, V.; Bousquet-Mélou, A. The
impact of competition and allelopathy on the trade-off between plant defense and growth in two contrasting tree species. Front.
Plant Sci. 2016, 7, 594. [CrossRef] [PubMed]

45. Baker, B.P.; Meints, B.M.; Hayes, P.M. Organic barley producers’ desired qualities for crop improvement. Org. Agric. 2020, 13, 1–8.
[CrossRef]

46. Sumbele, S.; Fotelli, M.N.; Nikolopoulos, D.; Tooulakou, G.; Liakoura, V.; Liakopoulos, G.; Bresta, P.; Dotsika, E.; Adams, M.A.;
Karabourniotis, G. Photosynthetic capacity is negatively correlated with the concentration of leaf phenolic compounds across a
range of different species. AoB Plants 2012, 2012, pls025. [CrossRef]

47. Ludwig, R.A.; Spencer, E.Y.; Unwin, C.H. An antifungal factor from barley of possible significance in disease resistance. Can. J.
Bot. 1960, 38, 21–29. [CrossRef]

48. Stoessl, A.; Unwin, C.H. The antifungal factors in barley. V. Antifungal activity of the hordatines. Can. J. Bot. 1970, 48, 465–470.
[CrossRef]

49. Oueslati, O.; Ben-Hammouda, M.; Ghorbal, M.H.; El Gazzeh, M.; Kremer, R.J. Role of phenolic acids in expression of barley
(Hordeum vulgare) autotoxicity. Allelopath. J. 2009, 23, 157–166.

50. Oueslati, O.; Ben-Hammouda, M.A. Laboratory approach to investigate auto-toxicity of soils cultivated with barley. Allelopath. J.
Interact. 2017, 3, 9–14.

http://doi.org/10.1038/s41598-019-42777-8
http://doi.org/10.1155/2017/5391832
https://mona.fiehnlab.ucdavis.edu/spectra/search
http://doi.org/10.1038/srep42977
http://doi.org/10.1002/lipd.12180
http://www.ncbi.nlm.nih.gov/pubmed/31353474
http://doi.org/10.1007/s11306-007-0099-6
http://doi.org/10.1016/j.foodchem.2013.03.017
http://www.ncbi.nlm.nih.gov/pubmed/23768344
http://doi.org/10.1111/jipb.12204
http://doi.org/10.3390/proceedings2020066005
http://doi.org/10.1016/j.foodchem.2021.129173
http://doi.org/10.1016/j.molp.2014.11.003
http://doi.org/10.1186/s12864-017-4321-2
http://doi.org/10.3390/ijms20163945
http://doi.org/10.30880/jst.2018.10.04.009
http://doi.org/10.1002/jpln.201800130
http://doi.org/10.1038/s41598-019-53426-5
http://doi.org/10.1016/j.compag.2006.12.002
http://doi.org/10.3390/metabo8040063
http://www.ncbi.nlm.nih.gov/pubmed/30304872
http://doi.org/10.1111/pbi.12122
http://doi.org/10.3389/fpls.2016.00594
http://www.ncbi.nlm.nih.gov/pubmed/27200062
http://doi.org/10.1007/s13165-020-00299-y
http://doi.org/10.1093/aobpla/pls025
http://doi.org/10.1139/b60-003
http://doi.org/10.1139/b70-066


Metabolites 2021, 11, 578 19 of 20

51. Bouhaouel, I.; Richard, G.; Fauconnier, M.L.; Ongena, M.; Franzil, L.; Gfeller, A.; Slim Amara, H.; du Jardin, P. Identification
of barley (Hordeum vulgare L. subsp. vulgare) root exudates allelochemicals, their autoallelopathic activity and against Bromus
diandrus Roth. Germination. Agronomy 2019, 9, 345. [CrossRef]

52. Vyvyan, J.R. Allelochemicals as leads for new herbicides and agrochemicals. Tetrahedron 2002, 58, 1631–1646. [CrossRef]
53. Bertholdsson, N.O. Early vigour and allelopathy—Two useful traits for enhanced barley and wheat competitiveness against

weeds. Weed Res. 2005, 45, 94–102. [CrossRef]
54. Lebecque, S.; Crowet, J.M.; Lins, L.; Delory, B.M.; du Jardin, P.; Fauconnier, M.L.; Deleu, M. Interaction between the barley

allelochemical compounds gramine and hordenine and artificial lipid bilayers mimicking the plant plasma membrane. Sci. Rep.
2018, 8, 9784. [CrossRef]

55. Yonekura-Sakakibara, K.; Higashi, Y.; Nakabayashi, R. The origin and evolution of plant flavonoid metabolism. Front. Plant Sci.
2019, 10, 943. [CrossRef]

56. Davies, K.M.; Jibran, R.; Zhou, Y.; Albert, N.W.; Brummell, D.A.; Jordan, B.R.; Bowman, J.L.; Schwinn, K.E. The evolution of
flavonoid biosynthesis: A bryophyte perspective. Front. Plant Sci. 2020, 11, 7. [CrossRef] [PubMed]

57. Gupta, S.; Rupasinghe, T.; Callahan, D.L.; Natera, S.H.; Smith, P.; Hill, C.B.; Roessner, U.; Boughton, B.A. Spatio-temporal
metabolite and elemental profiling of salt stressed barley seeds during initial stages of germination by MALDI-MSI and µ-XRF
spectrometry. Front. Plant Sci. 2019, 10, 1139. [CrossRef]

58. Balmer, D.; Flors, V.; Glauser, G.; Mauch-Mani, B. Metabolomics of cereals under biotic stress: Current knowledge and techniques.
Front. Plant Sci. 2013, 4, 82. [CrossRef]

59. Maver, M.; Miras-Moreno, B.; Lucini, L.; Trevisan, M.; Pii, Y.; Cesco, S.; Mimmo, T. New insights in the allelopathic traits of
different barley genotypes: Middle Eastern and Tibetan wild-relative accessions vs. cultivated modern barley. PLoS ONE 2020, 15,
e0231976. [CrossRef]

60. He, M.; He, C.Q.; Ding, N.Z. Abiotic stresses: General defenses of land plants and chances for engineering multistress tolerance.
Front. Plant Sci. 2018, 9, 1771. [CrossRef] [PubMed]

61. He, M.; Qin, C.-X.; Wang, X.; Ding, N.-Z. Plant Unsaturated Fatty Acids: Biosynthesis and Regulation. Front. Plant Sci. 2020,
11, 390. [CrossRef] [PubMed]

62. Kachroo, P.; Shanklin, J.; Shah, J.; Whittle, E.J.; Klessig, D.F. A fatty acid desaturase modulates the activation of defense signaling
pathways in plants. Proc. Natl. Acad. Sci. USA 2001, 98, 9448–9453. [CrossRef] [PubMed]

63. Tayeh, C.; Randoux, B.; Laruelle, F.; Bourdon, N.; Reignault, P. Lipids as markers of induced resistance in wheat: A biochemical
and molecular approach. Commun. Agric. Appl. Biol. Sci. 2013, 78, 459–465.

64. Lopez-Bucio, J.; Nieto-Jacobo, M.F.; Ramırez-Rodrıguez, V.; Herrera-Estrella, L. Organic acid metabolism in plants: From adaptive
physiology to transgenic varieties for cultivation in extreme soils. Plant Sci. 2000, 160, 1–13. [CrossRef]

65. Igamberdiev, A.U.; Eprintsev, A.T. Organic acids: The pools of fixed carbon involved in redox regulation and energy balance in
higher plants. Front. Plant Sci. 2016, 7, 1042. [CrossRef]

66. Meyer, S.; De Angeli, A.; Fernie, A.R.; Martinoia, E. Intra-and extra-cellular excretion of carboxylates. Trends Plant Sci. 2010,
15, 40–47. [CrossRef]

67. Joshi, V.; Joung, J.G.; Fei, Z.; Jander, G. Interdependence of threonine, methionine and isoleucine metabolism in plants: Accumula-
tion and transcriptional regulation under abiotic stress. Amino Acids 2010, 39, 933–947. [CrossRef]

68. Obata, T.; Witt, S.; Lisec, J.; Palacios-Rojas, N.; Florez-Sarasa, I.; Yousfi, S.; Araus, J.L.; Cairns, J.E.; Fernie, A.R. Metabolite profiles
of maize leaves in drought, heat and combined stress field trials reveal the relationship between metabolism and grain yield.
Plant Physiol. 2015, 169, 2665–2683. [CrossRef]

69. Lee, S.; Oh, D.G.; Singh, D.; Lee, J.S.; Lee, S.; Lee, C.H. Exploring the metabolomic diversity of plant species across spatial (leaf
and stem) components and phylogenic groups. BMC Plant Biol. 2020, 20, 39. [CrossRef] [PubMed]

70. Yonekura-Sakakibara, K.; Tohge, T.; Niida, R.; Saito, K. Identification of a flavonol 7-o-rhamnosyltransferase gene determining
flavonoid pattern in Aabidopsis by transcriptome coexpression analysis and reverse genetics. J. Biol. Chem. 2007, 282, 14932–14941.
[CrossRef] [PubMed]

71. Obata, T.; Fernie, A.R. The use of metabolomics to dissect plant responses to abiotic stresses. Cell. Mol. Life Sci. 2012, 69, 3225–3243.
[CrossRef] [PubMed]

72. Alawiye, T.T.; Babalola, O.O. Metabolomics: Current application and prospects in crop production. Biologia 2021, 76, 227–239.
[CrossRef]

73. Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A decimal code for the growth stages of cereals. Weed Res. 1974, 14, 415–421. [CrossRef]
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